烟点燃空虚
1、抓取网页每个独立的搜索引擎都有自己的网页抓取程序(spider)。Spider顺着网页中的超链接,连续地抓取网页。被抓取的网页被称之为网页快照。由于互联网中超链接的应用很普遍,理论上,从一定范围的网页出发,就能搜集到绝大多数的网页。2、处理网页搜索引擎抓到网页后,还要做大量的预处理工作,才能提供检索服务。其中,最重要的就是提取关键词,建立索引文件。其他还包括去除重复网页、分析超链接、计算网页的重要度。3、提供检索服务用户输入关键词进行检索,搜索引擎从索引数据库中找到匹配该关键词的网页;为了用户便于判断,除了网页标题和URL外,还会提供一段来自网页的摘要以及其他信息。全文搜索引擎在搜索引擎分类部分我们提到过全文搜索引擎从网站提取信息建立网页数据库的概念。搜索引擎的自动信息搜集功能分两种。一种是定期搜索,即每隔一段时间(比如Google一般是28天),搜索引擎主动派出“蜘蛛”程序,对一定IP地址范围内的互联网站进行检索,一旦发现新的网站,它会自动提取网站的信息和网址加入自己的数据库。另一种是提交网站搜索,即网站拥有者主动向搜索引擎提交网址,它在一定时间内(2天到数月不等)定向向你的网站派出“蜘蛛”程序,扫描你的网站并将有关信息存入数据库,以备用户查询。由于近年来搜索引擎索引规则发生了很大变化,主动提交网址并不保证你的网站能进入搜索引擎数据库,因此目前最好的办法是多获得一些外部链接,让搜索引擎有更多机会找到你并自动将你的网站收录。当用户以关键词查找信息时,搜索引擎会在数据库中进行搜寻,如果找到与用户要求内容相符的网站,便采用特殊的算法——通常根据网页中关键词的匹配程度,出现的位置/频次,链接质量等——计算出各网页的相关度及排名等级,然后根据关联度高低,按顺序将这些网页链接返回给用户。编辑本段目录索引与全文搜索引擎相比,目录索引有许多不同之处。首先,搜索引擎属于自动网站检索,而目录索引则完全依赖手工操作。用户提交网站后,目录编辑人员会亲自浏览你的网站,然后根据一套自定的评判标准甚至编辑人员的主观印象,决定是否接纳你的网站。其次,搜索引擎收录网站时,只要网站本身没有违反有关的规则,一般都能登录成功。而目录索引对网站的要求则高得多,有时即使登录多次也不一定成功。尤其象Yahoo!这样的超级索引,登录更是困难。此外,在登录搜索引擎时,我们一般不用考虑网站的分类问题,而登录目录索引时则必须将网站放在一个最合适的目录(Directory)。最后,搜索引擎中各网站的有关信息都是从用户网页中自动提取的,所以用户的角度看,我们拥有更多的自主权;而目录索引则要求必须手工另外填写网站信息,而且还有各种各样的限制。更有甚者,如果工作人员认为你提交网站的目录、网站信息不合适,他可以随时对其进行调整,当然事先是不会和你商量的。目录索引,顾名思义就是将网站分门别类地存放在相应的目录中,因此用户在查询信息时,可选择关键词搜索,也可按分类目录逐层查找。如以关键词搜索,返回的结果跟搜索引擎一样,也是根据信息关联程度排列网站,只不过其中人为因素要多一些。如果按分层目录查找,某一目录中网站的排名则是由标题字母的先后顺序决定(也有例外)。目前,搜索引擎与目录索引有相互融合渗透的趋势。原来一些纯粹的全文搜索引擎现在也提供目录搜索,如Google就借用Open Directory目录提供分类查询。而象 Yahoo! 这些老牌目录索引则通过与Google等搜索引擎合作扩大搜索范围(注)。在默认搜索模式下,一些目录类搜索引擎首先返回的是自己目录中匹配的网站,如国内搜狐、新浪、网易等;而另外一些则默认的是网页搜索,如Yahoo。
小猪妖嘴巴挑
2.1基于词频统计——词位置加权的搜索引擎 利用关键词在文档中出现的频率和位置排序是搜索引擎最早期排序的主要思想,其技术发展也最为成熟,是第一阶段搜索引擎的主要排序技术,应用非常广泛,至今仍是许多搜索引擎的核心排序技术。其基本原理是:关键词在文档中词频越高,出现的位置越重要,则被认为和检索词的相关性越好。 1)词频统计 文档的词频是指查询关键词在文档中出现的频率。查询关键词词频在文档中出现的频率越高,其相关度越大。但当关键词为常用词时,使其对相关性判断的意义非常小。TF/IDF很好的解决了这个问题。TF/IDF算法被认为是信息检索中最重要的发明。TF(Term Frequency):单文本词汇频率,用关键词的次数除以网页的总字数,其商称为“关键词的频率”。IDF(Inverse Document Frequency):逆文本频率指数,其原理是,一个关键词在N个网页中出现过,那么N越大,此关键词的权重越小,反之亦然。当关键词为常用词时,其权重极小,从而解决词频统计的缺陷。 2)词位置加权 在搜索引擎中,主要针对网页进行词位置加权。所以,页面版式信息的分析至关重要。通过对检索关键词在Web页面中不同位置和版式,给予不同的权值,从而根据权值来确定所搜索结果与检索关键词相关程度。可以考虑的版式信息有:是否是标题,是否为关键词,是否是正文,字体大小,是否加粗等等。同时,锚文本的信息也是非常重要的,它一般能精确的描述所指向的页面的内容。 2.2基于链接分析排序的第二代搜索引擎 链接分析排序的思想起源于文献引文索引机制,即论文被引用的次数越多或被越权威的论文引用,其论文就越有价值。链接分析排序的思路与其相似,网页被别的网页引用的次数越多或被越权威的网页引用,其价值就越大。被别的网页引用的次数越多,说明该网页越受欢迎,被越权威的网页引用,说明该网页质量越高。链接分析排序算法大体可以分为以下几类:基于随机漫游模型的,比如PageRank和Repution算法;基于概率模型的,如SALSA、PHITS;基于Hub和Authority相互加强模型的,如HITS及其变种;基于贝叶斯模型的,如贝叶斯算法及其简化版本。所有的算法在实际应用中都结合传统的内容分析技术进行了优化。本文主要介绍以下几种经典排序算法: 1)PageRank算法 PageRank算法由斯坦福大学博士研究生Sergey Brin和Lwraence Page等提出的。PageRank算法是Google搜索引擎的核心排序算法,是Google成为全球最成功的搜索引擎的重要因素之一,同时开启了链接分析研究的热潮。 PageRank算法的基本思想是:页面的重要程度用PageRank值来衡量,PageRank值主要体现在两个方面:引用该页面的页面个数和引用该页面的页面重要程度。一个页面P(A)被另一个页面P(B)引用,可看成P(B)推荐P(A),P(B)将其重要程度(PageRank值)平均的分配P(B)所引用的所有页面,所以越多页面引用P(A),则越多的页面分配PageRank值给P(A),PageRank值也就越高,P(A)越重要。另外,P(B)越重要,它所引用的页面能分配到的PageRank值就越多,P(A)的PageRank值也就越高,也就越重要。 其计算公式为: PR(A):页面A的PageRank值; d:阻尼系数,由于某些页面没有入链接或者出链接,无法计算PageRank值,为避免这个问题(即LinkSink问题),而提出的。阻尼系数常指定为0.85。 R(Pi):页面Pi的PageRank值; C(Pi):页面链出的链接数量; PageRank值的计算初始值相同,为了不忽视被重要网页链接的网页也是重要的这一重要因素,需要反复迭代运算,据张映海撰文的计算结果,需要进行10次以上的迭代后链接评价值趋于稳定,如此经过多次迭代,系统的PR值达到收敛。 PageRank是一个与查询无关的静态算法,因此所有网页的PageRank值均可以通过离线计算获得。这样,减少了用户检索时需要的排序时间,极大地降低了查询响应时间。但是PageRank存在两个缺陷:首先PageRank算法严重歧视新加入的网页,因为新的网页的出链接和入链接通常都很少,PageRank值非常低。另外PageRank算法仅仅依靠外部链接数量和重要度来进行排名,而忽略了页面的主题相关性,以至于一些主题不相关的网页(如广告页面)获得较大的PageRank值,从而影响了搜索结果的准确性。为此,各种主题相关算法纷纷涌现,其中以以下几种算法最为典型。 2)Topic-Sensitive PageRank算法 由于最初PageRank算法中是没有考虑主题相关因素的,斯坦福大学计算机科学系Taher Haveli-wala提出了一种主题敏感(Topic-Sensitive)的PageRank算法解决了“主题漂流”问题。该算法考虑到有些页面在某些领域被认为是重要的,但并不表示它在其它领域也是重要的。 网页A链接网页B,可以看作网页A对网页B的评分,如果网页A与网页B属于相同主题,则可认为A对B的评分更可靠。因为A与B可形象的看作是同行,同行对同行的了解往往比不是同行的要多,所以同行的评分往往比不是同行的评分可靠。遗憾的是TSPR并没有利用主题的相关性来提高链接得分的准确性。 3)HillTop算法 HillTop是Google的一个工程师Bharat在2001年获得的专利。HillTop是一种查询相关性链接分析算法,克服了的PageRank的查询无关性的缺点。HillTop算法认为具有相同主题的相关文档链接对于搜索者会有更大的价值。在Hilltop中仅考虑那些用于引导人们浏览资源的专家页面(Export Sources)。Hilltop在收到一个查询请求时,首先根据查询的主题计算出一列相关性最强的专家页面,然后根据指向目标页面的非从属专家页面的数量和相关性来对目标页面进行排序。 HillTop算法确定网页与搜索关键词的匹配程度的基本排序过程取代了过分依靠PageRank的值去寻找那些权威页面的方法,避免了许多想通过增加许多无效链接来提高网页PageRank值的作弊方法。HillTop算法通过不同等级的评分确保了评价结果对关键词的相关性,通过不同位置的评分确保了主题(行业)的相关性,通过可区分短语数防止了关键词的堆砌。 但是,专家页面的搜索和确定对算法起关键作用,专家页面的质量对算法的准确性起着决定性作用,也就忽略了大多数非专家页面的影响。专家页面在互联网中占的比例非常低(1.79%),无法代表互联网全部网页,所以HillTop存在一定的局限性。同时,不同于PageRank算法,HillTop算法的运算是在线运行的,对系统的响应时间产生极大的压力。 4)HITS HITS(Hyperlink Induced Topic Search)算法是Kleinberg在1998年提出的,是基于超链接分析排序算法中另一个最著名的算法之一。该算法按照超链接的方向,将网页分成两种类型的页面:Authority页面和Hub页面。Authority页面又称权威页面,是指与某个查询关键词和组合最相近的页面,Hub页面又称目录页,该页面的内容主要是大量指向Authority页面的链接,它的主要功能就是把这些Authority页面联合在一起。对于Authority页面P,当指向P的Hub页面越多,质量越高,P的Authority值就越大;而对于Hub页面H,当H指向的Authority的页面越多,Authority页面质量越高,H的Hub值就越大。对整个Web集合而言,Authority和Hub是相互依赖、相互促进,相互加强的关系。Authority和Hub之间相互优化的关系,即为HITS算法的基础。 HITS基本思想是:算法根据一个网页的入度(指向此网页的超链接)和出度(从此网页指向别的网页)来衡量网页的重要性。在限定范围之后根据网页的出度和入度建立一个矩阵,通过矩阵的迭代运算和定义收敛的阈值不断对两个向量Authority和Hub值进行更新直至收敛。 实验数据表明,HITS的排名准确性要比PageRank高,HITS算法的设计符合网络用户评价网络资源质量的普遍标准,因此能够为用户更好的利用网络信息检索工具访问互联网资源带来便利。 但却存在以下缺陷:首先,HITS算法只计算主特征向量,处理不好主题漂移问题;其次,进行窄主题查询时,可能产生主题泛化问题;第三,HITS算法可以说一种实验性质的尝试。它必须在网络信息检索系统进行面向内容的检索操作之后,基于内容检索的结果页面及其直接相连的页面之间的链接关系进行计算。尽管有人尝试通过算法改进和专门设立链接结构计算服务器(Connectivity Server)等操作,可以实现一定程度的在线实时计算,但其计算代价仍然是不可接受的。 2.3基于智能化排序的第三代搜索引擎 排序算法在搜索引擎中具有特别重要的地位,目前许多搜索引擎都在进一步研究新的排序方法,来提升用户的满意度。但目前第二代搜索引擎有着两个不足之处,在此背景下,基于智能化排序的第三代搜索引擎也就应运而生。 1)相关性问题 相关性是指检索词和页面的相关程度。由于语言复杂,仅仅通过链接分析及网页的表面特征来判断检索词与页面的相关性是片面的。例如:检索“稻瘟病”,有网页是介绍水稻病虫害信息的,但文中没有“稻瘟病”这个词,搜索引擎根本无法检索到。正是以上原因,造成大量的搜索引擎作弊现象无法解决。解决相关性的的方法应该是增加语意理解,分析检索关键词与网页的相关程度,相关性分析越精准,用户的搜索效果就会越好。同时,相关性低的网页可以剔除,有效地防止搜索引擎作弊现象。检索关键词和网页的相关性是在线运行的,会给系统相应时间很大的压力,可以采用分布式体系结构可以提高系统规模和性能。 2)搜索结果的单一化问题 在搜索引擎上,任何人搜索同一个词的结果都是一样。这并不能满足用户的需求。不同的用户对检索的结果要求是不一样的。例如:普通的农民检索“稻瘟病”,只是想得到稻瘟病的相关信息以及防治方法,但农业专家或科技工作者可能会想得到稻瘟病相关的论文。 解决搜索结果单一的方法是提供个性化服务,实现智能搜索。通过Web数据挖掘,建立用户模型(如用户背景、兴趣、行为、风格),提供个性化服务。
网络教育是属于国民教育体系中的重要组成,以其方便的的学习方式,备受广大学员喜爱,那么网络教育毕业论文答辩有什么技巧?下面跟求学问校远程网小编一起来看看。网络教育
我给你找了一篇,摘要如下:随着Internet在全世界范围内迅猛发展,网上庞大的数字化信息和人们获取信息之间的矛盾日益突出。因此,对网络信息的检索技术及其发展趋
1、百度百家:百度百家所邀请入驻作家阵营囊括互联网、时政、体育、人文等多个领域,并且为入驻作家开发了可视化的专用CMS内容系统。为了简化广大百度百家作者的发文流
①首先要在三大网上中文期刊数据库中查找最新的期刊论文文献。中文科技期刊全文数据库和中国期刊网 ②在清华库中有中国优秀博硕士学位论文全文数据库和中国重要会议论文全
WANDOT