tingting2171
论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:
图像可以由下式获得:
论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。
论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。
论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。
论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)
论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。
论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。
论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。
论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。
论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。
论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。
论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。
论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。
论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。
论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。
论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。
论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。
论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。
论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。
论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。
论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。
参考:
小蝴蝶飞不过
姓名:张昊楠 学号:21021210691 学院:电子工程学院 【嵌牛导读】简要介绍暗通道先验理论基础 【嵌牛鼻子】图像处理 图像去雾 【嵌牛正文】: 暗通道先验理论是何凯明基于对大量户外无雾图像的观察所得到的统计规律:在大多数不包含天空区域的图像中,存在一些像素点,这些像素点中至少有一个通道的值有非常低的值。如果将无雾图像用J表示,那么图像的暗通道可以表示为: 式中Ω(x)表示以像素点x为中心的方形窗口。暗通道图像即为对原图作最小值滤波。 根据暗通道先验理论,在没有雾的户外图像中,除天空区域外,其暗通道趋向于零,即: 造成暗通道图像亮度低的原因一般包括图像中的阴影区域,颜色鲜艳的物体以及本身就比较暗的物体。 一般来说,一张含雾霾的图片往往比没有雾霾的图片更亮。在雾霾越厚的地方,其暗通道像素值越高。根据暗通道先验理论,我们可以认为,含雾图片中暗通道的亮度大致接近雾霾的厚度。 图1是一幅无雾图和它的暗通道图像,图2是一幅有雾图和它的暗通道图像。通过对比可以发现,图1的暗通道图几乎全部是黑色,图2的有雾图像白色区域明显较多,且原图中雾越浓,暗通道图像对应的区域越亮。雾天图像的暗通道图像亮度值可以很好地反映雾的浓度。根据这一点,我们可以通过暗通道图像来估计雾的浓度。 下面介绍如何利用暗通道先验理论对图像进行去雾: 在一些关于图像去雾的方法中,一般将图像中像素的最大值作为大气光的估计值。但在实际的图片中,最亮的像素点可能是白色的背景墙或者白色的汽车。所以利用原图最亮的像素点作为大气光的强度有时会产生较大误差。 如第1节介绍的那样,雾霾图像暗通道亮度近似等同于雾霾厚度,所以可以利用图像的暗通道的亮度来更准确估计整体大气光。整体大气光的估计方法如下: 首先取暗通道图像中千分之一个最亮的像素点;然后找到这些像素点对应在原彩色图像中的位置;最后,在原彩色图像中的这些位置里面找到亮度最大的点,作为大气光强的估计值。实际操作中,这种方法比“最亮像素法”更具有更高的稳定性。 对大气散射模型变形,有 假设在区域 中,透射率t(x)是一个常数,记为 。对上式两端作两次最小值滤波,第一次对等式两端R,G,B三个通道取最小值,第二次滤波对以目标像素点为中心的方形区域内取最小值作为该像素点的值,公式表示如下所示: 根据暗通道先验理论: 将2-3式代入2-2式,可以求得透射率 实际生活中,即使是在晴朗的天气下也会不可避免地在空气中存在一些杂质分子。而且,雾的存在可以帮助我们更好获取景深信息,这种现象就是我们所说的空间透视。如果将雾完全除掉的话,景深信息也会丢失,这样一来,复原出的图像会显得不自然。所以在实际操作时,我们会选择保留一部分覆盖远景的雾。为此,引入参数,对2-4式作出调整,得到修正后透射率的表达式: w越大,表示去雾效果越好。当w=0时,透射率恒为1,复原结果图即为原图;当w=1时,表示雾霾全部去除。这里,为保留一定的景深信息,令w=0.95。 根据上述方法,我们已经求出了大气光强和透射率信息,对大气散射模型作恒等变形,利用(2-6)式在图像的R,G,B三个通道分别进行计算即可得到复原后的无雾图像。 透射率t(x)是一个介于0和1之间的值,当t(x)的某个值为0时,根据上述公式,所得到的图像对应点的像素值则趋向于无穷大,这是我们不希望看到的。所以,为了避免这种情况的发生,我们引入限制透射率阈值的参数 ,以此来控制透射率的下限,则修正后的表达式为:复原效果图: 从图中可以看出,虽然利用上述方法实现了去雾的效果,但效果并不理想。在天安门与天空连接的边缘部分,会有明显的带状区域产生,这种现象我们称之为光晕效应。经过对比发现,滤波窗口的半径越大,光晕效应越明显。这是因为,我们最初的假设是透射率 在以某一像素点为中心的 为半径的区域内是常数,这种假设在图像的平滑区域是成立的,但在景深突变的边缘处,这种假设并不成立。在边缘部分的透射率信息和实际有一定的误差,我们称这个透射率是粗糙的。因此,为取得更加理想的去雾效果,需要进一步对计算出的透射率 进行细化处理。 在后续的文章中,我们将会介绍一些方法对透射率进行细化,用以抑制光晕效果的产生。 K. He, J. Sun and X. Tang, "Guided Image Filtering,"in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no.6, pp. 1397-1409, June 2013, doi: 10.1109/TPAMI.2012.213.
function dark = darkChannel(imRGB)r=imRGB(:,:,1);g=imRGB(:,:,2);b=imRGB(:,:,3);
网上搜搜国外有一些demo程序,方便你入门。图像边缘提取 常用的边缘检测算子有梯度算子、Roberts算子、Sobel算子、Prewitt算子、Canny算子
我的也是这个题目 还没开始做呢 主要是对算法的介绍与比较,然后用其中某两种算法进行编程用软件处理出结果 在对结果进行分析 大概流程就是这样
单个RGB-D图像的深度补全 主页: Github: Paper: Goal --complete the depth channel of a
哈哈 我也是大一的 支持哈 为什么要有作业呀