吃货独依
感受野(receptive field或者field of view)是卷积神经网络中的一个基本概念。与全连接层中每个输出值都与全部输入特征值有关不同的是,卷积层的一个输出值只与一部分的输入特征值有关。输入特征值中与输出特征值有关的部分就是它的感受野。 对于处于中心位置的特征值,对于输出的影响会更大,根据实验结果在一个接受野的影响分布是高斯分布。由此也引入了一个 有效感受野 的概念,因为高斯分布在中心位置强度更高,然后逐渐向周围递减。
我们想用数学的方法来描述一个接收野中的每个输入像素对网络上一个单元层的输出的影响程度,并研究这种影响是如何在输出单元的接收野内分布的。为了简化符号,我们只考虑每层上的一个信道,但是对于具有更多输入和输出的卷积层,可以很容易地得到类似的结果通道。 假设每层上的像素用(i,j)索引,其中心位于(0,0)。表示第层的第(i,j)个像素为 ,其中 作为网络的输入, 作为第n层的输出。我们要测量每个 对 贡献了多少。我们将这个中央输出单元的有效感受野(ERF)定义为包含任何输入像素且对其影响不可忽略的区域单位。 本文采用偏导数 ,j来度量 随 有多大的变化;因此,它是 相对于 重要性的自然度量。然而,这种度量不仅取决于网络的权值,而且在大多数情况下也依赖于输入,因此我们的大多数结果都是期望值大于输入分布。 偏导数 可以用反向传播法计算。在标准设置中,反向传播传播相对于某个损耗函数的误差梯度。假设我们有一个任意的损失函数l,根据链式规则,我们有 我们可以设置误差梯度 和 ,然后将这个梯度从那里传播回网络。得到的 ,相当于期望的\partial{y_{0,0}}}{\partial {x^0_{i,j}}。这里我们使用无显式损失函数的反向传播过程,并且该过程可以用标准神经网络轻松实现工具。 在下面我们首先考虑线性网络,其中这个导数不依赖于输入,而纯粹是网络权重和(i,j),它清楚地显示了感受野中像素的影响是如何分布的。然后我们继续考虑更现代的架构设计,并讨论非线性激活、dropout、子采样、空洞卷积和跳跃连接对ERF的影响。 2.1最简单的情况:权值都等于1的卷积层 考虑使用k×k卷积核的步长为1的卷积层的情况,每层一个单通道,无非线性,叠加成一个深线性CNN。在这个分析中,我们忽略了所有层上的偏差。我们首先分析权值都等于1的卷积核。(推理过程公式好多,看原文吧……)
在本节中,我们将实证研究各种深层CNN架构的ERF。我们首先使用人工构造的CNN模型来验证我们分析中的理论结果。然后,我们提出了在实际数据集上训练深层cnn时ERF如何变化的观察结果。对于所有ERF研究,我们在输出平面的中心放置一个梯度信号1,在其他任何地方放置0,然后通过网络反向传播该梯度,得到输入的梯度。 3.1验证理论结果 我们首先在人工构建的CNN中验证我们的理论结果。为了计算ERF我们使用随机输入,对于所有随机权重网络,我们进行适当的随机初始化。在本节中,我们验证以下内容结果:
ERF是高斯分布的 。如图所示在图1中,我们可以观察到均匀加权卷积核和随机加权,没有非线性激活卷积核的完美高斯形状,以及随机加权非线性激活的卷积核的近似高斯形状。加上ReLU非线性使得分布的高斯性变小,因为ERF的分布也取决于输入。另一个原因是ReLU单元的一半输入输出正好为零,而且很容易为输出平面上的中心像素设置零输出,这意味着感受野的路径无法到达输出,因此梯度都为零。在这里,ERF在不同的传输种子下平均运行20次。下图显示了具有20层随机权值、具有不同非线性的网络的ERF。在这里,结果是不同的随机权重以及不同的随机输入平均运行的100次的结果。在这种情况下,感受野更像高斯分布。
绝对增长和 相对收缩 。图2中,我们给出了ERF尺寸的改变和ERF相对于理论RF的比例随卷积层数的变化。ERF大小的最佳拟合线在对数域的斜率为0.56,而ERF比值的拟合线斜率为-0.43。这表明ERF大小对于 呈线性增长,ERF比率对于 呈线性缩小。注意这里我们使用2个标准偏差作为ERF大小的测量值,即任何大于中心点1−95.45%的像素都被视为ERF。ERF大小由ERF中像素数目的平方根表示,而理论RF大小是平方的边长,在该边长中,所有像素对输出像素的影响都是非零的,无论多么小。所有实验是在超过20次的结果上平均得到的。
3.2在训练过程中ERF是如何演变的 在这一部分中,我们将研究分类CNN和语义分割CNN最顶层的单元ERF在训练过程中是如何演变的。对于这两个任务,我们采用了 ResNet架构,它广泛地使用了skip-connection。分析表明,该网络的ERF应明显小于理论感受野。这是我们最初观察到的。有趣的是,随着网络的学习,ERF变得更大,并且在训练结束时,ERF明显大于初始ERF。 对于分类任务,我们在CIFAR-10数据集上训练了一个包含17个残差块的ResNet。在训练结束时,该网络的测试准确率达到89%。请注意,在这个实验中,我们没有使用池或降采样,而是专门关注具有跳过连接的体系结构。网络的精确度虽然不是最先进的,但仍然相当高。在图3中,我们显示了在训练开始时(随机初始化权重)和训练结束时,当达到最佳验证精度时,32×32图像空间上的有效感受野。请注意,我们网络的理论接收场实际上是74×74,大于图像大小,但是ERF仍然可以完全填充图像。比较训练前后的结果,我们发现有效感受野有所增加很明显。 对于语义分割任务利用CamVid数据集进行城市场景分割。我们训练了一个“前端”模型,它是一个纯粹的卷积网络,它预测输出的分辨率略低。该网络与VGG网络在许多以前的著作中所起的作用相同。我们训练了一个ResNet,16个残差块交错,每个子采样操作的因子为2。由于这些子采样操作,输出是输入大小的1/16。对于这个模型,顶层卷积层单元的理论感受野为505×505。然而,如图3所示,在训练开始时,ERF只得到直径为100的部分。我们再次观察到,在训练过程中,ERF的尺寸增大,最后达到直径约为150的直径。
上述分析表明ERF只占理论接收野的一小部分,这对于需要较大接收能力的任务是不可取的领域。 新的初始化。 一增加有效感受野的简单方法是控制初始权重。我们提出了一种新的随机权值初始化方案,使得卷积核中心的权值具有较小的尺度,而外部的权值较大,这使得中心的集中度向外围扩散。实际上,我们可以用任何初始化方法对网络进行初始化,然后根据中心低标度、外标度高的分布来调整权重。 在极端情况下,我们可以优化w(m)以使ERF大小最大化,或者等价地使等式(前面推公式部分里的公式)中的方差最大化。解决这个优化问题的结果是在卷积核的4个角上平均地设置权重,而其他地方都是0。但是,使用此解决方案进行随机权重初始化过于激进,并且将大量权重保留为0会使学习变慢。这种想法的温和版本通常是有效的更好。 我们用这种初始化方法训练了一个用于CIFAR-10分类任务的CNN,使用了几种随机种子。在一些情况下,与更标准的初始化相比,我们的训练速度提高了30%。但总的来说,这种方法的好处并不总是如此很重要。 我们请注意,无论我们如何改变w(m),有效感受野仍然是高斯分布的,因此上述建议只解决了问题部分。 改变构架。 一个潜在的更好的方法是对cnn进行架构上的更改,这可能会改变在更基本的方面。例如,我们不用将CNN中的每个单元连接到本地矩形卷积窗口,而是可以使用相同的连接数将每个单元稀疏地连接到下层的一个较大区域。空洞卷积属于这一类,但我们可以进一步推进,并使用不类似网格的稀疏连接。
与生物神经的联系网络。 在我们的分析表明,深部CNN中的有效接收场实际上比我们以前想象的要慢得多。这表明即使经过许多卷积层,仍然保留了许多局部信息。这一发现与深层生物网络中一些长期持有的相关概念相矛盾。哺乳动物视觉系统的一个普遍特征是分为“什么”和“哪里”路径。沿着what或where路径进行,连通性的性质逐渐改变:感受野大小增加,空间组织变得松散,直到没有明显的视网膜色素组织;视网膜脱离意味着单个神经元对视野中的面部等物体做出反应。然而,如果ERF比RF小,这表明表示可以保留位置信息,同时也提出了一个有趣的问题,即这些区域在发育过程中的大小变化。 我们的分析的第二个相关影响是,它表明卷积网络可能会自动地产生一种中心凹表现形式。人类视网膜中央凹只在中心像素附近提取高分辨率信息。等分辨率的子场的排列使得它们的大小随着距中心的距离而增大固定。在视网膜的外围,低分辨率的信息是从图像的较大区域提取的。一些神经网络已经明确地构造了这种形式的表示。然而,由于卷积网络形成高斯感受野,其底层表示自然会有这种感受野特性。 与之前研究的联系。 虽然CNN中的感受野尚未得到深入研究,一些人在计算方差如何通过网络演化方面进行了类似的分析。他们开发了一个很好的卷积层初始化方案,遵循的原则是方差在经过网络。 研究人员为了理解神经网络是如何工作的,我们还利用了可视化技术。[14] 展示了使用自然图像先验的重要性,以及卷积层的激活将代表什么。[22]使用反褶积网络来显示图像中像素点与被激活神经元之间的关系。[23]对感受野进行了实证研究,并将其作为定位的提示。也有可视化研究使用梯度上升技术[4]产生有趣的图像,如[15]。这些都集中在单位激活或特征图上,而不是我们在这里研究的有效感受野。
本文对CNN的感受野进行了细致的研究,并对有效感受野大小进行了初步探讨。特别地,我们已经证明了在感受野内的影响分布是渐近高斯的,有效感受野只占整个理论感受野的一小部分。实证结果与我们建立的理论相呼应。我们认为这只是有效感受野研究的一个开始,它为深入了解CNN提供了一个新的视角。在未来的研究中,我们希望更多地研究在实践中影响有效感受野的因素以及如何更好地控制这些因素。
山中彩虹
这两天在公司做PM实习,主要是自学一些CV的知识,以了解产品在解决一些在图像识别、图像搜索方面的问题,学习的主要方式是在知网检索了6.7篇国内近3年计算机视觉和物体识别的硕博士论文。由于时间关系,后面还会继续更新图片相似度计算(以图搜图)等方面的学习成果 将这两天的学习成果在这里总结一下。你将会看到计算机视觉在解决特定物体识别问题(主要是卷积神经网络CNNs)的基础过程和原理,但这里不会深入到技术的实现层面。
计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。 ————维基百科 通常而言,计算机视觉的研究包括三个层次: (1)底层特征的研究: 这一层次的研究主要聚焦如何高效提取出图像对象具有判别性能的特征,具体的研究内容通常包括:物体识别、字符识别等 (2)中层语义特征的研究: 该层次的研究在于在识别出对象的基础上,对其位置、边缘等信息能够准确区分。现在比较热门的:图像分割;语义分割;场景标注等,都属于该领域的范畴 (3)高层语义理解: 这一层次建立在前两层的基础上,其核心在于“理解”一词。 目标在于对复杂图像中的各个对象完成语义级别的理解。这一层次的研究常常应用于:场景识别、图像摘要生成及图像语义回答等。 而我研究的问题主要隶属于底层特征和中层语义特征研究中的物体识别和场景标注问题。
人类的视觉工作模式是这样的: 首先,我们大脑中的神经元接收到大量的信息微粒,但我们的大脑还并不能处理它们。 于是接着神经元与神经元之间交互将大量的微粒信息整合成一条又一条的线。 接着,无数条线又整合成一个个轮廓。 最后多个轮廓累加终于聚合我们现在眼前看到的样子。 计算机科学受到神经科学的启发,也采用了类似的工作方式。具体而言,图像识别问题一般都遵循下面几个流程
(1)获取底层信息。获取充分且清洁的高质量数据往往是图像识别工作能否成功的关键所在 (2)数据预处理工作,在图像识别领域主要包括四个方面的技术:去噪处理(提升信噪比)、图像增强和图像修复(主要针对不够清晰或有破损缺失的图像);归一化处理(一方面是为了减少开销、提高算法的性能,另一方面则是为了能成功使用深度学习等算法,这类算法必须使用归一化数据)。 (3)特征提取,这一点是该领域的核心,也是本文的核心。图像识别的基础是能够提取出足够高质量,能体现图像独特性和区分度的特征。 过去在10年代之前我们主要还是更多的使用传统的人工特征提取方法,如PCA\LCA等来提取一些人工设计的特征,主要的方法有(HOG、LBP以及十分著名的SIFT算法)。但是这些方法普遍存在(a)一般基于图像的一些提层特征信息(如色彩、纹理等)难以表达复杂的图像高层语义,故泛化能力普遍比较弱。(b)这些方法一般都针对特定领域的特定应用设计,泛化能力和迁移的能力大多比较弱。 另外一种思路是使用BP方法,但是毕竟BP方法是一个全连接的神经网络。这以为这我们非常容易发生过拟合问题(每个元素都要负责底层的所有参数),另外也不能根据样本对训练过程进行优化,实在是费时又费力。 因此,一些研究者开始尝试把诸如神经网络、深度学习等方法运用到特征提取的过程中,以十几年前深度学习方法在业界最重要的比赛ImageNet中第一次战胜了SIFT算法为分界线,由于其使用权重共享和特征降采样,充分利用了数据的特征。几乎每次比赛的冠军和主流都被深度学习算法及其各自改进型所占领。其中,目前使用较多又最为主流的是CNN算法,在第四部分主要也研究CNN方法的机理。
上图是一个简易的神经网络,只有一层隐含层,而且是全连接的(如图,上一层的每个节点都要对下一层的每个节点负责。)具体神经元与神经元的作用过程可见下图。
在诸多传统的神经网络中,BP算法可能是性能最好、应用最广泛的算法之一了。其核心思想是:导入训练样本、计算期望值和实际值之间的差值,不断地调整权重,使得误差减少的规定值的范围内。其具体过程如下图:
一般来说,机器学习又分成浅层学习和深度学习。传统的机器学习算法,如SVM、贝叶斯、神经网络等都属于浅层模型,其特点是只有一个隐含层。逻辑简单易懂、但是其存在理论上缺乏深度、训练时间较长、参数很大程度上依赖经验和运气等问题。 如果是有多个隐含层的多层神经网络(一般定义为大于5层),那么我们将把这个模型称为深度学习,其往往也和分层训练配套使用。这也是目前AI最火的领域之一了。如果是浅层模型的问题在于对一个复杂函数的表示能力不够,特别是在复杂问题分类情况上容易出现分类不足的弊端,深度网络的优势则在于其多层的架构可以分层表示逻辑,这样就可以用简单的方法表示出复杂的问题,一个简单的例子是: 如果我们想计算sin(cos(log(exp(x)))), 那么深度学习则可分层表示为exp(x)—>log(x)—>cos(x)—>sin(x)
图像识别问题是物体识别的一个子问题,其鲁棒性往往是解决该类问题一个非常重要的指标,该指标是指分类结果对于传入数据中的一些转化和扭曲具有保持不变的特性。这些转化和扭曲具体主要包括了: (1)噪音(2)尺度变化(3)旋转(4)光线变化(5)位移
该部分具体的内容,想要快速理解原理的话推荐看[知乎相关文章] ( ), 特别是其中有些高赞回答中都有很多动图和动画,非常有助于理解。 但核心而言,CNN的核心优势在于 共享权重 以及 感受野 ,减少了网络的参数,实现了更快的训练速度和同样预测结果下更少的训练样本,而且相对于人工方法,一般使用深度学习实现的CNN算法使用无监督学习,其也不需要手工提取特征。
CNN算法的过程给我的感觉,个人很像一个“擦玻璃”的过程。其技术主要包括了三个特性:局部感知、权重共享和池化。
CNN中的神经元主要分成了两种: (a)用于特征提取的S元,它们一起组成了卷积层,用于对于图片中的每一个特征首先局部感知。其又包含很关键的阈值参数(控制输出对输入的反映敏感度)和感受野参数(决定了从输入层中提取多大的空间进行输入,可以简单理解为擦玻璃的抹布有多大) (b)抗形变的C元,它们一起组成了池化层,也被称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。 (c*)激活函数,及卷积层输出的结果要经过一次激励函数才会映射到池化层中,主要的激活函数有Sigmoid函数、Tanh函数、ReLU、Leaky ReLU、ELU、Maxout等。
也许你会抱有疑问,CNN算法和传统的BP算法等究竟有什么区别呢。这就会引出区域感受野的概念。在前面我们提到,一个全连接中,较高一层的每个神经元要对低层的每一个神经元负责,从而导致了过拟合和维度灾难的问题。但是有了区域感受野和,每个神经元只需要记录一个小区域,而高层会把这些信息综合起来,从而解决了全连接的问题。
了解区域感受野后,你也许会想,区域感受野的底层神经元具体是怎么聚合信息映射到上一层的神经元呢,这就要提到重要的卷积核的概念。这个过程非常像上面曾提到的“神经元与神经元的联系”一图,下面给大家一个很直观的理解。
上面的这个过程就被称为一个卷积核。在实际应用中,单特征不足以被系统学习分类,因此我们往往会使用多个滤波器,每个滤波器对应1个卷积核,也对应了一个不同的特征。比如:我们现在有一个人脸识别应用,我们使用一个卷积核提取出眼睛的特征,然后使用另一个卷积核提取出鼻子的特征,再用一个卷积核提取出嘴巴的特征,最后高层把这些信息聚合起来,就形成了分辨一个人与另一个人不同的判断特征。
现在我们已经有了区域感受野,也已经了解了卷积核的概念。但你会发现在实际应用中还是有问题: 给一个100 100的参数空间,假设我们的感受野大小是10 10,那么一共有squar(1000-10+1)个,即10的六次方个感受野。每个感受野中就有100个参数特征,及时每个感受野只对应一个卷积核,那么空间内也会有10的八次方个次数,,更何况我们常常使用很多个卷积核。巨大的参数要求我们还需要进一步减少权重参数,这就引出了权重共享的概念。 用一句话概括就是,对同一个特征图,每个感受野的卷积核是一样的,如这样操作后上例只需要100个参数。
池化是CNN技术的最后一个特性,其基本思想是: 一块区域有用的图像特征,在另一块相似的区域中很可能仍然有用。即我们通过卷积得到了大量的边缘EDGE数据,但往往相邻的边缘具有相似的特性,就好像我们已经得到了一个强边缘,再拥有大量相似的次边缘特征其实是没有太大增量价值的,因为这样会使得系统里充斥大量冗余信息消耗计算资源。 具体而言,池化层把语义上相似的特征合并起来,通过池化操作减少卷积层输出的特征向量,减少了参数,缓解了过拟合问题。常见的池化操作主要包括3种: 分别是最大值池化(保留了图像的纹理特征)、均值池化(保留了图像的整体特征)和随机值池化。该技术的弊端是容易过快减小数据尺寸,目前趋势是用其他方法代替池化的作用,比如胶囊网络推荐采用动态路由来代替传统池化方法,原因是池化会带来一定程度上表征的位移不变性,传统观点认为这是一个优势,但是胶囊网络的作者Hinton et al.认为图像中位置信息是应该保留的有价值信息,利用特别的聚类评分算法和动态路由的方式可以学习到更高级且灵活的表征,有望冲破目前卷积网络构架的瓶颈。
CNN总体来说是一种结构,其包含了多种网络模型结构,数目繁多的的网络模型结构决定了数据拟合能力和泛化能力的差异。其中的复杂性对用户的技术能力有较高的要求。此外,CNN仍然没有很好的解决过拟合问题和计算速度较慢的问题。
该部分的核心参考文献: 《深度学习在图像识别中的应用研究综述》郑远攀,李广阳,李晔.[J].计算机工程与应用,2019,55(12):20-36. 深度学习技术在计算机图像识别方面的领域应用研究是目前以及可预见的未来的主流趋势,在这里首先对深度学习的基本概念作一简介,其次对深度学习常用的结构模型进行概述说明,主要简述了深度信念网络(DBN)、卷积神经网络(CNN)、循环神经网络(RNN)、生成式对抗网络(GAN)、胶囊网络(CapsNet)以及对各个深度模型的改进模型做一对比分析。
深度学习按照学习架构可分为生成架构、判别架构及混合架构。 其生成架构模型主要包括: 受限波尔兹曼机、自编码器、深层信念网络等。判别架构模型主要包括:深层前馈网络、卷积神经网络等。混合架构模型则是这两种架构的集合。深度学习按数据是否具有标签可分为非监督学习与监督学习。非监督学习方法主要包括:受限玻尔兹曼机、自动编码器、深层信念网络、深层玻尔兹曼机等。 监督学习方法主要包括:深层感知器、深层前馈网络、卷积神经网络、深层堆叠网络、循环神经网络等。大量实验研究表明,监督学习与非监督学习之间无明确的界限,如:深度信念网络在训练过程中既用到监督学习方法又涉及非监督学习方法。
[1]周彬. 多视图视觉检测关键技术及其应用研究[D].浙江大学,2019. [2]郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36. [3]逄淑超. 深度学习在计算机视觉领域的若干关键技术研究[D].吉林大学,2017. [4]段萌. 基于卷积神经网络的图像识别方法研究[D].郑州大学,2017. [5]李彦冬. 基于卷积神经网络的计算机视觉关键技术研究[D].电子科技大学,2017. [6]李卫. 深度学习在图像识别中的研究及应用[D].武汉理工大学,2014. [7]许可. 卷积神经网络在图像识别上的应用的研究[D].浙江大学,2012. [8]CSDN、知乎、机器之心、维基百科
对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意
深度神经网络(DNNs)是 AI 领域的重要成果,但它的 “存在感” 已经不仅仅限于该领域。 一些前沿生物医学研究,也正被这一特别的概念所吸引。特别是计算神
数控技术发展趋势——智能化数控系统 1 国内外数控系统发展概况 随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技
你不翻译了???
首先回顾深度神经网络(DNN)的反向传播 forward: Loss Function: backward: w的梯度: