babycarolyn
化归思想是初中数学中常见的一种思想方法。 “化归”是转化和归结的简称。我们在处理和解决数学问题时,总的指导思想是把问题转化为能够解决的问题,这就是化归思想。 正如古之“围魏救赵”是战史上“避实就虚”的典型战例,军事上的这种策略思想迁移到数学解题方面,可以这样理解它:“实”是指繁、难、隐蔽、曲折,“虚”是指简、易、明显、径直。在解题中表现为:化难为易,避繁从简,转暗为明,化生为熟。具体的说,即把生疏的问题转化为熟悉的问题,把抽象的问题转化为具体的问题,把复杂的问题转化为简单的问题,把一般的问题转化为特殊的问题,把高次的问题转化为低次的问题,把未知转化为已知,把一个综合的问题转化为几个基本的问题等等。
装修徐工
数形结合思想在解题中的应用 1. 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。 2. 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。 3. 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4. 数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。 化归思想 化归思想就是化未知为已知,化繁为简,化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系 数法,配方法,整体代人法以及化动为静,由抽象到具体等转化思想 例1 鸡兔同笼,笼中有头50,有足140,问鸡、兔各有几只? 分析 化归的实质是不断变更问题,这里可以先对已知成分进行变形。每只鸡有2只脚,每只兔有4只脚,这是问题中不言而喻的已知成分。现在对问题中的已知成分进行变形:“一声令下”,要求每只鸡悬起一只脚(呈金鸡独立状),又要求每只兔悬起两只前脚(呈玉兔拜月状)。那么,笼中仍有头50,而脚只剩下70只了,并且,这时鸡的头数与足数相等,而兔的足数与兔的头数不等有一头兔,就多出一只脚,现在有头50,有足70,这就说明有兔20头,有鸡30头 整体代换 整体代换是运用整体思想处理问题的一种方法,其基本思想是把问题中的某些对象作为一个整体考虑,从而发现问题的内在联系,找到求解的思路.运用整体思想解题的关键是“整体”的选择与确定.现以近几年来的中考题为例,说明整体代换的应用.
想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你
化归思想和转化思想实质上是一样的。都是将一个问题由难化易,由繁化简,由复杂化简单的过程
教育 教学的最终目的就是实现课堂教学的有效性,培养学生的综合能力。小学数学学科是小学阶段的基础学科,学好小学数学对于学生的发展具有至关重要的作用。下面是我为大
谈数学困难生的辩证施教摘要:目前中职生数学学业不良学生的比例很大,如何转化数学学业不良学生便成为教师普遍关注的紧迫课题。文章结合教学实践,提出了要转化数学学业不
化归思想是初中数学中常见的一种思想方法。 “化归”是转化和归结的简称。我们在处理和解决数学问题时,总的指导思想是把问题转化为能够解决的问题,这就是化归思想。