beckywei12266
激光通常是线偏振的,这意味着它的光波只在一个方向上振荡——在左边的例子中是向上和向下。但它也可以是圆偏振的,在右边,所以它的波像开瓶器一样绕着光传播的方向旋转。SLAC和斯坦福大学的一项新研究预测,圆偏振光可以用以前不可能的方式来 探索 量子材料。资料来源:格雷格·斯图尔特/SLAC国家加速器实验室 去年年初,COVID-19大流行关闭了能源部SLAC国家加速器实验室的实验,Shambhu Ghimire的研究小组被迫寻找另一种方法来研究一个有趣的研究目标:被称为拓扑绝缘体(TIs)的量子材料,可以在其表面导电,但不通过其内部。 瑞士国家科学基金会研究员Denitsa Baykusheva两年前加入了他在斯坦福脉冲研究所的团队,目标是找到一种方法在这些材料中产生高谐波,或HHG,作为研究它们行为的工具。在HHG中,激光通过物质照射会转变为更高的能量和更高的频率,称为谐波,就像按下吉他弦会发出更高的音调。TIs是自旋电子学、量子传感和量子计算等技术的基石,如果能做到这一点,将为科学家研究这些和其他量子材料提供新的工具。 随着实验中途停止,她和她的同事转向理论和计算机模拟,提出了在拓扑绝缘体中产生HHG的新配方。结果表明,沿激光束方向旋转的圆偏振光,会从导电表面和TI(即硒化铋)内部产生清晰、独特的信号,实际上会增强来自表面的信号。 上图展示了圆偏振激光(上图)是如何探测拓扑绝缘体(黑色)的,这是一种量子材料,在其表面导电,但不通过内部。光导致材料中的电子飞离,重新组合,并通过一个被称为高谐波产生的过程发出更高能量和频率的光(白色)。通过分析发出的光,科学家可以测量材料中电子的自旋和动量。SLAC的实验证实,这些信号是拓扑表面的唯一特征。资料来源:格雷格·斯图尔特/SLAC国家加速器实验室 当实验室重新开放进行实验,并采取了covid安全预防措施时,Baykusheva第一次开始测试这个配方。在今天发表在《纳米快报》(Nano Letters)上的一篇论文中,研究小组报告说,这些测试完全按照预期进行,从拓扑表面产生了第一个独特的签名。 “这种材料看起来与我们尝试过的任何其他材料都非常不同,”PULSE的首席研究员Ghimire说。“能够找到一种新型材料,这种材料的光学反应与其他任何材料都不同,这真的很令人兴奋。” 在过去的十几年里,Ghimire和PULSE主任David Reis做了一系列实验,证明HHG可以用以前认为不可能或甚至不可能的方式产生:将激光射入晶体、冷冻氩气或原子薄的半导体材料。另一项研究描述了如何使用HHG产生阿秒激光脉冲,通过通过普通玻璃照射激光,可以用来观察和控制电子的运动。 这种箭头图案反映了拓扑绝缘体表面电子的自旋和动量的组合。拓扑绝缘体是一种在其表面传导电流而不是通过其内部的量子材料。SLAC的实验发现圆偏振激光与这种自旋偏振耦合,产生一种独特的高谐波产生模式,这是拓扑表面的特征。资料来源:Denitsa Baykusheva/斯坦福PULSE研究所 但是量子材料坚决反对以这种方式进行分析,拓扑绝缘体的分裂特性提出了一个特殊的问题。 “当我们用激光照射TI时,表面和内部都会产生谐波。挑战在于如何将它们分开。” 他解释说,该团队的关键发现是,圆偏振光与表面和内部以截然不同的方式相互作用,促进来自表面的高谐波产生,并赋予其独特的特征。反过来,这些相互作用是由表面和内部的两个基本区别形成的:它们的电子自旋极化的程度——例如,以顺时针或逆时针方向为方向——以及它们原子晶格中的对称类型。 SLAC高功率激光实验室的实验装置示意图,科学家们使用圆偏振激光探测拓扑绝缘体——一种量子材料,在其表面导电,但不通过其内部。一个被称为高谐波产生的过程将激光转换为更高的能量和频率,或称谐波。这在探测器(箭头)中产生了偏振模式,揭示了导电表层电子的自旋和动量——拓扑表面的独特特征。来源:Shambhu Ghimire/斯坦福PULSE研究所 Ghimire说,自从该小组今年早些时候在TIs上发表了实现高氢高汞的配方以来,德国和中国的另外两个研究小组已经报告了在拓扑绝缘体中创造高氢高汞的情况。但这两个实验都是用线偏振光进行的,所以他们没有看到圆偏振光产生的增强信号。他说,这个信号是拓扑表面状态的一个独特特征。 由于强烈的激光可以将材料中的电子变成电子的汤——等离子体——研究小组必须找到一种方法来改变他们的高功率钛蓝宝石激光器的波长,使其延长10倍,从而减少10倍的能量。他们还使用非常短的激光脉冲来减少对样品的损害,这还有一个额外的好处,即允许他们以相当于百万分之一秒十亿分之一秒的快门速度捕捉材料的行为。 “使用HHG的优势在于它是一种超快的探测器,”Ghimire说。“既然我们已经确定了这种探测拓扑表面状态的新方法,我们可以用它来研究其他有趣的材料,包括由强激光或化学方法诱导的拓扑状态。” 来自斯坦福大学材料与能源科学研究所(SIMES)、密歇根大学安娜堡分校和韩国浦项 科技 大学(POSTECH)的研究人员对这项工作做出了贡献。
酸甜苦辣咸丫头
下面能当波动光学说明文wave optics以波动理论研究光的传播及光与物质相互作用的光学分支。17世纪,R.胡克和C.惠更斯创立了光的波动说。惠更斯曾利用波前概念正确解释了光的反射定律、折射定律和晶体中的双折射现象。这一时期,人们还发现了一些与光的波动性有关的光学现象,例如F.M.格里马尔迪首先发现光遇障碍物时将偏离直线传播,他把此现象起名为“衍射”。胡克和R.玻意耳分别观察到现称之为牛顿环的干涉现象。这些发现成为波动光学发展史的起点。17世纪以后的一百多年间,光的微粒说(见光的二象性)一直占统治地位,波动说则不为多数人所接受,直到进入19世纪后,光的波动理论才得到迅速发展。1800年,T.杨提出了反对微粒说的几条论据,首次提出干涉这一术语,并分析了水波和声波叠加后产生的干涉现象。杨于1801年最先用双缝演示了光的干涉现象(见杨氏实验),第一次提出波长概念,并成功地测量了光波波长。他还用干涉原理解释了白光照射下薄膜呈现的颜色。1809年E.L.马吕斯发现了反射时的偏振现象(见布儒斯特定律),随后A.-J.菲涅耳和D.F.J.阿拉戈利用杨氏实验装置完成了线偏振光的叠加实验,杨和菲涅耳借助于光为横波的假设成功地解释了这个实验。1815年,菲涅耳建立了惠更斯-菲涅耳原理,他用此原理计算了各种类型的孔和直边的衍射图样,令人信服地解释了衍射现象。1818年关于阿拉戈斑(见菲涅耳衍射)的争论更加强了菲涅耳衍射理论的地位。至此,用光的波动理论解释光的干涉、衍射和偏振等现象时均获得了巨大成功,从而牢固地确立了波动理论的地位。19世纪60年代,J.C.麦克斯韦建立了统一电磁场理论,预言了电磁波的存在并给出了电磁波的波速公式。随后H.R.赫兹用实验方法产生了电磁波。光与电磁现象的一致性使人们确信光是电磁波的一种,光的古典波动理论与电磁理论融成了一体,产生了光的电磁理论。把电磁理论应用于晶体,对光在晶体中的传播规律给出了严格而圆满的解释。19世纪末,H.A.洛伦兹创立了电子论,他把物质的宏观性质归结为构成物质的电子的集体行为,电磁波的作用使带电粒子产生受迫振动并产生次级电磁波,根据这一模型解释了光的吸收、色散和散射等分子光学现象。这种经典的电磁理论并非十全十美,因在关于光与物质相互作用的问题上涉及微观粒子的行为,必须用量子理论才能得到彻底的解决。波动光学的研究成果使人们对光的本性的认识得到了深化。在应用领域,以干涉原理为基础的干涉计量术为人们提供了精密测量和检验的手段(见干涉仪),其精度提高到前所未有的程度;衍射理论指出了提高光学仪器分辨本领的途径(见夫琅和费衍射);衍射光栅已成为分离光谱线以进行光谱分析的重要色散元件;各种偏振器件和仪器用来对岩矿晶体进行检验和测量,等等。所有这些构成了应用光学的主要内容。20世纪50年代开始,特别在激光器问世后,波动光学又派生出傅里叶光学、纤维光学和非线性光学等新分支,大大地扩展了波动光学的研究和应用范围。
论文常用来指进行各个学术领域的研究和描述学术研究成果的 文章 ,简称之为论文。本文是我为大家整理的1000字的论文 范文 ,仅供参考。 在现代社会中,人
光的偏振是光的波动性的又一例证。光的频率、相位和偏振都是标定光特性的物理量,利用这些物理量,可以加载有用的信息,实现通信、存储、计算等
1. 与汽车相关的几个力学问题的研究(字数:10185,页数:26 ) 2. 保护信号检测电路设计与仿真(字数:11657,页数:30 ) 3. 量子微观体系的
激光通常是线偏振的,这意味着它的光波只在一个方向上振荡——在左边的例子中是向上和向下。但它也可以是圆偏振的,在右边,所以它的波像开瓶器一样绕着光传播的方向旋转。
写作思路:首先阐明自己的论点,然后进行举例论证,根据自己所学生物课程选择一方面的知识,然后写出自己在这个知识点的分析。 正文: 生物最重要和基本的特征在于生物会