• 回答数

    2

  • 浏览数

    333

镜SHOW公主
首页 > 期刊论文 > 柯西施瓦茨不等式论文开题报告

2个回答 默认排序
  • 默认排序
  • 按时间排序

还有谁没吃

已采纳

额 可以看一下中等数学2008年第12期和2009年第一期

307 评论

WHMooooooooo

柯西—施瓦茨不等式柯西-施瓦茨不等式是数学分析中经常要用到的一个不等式,在竞赛数学和 施瓦茨高等数学中也有广泛的应用,下面介绍它的三种证明方法,从而加深对该不等式的理解,利于教学。定理(柯西-施瓦茨不等式):若a1,a2,…,an和b1,b2,…,bn是任意实数,则有(nk=1∑akbk)2≤(nk=1∑ak2)(k=n1∑bk2)此外,如果有某个ai≠0,则上式中的等号当且仅当存在一个实数x使得对于每一个k=1,2,…,n都有akx+bk=0时成立。证明1平方和绝不可能是负数,故对每一个实数x都有nk=1∑(akx+bk)2≥0其中,等号当且仅当每一项都等于0时成立。数学上,柯西—施瓦茨不等式,又称施瓦茨不等式或柯西—布尼亚科夫斯基—施瓦茨不等式,是一条很多场合都用得上的不等式,例如线性代数的矢量,数学分析的无穷级数和乘积的积分,和概率论的方差和协方差。不等式以奥古斯丁·路易·柯西(Augustin Louis Cauchy),赫尔曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz),和维克托·雅科夫列维奇·布尼亚科夫斯基(Виктор Яковлевич Буняковский)命名。柯西—施瓦茨不等式说,若x和y是实或复内积空间的元素,那麼\big| \langle x,y\rangle \big|^2 \leq \langle x,x\rangle \cdot \langle y,y\rangle。等式成立当且仅当x和y是线性相关。柯西—施瓦茨不等式的一个重要结果,是内积为连续函数。柯西—施瓦茨不等式有另一形式,可以用范的写法表示: |\langle x,y\rangle| \leq \|x\| \cdot \|y\|\, 。洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限。比如利用泰勒公式求解。 ②洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等.

197 评论

相关问答

  • 贾樟柯底层关怀论文开题报告范文

    如果你感觉开题报告的格式太复杂,不想浪费太多的时间在格式上面,但是还必须要符合学校要求的标准格式,建议试一下求道无忧论文系统,3分钟搞定开题报告格式,输出标准的

    盖碗茶136 2人参与回答 2023-12-05
  • 柯西施瓦茨不等式论文开题报告

    额 可以看一下中等数学2008年第12期和2009年第一期

    镜SHOW公主 2人参与回答 2023-12-11
  • 关于马柯维茨论文范文资料

    金融学的“大爆炸”始于1952年,是年马科维茨的论文“资产组合选择”在《金融杂志》上发表,这篇论文中,马科维茨第一次给出了风险和收益的精确定义,通过把收益和风险

    爱画画的兔子 3人参与回答 2023-12-09
  • 论文不等式的若干证明开题报告

    数学小课题开题报告 在教学中引导学生掌握审题的具体步骤和方法。以下是我J.L为大家分享的2017年关于数学小课题的开题报告范文。 题目:初中数学主体合作学习方式

    海棠花花 4人参与回答 2023-12-05
  • 论文开题报告的措施

    qwe根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错

    魅丽无限 4人参与回答 2023-12-10