欢迎来到学术参考网
当前位置:发表论文>论文发表

制作盒子的论文怎么写_制作盒子的论文怎么写的

发布时间:2023-12-06 08:41

制作盒子的论文怎么写

制作一个尽可能大得长方形盒子
一、研究内容:
1.如何将一张正方形纸板裁剪成长方体无盖纸盒?
2.怎样裁剪能使这个纸盒最大?
二、研究方法:
实践法、画图法、制表法、计算法、观察法
三、研究过程:
1.我通过观察发现,我们可以通过正方体的展开图推出如何将 一张正方形纸板裁剪成长方体无盖纸盒.
由题可得长方形边长=20cm
设剪去正方形边长=X 长方体无盖纸盒的面积=V
剪去正方形边长 长方体无盖纸盒的面积
X=1时 V=324 cm2
X=2时 V=512 cm2
X=3时 V=588 cm2
X=4时 V=576 cm2
X=5时 V=500 cm2
X=6时 V=384 cm2
X=7时 V=252 cm2
X=8时 V=128 cm2
X=9时 V=36 cm2
从图中可以看出计算这个盒子容积的公式应该是:V=(20-2X)2X,
并得知当X=3时,长方体纸盒的容积最大
那么它是不是最大的呢?最大的是不是在2~3或3~4之间呢?
当X=2.9时 V=584.756
当X=3.1时 V=590.364
由此可得出长方体纸盒的容积最大在3~4之间
剪去正方形边长 长方体无盖纸盒的面积
X=3.2时 V= 591.872cm2
X=3.3时 V= 592.548cm2
X=3.4时 V= 592.416cm2
X=3.5时 V=591.500cm2
X=3.6时 V=589.824cm2
X=3.7时 V=587.412cm2
X=3.8时 V= 584.288cm2
X=3.9时 V= 580.476cm2
从图中可看出X在3~4之间时取3.3最大
收获与反思:
这次写研究报告让我获益匪浅,因为它让我增长了数学上的知识,同时也增长了我计算机的知识.写研究报告还培养了我努力钻研的精神.但因为是第一次,我无法做到完美,里面也肯定有一些不足,但我相信通过以后的学习,我会把我的第二次、第三次……越写越好.

数学论文《尽可能制作一个较大的长方体盒子》

制作一个尽可能大得长方形盒子
一、研究内容:
1.如何将一张正方形纸板裁剪成长方体无盖纸盒?
2.怎样裁剪能使这个纸盒最大?
二、研究方法:
实践法、画图法、制表法、计算法、观察法
三、研究过程:
1.我通过观察发现,我们可以通过正方体的展开图推出如何将
一张正方形纸板裁剪成长方体无盖纸盒。
由题可得长方形边长=20cm
设剪去正方形边长=X
长方体无盖纸盒的面积=V
剪去正方形边长
长方体无盖纸盒的面积
X=1时
V=324
cm2
X=2时
V=512
cm2
X=3时
V=588
cm2
X=4时
V=576
cm2
X=5时
V=500
cm2
X=6时
V=384
cm2
X=7时
V=252
cm2
X=8时
V=128
cm2
X=9时
V=36
cm2
从图中可以看出计算这个盒子容积的公式应该是:V=(20-2X)2X,
并得知当X=3时,长方体纸盒的容积最大
那么它是不是最大的呢?最大的是不是在2~3或3~4之间呢?
当X=2.9时
V=584.756
当X=3.1时
V=590.364
由此可得出长方体纸盒的容积最大在3~4之间
剪去正方形边长
长方体无盖纸盒的面积
X=3.2时
V=
591.872cm2
X=3.3时
V=
592.548cm2
X=3.4时
V=
592.416cm2
X=3.5时
V=591.500cm2
X=3.6时
V=589.824cm2
X=3.7时
V=587.412cm2
X=3.8时
V=
584.288cm2
X=3.9时
V=
580.476cm2
从图中可看出X在3~4之间时取3.3最大
收获与反思:
这次写研究报告让我获益匪浅,因为它让我增长了数学上的知识,同时也增长了我计算机的知识。写研究报告还培养了我努力钻研的精神。但因为是第一次,我无法做到完美,里面也肯定有一些不足,但我相信通过以后的学习,我会把我的第二次、第三次……越写越好。

谁能教教我怎么写: 制作一个尽可能大的无盖长方体形盒子 的论文怎么写~ 谢谢~ 我是初一哒~

(一)要有全局观念,从整体出发去检查每一部分在论文中所占的地位和作用。看看各部分的比例分配是否恰当,篇幅的长短是否合适,每一部分能否为中心论点服务。比如有一篇论文论述企业深化改革与稳定是辩证统一的,作者以浙江××市某企业为例,说只要干部在改革中以身作则,与职工同甘共苦,可以取得多数职工的理解。从全局观念分折,我们就可以发现这里只讲了企业如何改革才能稳定,没有论述通过深化改革,转换企业经营机制,提高了企业经济效益,职工收入增加,最终达到社会稳定。
(二)从中心论点出发,决定材料的取舍,把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的。有所失,才能有所得。一块毛料寸寸宝贵,舍不得剪裁去,也就缝制不成合身的衣服。为了成衣,必须剪裁去不需要的部分。所以,我们必须时刻牢记材料只是为形成自己论文的论点服务的,离开了这一点,无论是多少好的材料都必须舍得抛弃。
(三)要考虑各部分之间的逻辑关系。初学撰写论文的人常犯的毛病,是论点和论据没有必然联系,有的只限于反复阐述论点,而缺乏切实有力的论据;有的材料一大堆,论点不明确;有的各部分之间没有形成有机的逻辑关系,这样的论文都是不合乎要求的,这样的论文是没有说服力的。为了有说服力,必须有虚有实,有论点有例证,理论和实际相结合,论证过程有严密的逻辑性,拟提纲时特别要注意这一点,检查这一点。
(四)论文的基本结构由序论、本论、结论三大部分组成。序论、结论这两部分在提纲中部应比较简略。本论则是全文的重点,是应集中笔墨写深写透的部分,因此在提纲上也要列得较为详细。本论部分至少要有两层标准,层层深入,层层推理,以便体现总论点和分论点的有机结合,把论点讲深讲透。

《制作一个尽可能大的无盖长方体盒子》1500字论文咋写

一、研究内容: 1.如何将一张正方形纸板裁剪成长方体无盖纸盒? 2.怎样裁剪能使这个纸盒最大? 二、研究方法: 实践法、画图法、制表法、计算法、观察法 三、研究过程: 1.我通过观察发现,我们可以通过正方体的展开图推出如何将 一张正方形纸板裁剪成长方体无盖纸盒。 如图:图一 图二 如图二所示剪去阴影部分便可以裁剪一个长方体无盖纸盒。 设这个正方形边长为20cm 如果设剪去正方形边长为X(X<10),计算这个盒子容积的公式应该是:V=(20-2X)2X。 我拿出几张纸一一实验X=1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm。 X=1时:V=(20-1*2)2*1=324 cm2 X=2时:V=(20-2*2)2*2=512 cm2 X=3时:V=(20-3*2)2*3=588 cm2 X=4时:V=(20-4*2)2*4=576 cm2 X=5时:V=(20-5*2)2*5=500 cm2 X=6时:V=(20-6*2)2*6=384 cm2 X=7时:V=(20-7*2)2*7=252 cm2 X=8时:V=(20-8*2)2*8=128 cm2 X=9时:V=(20-9*2)2*9=36 cm2 然后我将结果做成一个统计图: 从图中可以看出,当X=3时,长方体纸盒的容积最大,那么它是不是最大的呢?最大的在2~3之间还是在3~4之间呢? 我们先来看X=2.9cm时和X=3.1cm时: X=2.9时,V=(20-2.9*2)2*2.9=584.756 cm2 X=3.1时,V=(20-3.1*2)2*3.1=590.364 cm2 从计算结果可以看出,X=3.1cm时比X=2.9cm时算出的容积大。 当X=3.2cm,3.3cm,3.4cm,3.5cm,3.6cm,3.7cm,3.8cm,3.9cm时呢? X=3.2时:V=(20-3.2*2)2*3.2= 591.872cm2 X=3.3时:V=(20-3.3*2)2*3.3= 592.548cm2 X=3.4时:V=(20-3.4*2)2*3.4= 592.416cm2 X=3.5时:V=(20-3.5*2)2*3.5= 591.500cm2 X=3.6时:V=(20-3.6*2)2*3.6= 589.824cm2 X=3.7时:V=(20-3.7*2)2*3.7= 587.412cm2 X=3.8时:V=(20-3.8*2)2*3.8= 584.288cm2 X=3.9时:V=(20-3.9*2)2*3.9= 580.476cm2 我们来制作一个统计图就可以清楚地看出来。 从图中我们可以看出,当X=3. 3cm时,盒子的容积最大,我们再来考虑它是否最大,最大的在3.2~3.3之间还是在3. 3~3.4之间。 我们先来算当X=3. 29cm的时候和X=3. 31cm的时候。 X=3.29cm时V=(20-3.29*2) 2*3.29=592.517156cm2 X=3.31cm时:V=(20-3.31*2) 2*3.31=592.570764cm2 592.570764cm2大于592.548cm2,所以X满足条件的最大值一定大于3. 3cm。 那么,X=3. 31cm是不是最大的呢?我们再来计算X=3. 32~3. 39cm时,容积是多少? X=3.32时:V=(20-3. 32*2)2*3. 32= 592.585472cm2 X=3.33时:V=(20-3. 33*2)2*3. 33= 592.592148cm2 X=3.34时:V=(20-3. 34*2)2*3. 34= 592.590816cm2 X=3.35时:V=(20-3. 35*2)2*3. 35= 592.581500cm2 X=3.36时:V=(20-3. 36*2)2*3. 36= 592.564224cm2 X=3.37时:V=(20-3. 37*2)2*3. 37= 592.539012cm2 X=3.38时:V=(20-3. 38*2)2*3. 38= 592.505888cm2 X=3.39时:V=(20-3. 39*2)2*3. 39= 592.464876cm2 由此我知道了X=3.33时最大 研究结果: 通过反复的观察和试验,我发现了每次X的值最大都是 X=3.33333333333333333…… 所以我得到了, 3无限循环时盒子的容积最大 也就是说X=10/3时 盒子的容积最大 推广来说 如果设正方形纸片的边长为A 那么可得X=A/6 收获与反思: 这次写研究报告让我获益匪浅,因为它让我增长了数学上的知识,同时也增长了我计算机的知识。写研究报告还培养了我努力钻研的精神。但因为是第一次,我无法做到完美,里面也肯定有一些不足,但我相信通过以后的学习,我会把我的第二次、第三次……越写越好。

上一篇:实用农业技术论文范文_实用农业技术论文范文高中

下一篇:产品包装设计案例论文_产品包装设计案例论文范文