欢迎来到学术参考网
当前位置:发表论文>论文发表

西南石油大学学报中心钟青

发布时间:2023-02-10 17:30

西南石油大学学报中心钟青

蔡记华1 谷穗2 乌效鸣1 刘浩1 陈宇1

基金项目:国家自然科学基金项目(40802031、41072111)。

作者简介:蔡记华,1978年生,男,湖北浠水人,博士、副教授,从事钻井液与储层保护方面的教学和研究工作,电话:,E-mail:。

(1.中国地质大学(武汉)工程学院 湖北武汉 4300742.中国地质大学武汉江城学院 湖北武汉 430200)

摘要:松软煤层中的钻进护孔技术是目前煤矿瓦斯抽采利用中亟待解决的技术难题之一。论文首先在理论上分析了可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性测试、滤饼清除实验和煤岩气体渗透率测试等方法对其性能进行了综合研究。结果表明:可降解钻井液的降解性能人为可控,能适合煤矿井下作业环境;生物酶降解加盐酸酸化的双重解堵措施可有效地清除可降解钻井液对煤层气储层的伤害,并能恢复甚至提高煤岩气体渗透率(增幅在15.47%~38.92%之间)。研究成果可以解决松软煤层瓦斯抽采孔钻进工作中护孔与储层保护的矛盾问题,也可为煤层气垂直井、水平井和分支井的钻井工艺优化与产能提高提供重要的理论和技术基础。

关键词:松软煤层 瓦斯抽采 可降解钻井液 护孔 储层保护

Experimental Research on Degradable Drilling Fluid for Drilling in Unconsolidated and Soft Coal Seam

CAI Jihua1, GU Sui2, WU Xiaoming1, LIU Hao1, CHEN Yu1

(ering Faculty, China University of Geosciences, Wuhan 430074, China;heng College, China University of Geosciences, Wuhan 430200, China)

Abstract: Technologies needed to stabilize the wellbore are among the most urgent problems that require be- ing resolved in the drainage and exploitation of coalmine methane (CMM) from unconsolidated and soft coal the first, the paper theoretically analyzed the borehole maintaining and biodegradation mechanisms of degradable drilling systematical study on its performance were carried out by utilizing rheology tests, mud cake remove tests and coal rock gas permeability s show that the degradation properties of degrad- able drilling fluid were controllable and it was fit for the coalmine operation rmore, complex unplugging technologies employing enzymatic degradation plus acidification by HCl was effective in removing the damage caused by mud cakes of degradable drilling fluid and resuming the gas permeability of coal rock or even en- hance it by a ratio between 15.47% and 38.92%.Technological achievements of this paper can help to resolve the contradiction between borehole maintaining and reservoir protection, and also offer powerful theoretical and techni- cal foundation for drilling technology optimization and production capacity enhancement in vertical, horizontal and multi-lateral drilling for coalbed methane exploration.

Keywords: unconsolidated and soft coal sea; coalmine methane drainage and exploitation; degradable drill-ing fluid; borehole maintain; reservoir protection.

1 可降解钻井液的提出

根据抽采对象的不同,可将煤矿瓦斯抽采分为本煤层瓦斯抽采、邻近层瓦斯抽采和采空区瓦斯抽采[1]。由于我国地质构造条件复杂,成煤时代多,煤矿区分布广,煤储层特征差异大。简单起见,可划分为正常煤体结构的硬煤层和构造发育的松软煤层两种典型类型。对于松软煤层,由于煤与瓦斯突出、煤层松软、机械强度低等原因,采用清水或空气等常规排粉钻进方式时易出现塌孔、卡钻或喷孔等问题,打钻成孔困难,瓦斯抽采效率低。松软煤层的煤层气开发是我国煤层气产业化面临的最严峻的挑战之一[2~4],在此类煤层中钻进护孔技术是目前亟待解决的技术难题之一[5~6]。

为达到较好的护孔效果,通常在钻井液中添加纤维素、胍尔胶和生物聚合物等聚合物。纤维素和胍尔胶等起到增粘、降低摩阻和润滑作用以保持井壁稳定,而生物聚合物可以增强钻井液在水平井段内的岩屑悬浮能力。尽管这类钻井液对储层的伤害比传统泥浆要小,但还是会在井壁上形成了低渗透的滤饼。滤饼的不充分降解会极大地影响井壁的流动能力,结果是显著降低生产井的产量。因此,特别是在松散地层和高渗透性地层中,必须清除渗滤到地层中的钻井液以及沉积在井壁上的滤饼,以实现产量最大化。

近年来,针对松散地(储)层钻进中护孔和储层保护的矛盾,我们提出了一种环境友好的可降解钻井液的研究思路[7~11]:在钻进时能保持孔壁稳定,而在钻进工作结束后,钻井液能在生物酶和无机酸作用下实现降解、粘度下降,先前形成的滤饼破除、产层流体的流动性增强、恢复地下流体资源解吸扩散通道,达到提高地下流体资源产量效果的目的。

本文在上述研究基础上,在理论上分析了松散煤层钻进用可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性测试、滤饼清除实验和煤岩气体渗透率测试等方法对可降解钻井液的性能进行了综合研究。

2 可降解钻井液的作用机理

2.1 可降解钻井液的护孔作用机理

可降解钻井液主剂由粘土稳定剂(如KCl)、水溶型或酸溶型架桥粒子/加重剂(一般为细粒CaCO3或无机盐)、降滤失剂(主要是天然植物胶如淀粉或纤维素或胍尔胶)、流型调节剂(如生物聚合物XC)等组成,这些处理剂共同起到增粘和降低摩阻作用;当钻进结束后,加入能降解各种聚合物的生物酶破胶剂[12~15]和能溶解细粒CaCO3无机酸(通常是15%的HCl[12,14])或有机酸[13,16]来清除聚合物滤饼(主要由聚合物和CaCO3组成)对储层渗透性的伤害。下面分别阐述各种处理剂的作用机理。

(1)粘土稳定剂可以用来抑制煤岩中粘土矿物遇水后膨胀;

(2)水溶型或酸溶型架桥粒子可以在煤岩表面的孔隙或裂隙孔喉处形成架桥,起到防止钻孔漏失的目的,同时CaCO3或无机盐也可以适当增加钻井液的密度,起到平衡地层压力的作用;

(3)天然植物胶大分子物质相互桥接,滤余后附在孔壁上形成隔膜。这些隔膜薄而坚韧,渗透性极低,可以阻碍自由水继续向煤层渗漏(图1)。同时,这类聚合物钻井液具有良好的包被抑制性,能有效地抑制钻屑分散。另外,这类具有强亲水基团的长链环式高分子化合物易溶于水,形成的水溶液具有较高粘度,可以增强钻孔孔壁表面松散煤粒之间的胶结力,起到加固松软煤层孔壁的效果;

图1 Na-CMC在粘土颗粒上的吸附方式

(4)生物聚合物XC是一种优良的流型调节剂,用它处理的钻井液在高剪切速率下的极限粘度很低,有利于提高机械钻速;而在环形空间的低剪切速率下又具有较高的粘度,并有利于形成平板形层流,可增强钻井液在近水平煤层钻孔中的携岩效果。

2.2 可降解钻井液的生物降解作用机理

所谓降解,是指在物理因素、化学因素或生物因素等的作用下聚合物分子量降低的过程。从实用的角度出发,聚合物降解可分为热降解、机械降解、光化学降解、辐射化学降解、生物降解及化学降解等不同的引发方式[17]。下面以胍尔胶为例,阐述生物酶降解聚合物的作用机理。

胍尔胶属于半乳甘露聚糖类,所用胍尔胶分子主链由β-1,4糖甙键将D-甘露糖单元连接而成,D-半乳糖取代基通过α-1,6糖甙键接在甘露糖主链上,沿甘露糖主链随机分布,半乳糖与甘露糖单元之比约为1:1.6。半乳甘露聚糖特异复合酶可有效地水解半乳甘露聚糖,它由两种O键水解酶组合而成,两种酶的降解机理如图2所示。

第一种O键水解酶是α-半乳糖甙酶(蜜二糖酶),专门作用于半乳糖取代基,可用来水解末端的非还原性α-D-半乳糖甙键。第二种O键水解酶过去常用来分解胍尔胶分子,在此专门作用于甘露糖主链,这种水解酶被称作β-1,4甘露聚糖环内水解酶,可随机水解β-1,4-D-甘露糖甙键[18]。

后续室内实验采用的酶制剂是几种生物酶的复配物。特种酶1号(SE-1)以纤维素甙键特异酶和半乳甘露聚糖特异复合酶为主,特种酶2号(SE-2)和特种酶4号(SE-4)以半乳甘露聚糖特异复合酶为主。

图2 胍尔胶糖甙键特异酶的降解机理

图3 胍尔胶钻井液的降粘曲线

3 可降解钻井液的室内试验

3.1 降粘效果评价

在理论分析基础上,进行了生物酶降解聚合物的室内实验,以钻井液流变参数为主要评价指标,用几种特种酶来降解单一聚合物或复配聚合物。将生物酶分别加入单一聚合物和复合聚合物中,研究生物酶对这些可降解钻井液的降粘效果,将表观粘度(AV)、塑性粘度(PV)和动切力(YP)随时间的变化关系绘制成曲线如图3~图5所示。

3.1.1 单一聚合物钻井液

从图3可以看出,在特种酶SE-1的作用下,在48.5h之内,质量浓度为0.5%的胍尔胶钻井液的表观粘度从23.5mPa·s降低到5mPa·s。塑性粘度和动切力也呈现出类似的变化规律。

由图4可以看出,在特种酶SE-1的作用下,在48.5h之内,质量浓度为0.75%的羧甲基纤维素钻井液的表观粘度从20.5mPa·s降低到6mPa·s。

由于特种生物酶SE-1同时含有纤维素甙键特异酶和半乳甘露聚糖特异复合酶,它对胍尔胶和羧甲基纤维素均有较好的降解效果。

3.1.2 复配聚合物

从图5可以看出,在特种酶SE-2的作用下,在46h之内,由质量浓度为0.3%羧甲基纤维素和0.2%胍尔胶组成的复合聚合物钻井液的表观粘度从25.5mPa·s降低到5mPa·s。随着时间的变化,塑性粘度和动切力也按类似的规律下降。

由图3~图5可以看出,在生物酶作用下,聚合物能实现有效的降解,聚合物大分子逐渐断链变成小分子,钻井液粘度降低,在煤储层中的流动性增强,从而恢复煤层气解吸释放的通道。

图4 羧甲基纤维素钻井液的降粘曲线

图5 复配聚合物钻井液的降粘曲线

3.2 滤饼清除实验

实验目的是通过观察可降解钻井液滤饼在生物酶破胶剂(和无机酸)的作用下滤饼表面的变化情况、考察滤饼的解堵效果(结果分别如图6~图7所示)。可降解钻井液的配方如下:

配方1:400ml水+2.6gCMC+4gDFD+4.8gCaCO3+NH4HCl(调节pH),先后采用0.00625%的SE-4溶液和5%HCl浸泡滤饼。

配方2:400ml水+1.6gCMC+8g膨润土,采用0.04%JBR溶液浸泡滤饼。

配方1的滤饼清除实验结果如图6所示,可以看出:单独使用生物酶SE-4只能清除该套体系中的CMC(图6-b),而对CaCO3等影响不大。当用5%HCl浸泡2h后,滤饼变得非常薄,说明CaCO3已与HCl充分反应[1]。

图6 滤饼的外观变化图

按照配方2所配制钻井液的滤饼清除实验结果如图7所示。由于这种配方中只有CMC这种聚合物,在用JBR溶液浸泡5h后,可降解钻井液的滤饼已基本降解完全。

图7 JBR作用下可降解钻井液(配方4)滤饼清除情况

3.3 煤岩气体渗透率测试

煤矿井下瓦斯抽放的最终目的就是恢复煤层的渗透率,获得较高的瓦斯抽放量。因此,渗透性的恢复对于可降解钻井液而言是一个更加直接的衡量指标。采用JHGP智能气体渗透率和JHLS智能岩心流动实验仪对可降解钻井液进行渗透性恢复实验,实验步骤详见参考文献[11]。

煤岩气体渗透率测试结果(表1)表明:晋-3煤样经过“污染—生物酶降解—酸化”三个阶段,其渗透率表现出“下降—上升—上升”的趋势,而且经过生物酶降解和酸化(也包括之前的加热处理)之后,煤岩的气体渗透率甚至超过了污染前的气体渗透率(如图8所示,推测盐酸亦与煤岩中的方解石和白云石发生反应,增大了煤岩孔隙裂隙),这也证实了“生物酶降解—酸化处理”的综合解堵工艺是有效的,有利于提高煤层气藏的采收率。

表1 煤岩气体渗透率

注:(1)下游压力(出口压力)为0.1MPa(即1个大气压);(2)△K=(K4-K1)*100/K1。

图8 不同处理阶段煤岩平均气体渗透率变化情况

4 结论

论文在理论上分析了可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性评价、滤饼清除实验和煤岩气体渗透率测试等实验手段对可降解钻井液进行了综合研究,主要得出以下结论:

(1)可降解钻井液的降解性能人为可控,能适合煤矿井下作业环境;

(2)生物酶降解加盐酸酸化的双重解堵措施可有效地清除可降解钻井液对煤层气储层的伤害,并能恢复甚至提高煤岩气体渗透率(增幅在15.47%~38.92%之间);

(3)研究成果可以解决松软煤层瓦斯抽采孔钻进工作中护孔与储层保护的矛盾问题,也可为煤层气垂直井、水平井和分支井的钻井工艺优化与产能提高提供重要的理论和技术基础。

参考文献

[1]王兆丰,刘军.2005.我国煤矿瓦斯抽放存在的问题及对策探讨[J].煤矿安全,36(3),29~33

[2]苏现波,王丽萍.2001.中国煤层气产业化的机遇、挑战与对策[C].瓦斯地质新进展,222

[3]饶孟余,杨陆武,冯三利等.2005.中国煤层气产业化开发的技术选择[J].特种油气藏,12(4),2

[4]袁亮.2007.淮南矿区煤矿先抽后采的瓦斯治本技术[J].中国煤炭.33(5),5~7

[5]张群.2007.关于我国煤矿区煤层气开发的战略思考[J].中国煤炭,33(11),9~11

[6]国家发展和改革委员会.2005.煤层气(煤矿瓦斯)开发利用“十一五”规划[R]

[7]蔡记华,乌效鸣,潘献义等.2004.暂堵型钻井液的试验研究.地质科技情报[J],23(3):97~100

[8]蔡记华,乌效鸣,刘世锋.2004.自动降解钻井液在水井钻进中的应用[J].煤田地质与勘探,32(5):52~54

[9] Jihua Cai, Xiaoming Wu, Sui ch on environmentally safe temporarily plugging drilling fluid in water well drilling [C] .SPE 122437

[10] 蔡记华, 乌效鸣, 谷穗等.2010. 煤层气水平井可生物降解钻井液流变性研究 [J] . 西南石油大学学报(自然科学版), 32 (5): 126~130

[11] 蔡记华,刘浩, 陈宇等.煤层气水平井可降解钻井液体系研究 [J] .煤炭学报, 已录用

[12] Beall, Brian B., Tjon-Joe-Pin, Robert, Brannon, et experience validates effectiveness of drill-in fluid cleanup system [C] .SPE 38570

[13] Frederick y, Phil Rae, Juan step enzyme treatment enhances production capacity on horizontal wells [C] .SPE 52818

[14] K.P.O' Driscoll, , treatment for removal of mud-polymer damage in multilateral wells drilled using starch-based fluids [J] .SPE Drilling & Completion, 15 (3): 167~176

[15] Hylke Simonides, Gerhard Schuringa, Ali of starch in designing non-damaging completion and drilling fluids [C] .SPE 73768

[16] R. , R. , Ian Wattie, Jane Tomkinson. test of a novel drill-in fluid clean-up technique[C] .SPE 58740

[17] [德] W.施纳贝尔.1998.聚合物降解原理及应用 [M] .科学出版社, 180~187

[18]李明志,刘新全,汤志胜等.2002.聚合物降解产物伤害与糖甙键特异酶破胶技术 [J].油田化学, 19(1), 89~92

生物破胶酶的发酵生产及其破胶性能研究

郑承纲 李宗田 张汝生

(中国石化石油勘探开发研究院,北京 100081)

摘 要 针对中低温油藏压裂破胶施工的需求,筛选出生物破胶酶生产菌株——地衣芽孢杆菌(Bacillus licheniformis)BG1,通过两水平试验设计确定了该菌株产酶培养基中的显著因素(碳源、有机氮源和无机氮源),在此基础上,又通过中心法则试验设计对该菌株的产酶培养基组成做进一步优化,最终确定了发酵培养基组成为4.08g/L碳源,11.74g/L有机氮源,5.22g/L无机氮源,2g/L磷源,1.0g/L硫源,0.05g/L微量元素。采用该优化培养基,BG1菌株的生物破胶酶产量达239 U/L。该菌株所产生物破胶酶拥有良好的稳定性,在低于50℃中温浴6h,酶活力保持率可达85%以上,同时该酶对非极端pH条件、常规地层离子和化学助剂亦表现出良好的稳定性。通过对该酶破胶性能进行研究,发现该酶在中、低温环境下破胶效果好,30 ~60℃温度下破胶后的压裂液黏度分别为11.1cp、2.23cP、1.97cP和4.65cP,破胶返排后地层伤害小,模拟实验伤害率仅为11.37%,体现了该生物破胶酶在中、低温油藏压裂施工中的良好应用前景。

关键词 地衣芽孢杆菌 生物破胶酶 中低温油藏 稳定性 破胶效能

Production of Enzymatic Gel Breaker and Its

Gel Breaking Potential Evaluation

ZHENG Chenggang,LI Zongtian,ZHANG Rusheng

(Exploration and Production Research Institute,SINOPEC,Beijing 100081,China)

Abstract In order to fill the fracturing gel breaking demand in those moderate-/low-temperature reservoirs, Bacillus licheniformis BG1 was selected for the production of enzymatic gel breaker(EGB).The significant variables in the EGB fermentation medium were identified as carbon source,organic nitrogen and inorganic nitrogen source by two-level factorial design and were further optimized through full-factorial central composite optimal composition of EGB fermentation medium was 4.08 g/L carbon source,11.74 g/L organic nitrogen,5.22 g/L inorganic nitrogen,2 g/L phosphorus source,1.0 g/L sulfur source,0.05 g/L trace elements and the maximum EGB production yield was EGB produced by iformis BG1 exhibited good thermostability that after incubation at a temperature below 50 ℃for 6 h,the residual activity was still above 85% retention enzymatic breaker also showed a good stability withthe non-extreme pH conditions,conventional ion formation and chemical viscosities of broken fracturing fluids were 11.1 cP,2.23 cP,1.97 cP and 4.65 cP at a temperature ranging from 30℃ to 60℃, operation caused little damage to the formation that the damage rate was merely 11.37% in the physical simulation on the results from this work,the enzymatic gel breaker presents a good prospect in the hydraulic fracturing.

Key words Bacillus licheniformis;enzymatic gel breaker;moderate-/low-temperature reservoirs; stability;gel breaking efficiency

水力压裂是油气井增产、注水井增注的一项重要技术措施,全国压裂措施工艺每年达上万井次,年增油近千万吨。其过程是用压裂泵组将压裂液以高压力压开地层,形成裂缝;并用支撑剂支撑裂缝,增加导流能力、减小流动阻力,是一种增产、增注措施。压裂液的性能是影响压裂施工成败的关键因素,压裂液的破胶效果直接影响压裂液的反排和增产效果,破胶失败或者不理想会造成严重的地层伤害。根据低渗透储层的特点,利用核磁共振技术及岩心流动试验进行了压裂液伤害机理研究,结果表明:压裂液黏滞力和大分子基团滞留是造成伤害的主要因素。因而提高破胶效果,降低压裂液的黏滞阻力,是解决压裂液伤害的一个重要办法[1,2]。

大多数水基压裂液所使用的稠化剂为(变性)胍豆胶,压裂作业中常用化学(氧化型)破胶剂为过硫酸钾、过硫酸铵等,其优点是价格低、使用方便、破胶迅速、破胶液黏度在10mPa·s以下。但在实际应用中,氧化破胶剂存在着一些缺陷,包括:(1)反应时间及其活性主要依赖于温度,温度低于50℃时,反应很慢,必须添加低温催化剂,而高于93℃时降解反应发生很快,反应不易控制,反应迅速,使压裂液提前降解而失去输送支撑剂的能力,甚至导致压裂施工失败;(2)它属于非特殊性反应物,能和遇到的任何反应物如管材、地层基质和烃类等发生反应,易生成与地层不配伍的污染物,造成地层伤害;(3)作用时间短,氧化型破胶剂往往在到达目的裂缝前消耗殆尽,达不到有效破胶的目的;(4)反应不彻底,造成胍豆胶不能完全降解,约20%的分子量大于2.0×106的聚合物基本上未降解,并产生大量残渣。而生物破胶酶是具有高催化能力和很好活性的生物蛋白,它在催化反应时自身的形态和结构不发生改变,其反应特异性决定了其专一性分解多糖聚合物结构中特定的糖苷键,并将其降解为单糖和二糖,这些特异性的生物破胶酶主要有Beta-1,4甘露聚糖酶、Beta-甘露糖苷酶和Alpha-半乳糖苷酶等。研究表明,化学破胶剂破胶后的聚合物分子量为(1.0~3.0)×105Da,而生物酶破胶方法后的胶液分子量仅为2000~4000Da,其破胶性能大大高于氧化型破胶剂,压裂后无残渣,返排效果好[3]。同时,生物破胶酶主要应用于30~60℃的油藏,有效弥补化学破胶剂在中、低温油藏应用中的瓶颈问题(如反应缓慢、需要添加催化剂、破胶难以控制)[4~6]。本文对新型压裂液生物破胶酶进行了研究,优化了其发酵生产条件,并对其破胶性能进行了相关分析。

1 生物破胶酶的发酵生产和纯化

1.1 菌种、培养基和发酵条件

本研究中所用生物破胶酶生产菌株为本实验所保存菌种BG1,分离自某油田原油污染土样,经16SrDNA序列分析和生理生化反应鉴定为地衣芽孢杆菌(Bacillus licheniformis),菌株保存于-80℃冰箱甘油管(20%,v/v)中,使用前经固体培养基进行活化后作为接种物。

种子液培养采用LB培养基,其组成为:10g/L蛋白胨,5g/L酵母膏,10g/L氯化钠,pH=7.0~7.2;经响应面法优化后的发酵培养基组成为:4.08g/L碳源,11.74g/L有机氮源,5.22g/L无机氮源,2g/L磷源,1.0g/L硫源,0.05g/L微量元素。接种浓度为2.0%,接种后的培养物置于37℃摇床中在转速180rpm条件下培养48h。

1.2 酶活力的测定

本研究中破胶酶的酶活力检测采用3,5-二硝基水杨酸法(DNS法),分别以0mg/mL、2mg/mL、4mg/mL、6mg/mL、8mg/mL和10mg/mL浓度的还原糖溶液作为反应物制作标准曲线。将发酵结束后的菌液于4℃下转速为8000rpm离心10min,去除菌体,取上清液作为粗酶液,以0.6%浓度胍豆胶溶液作为底物进行水解反应,反应条件为50℃温浴中反应10min,检测反应物中还原糖的浓度。1个酶活力单位(U)定义为:在50℃温浴条件下,每分钟释放1μmol还原糖所需要的酶量[7]。

1.3 破胶酶发酵生产的优化

为了获得高产量的生物破胶酶,在菌株最佳培养的基础上,对发酵培养基组成进行优化。首先将破胶酶发酵生产中的碳源、有机氮源、无机氮源、磷源、硫源和微量元素,作为培养基优化实验中的6个试验因素(X1—X6),通过两水平试验设计(Two-level factorial design)筛选其中的显著因素,进而对显著因素的浓度进行进一步优化。本实验中,因素的两水平包括正效应(+)和负效应(-),正效应的因素均取高值,负效应的因素均取低值,通过使因素同时朝响应值增大的方向变化,找出峰值,从而确定逼近最大响应区域的水平值,并把对响应值影响较大的因素(F<0.05,置信度95%)作为显著因素[8]。

两水平试验设计及其响应值如表1所示,通过对实验结果进行分析发现,对破胶酶的生产有显著影响的因素为碳源(99.90%)、有机氮源(99.51%)和无机氮源(95.11%),而磷源(10.52%)、硫源(32.27%)和微量元素(33.11%)对发酵液酶产量影响较小。6个试验因素中,碳源、有机氮源、无机氮源和磷源对破胶酶的发酵生产均呈现负效应,而硫源和微量元素对破胶酶的合成呈现正效应。将碳源、有机氮源和无机氮源3个显著因素分别作为自变量(A、B和C),采用中心法则试验设计(central composite design)对影响破胶酶发酵生产的底物浓度水平进行优化。中心法则试验设计共包括20组实验,其中交互试验23组、中心点6组和边际点6组,每一自变量的5个试验水平分别以-1.68、-1 、0、+1和+1.68进行编码[9],如表2所示。

表1 两水平试验设计及其响应值(n=6)

续表

表2 中心法则试验设计及其响应值

通过拟合得到一个描述响应值与自变量关系的多元回归模型,如公式(1)所示。模型的P-value值为0.0041,该值远远小于0.05,表明回归方程的F检验显著,所获得的模型能够准确地反映破胶酶的发酵生产情况。

油气成藏理论与勘探开发技术(五)

由响应面回归分析和回归方程拟合绘制酶产量与碳源、有机氮源和无机氮源的响应面,如图1所示。

图1 碳源、有机氮源和无机氮源对破胶酶产量影响的响应面

通过该模型计算出响应值(酶产量)对因素A、B、C存在极值点,对Y进行极值分析,确定3个因子最优试验点(A、B、C)的代码值(0.57、0.25、0.41),即碳源浓度为4.08g/L,有机氮源和无机氮源浓度分别为11.74g/L和5.22g/L时,该模型预测的破胶酶产量存在极大值,通过实验验证实际酶产量为239U/mL。

1.4 破胶酶的分离、纯化和保存

破胶酶发酵结束后,将发酵液在转速5000~10000rpm情况下离心30min去除菌体,并用0.22μm滤除去残余菌体和不溶物质,将获得的粗酶液经琼脂糖层析柱(20mm×250mm)洗脱:层析柱以pH=7.3的Tris-HCl缓冲液平衡后以0.5~1.5mol的NaCl溶液进行梯度洗脱,洗脱速率为5~15mL/h,收集酶液并用饱和硫酸铵溶液沉淀,将获得的破胶酶由缓冲液稀释至200~400U/mL后低温保存[10]。用于压裂液破胶酶保存的缓冲液组成为:0.1M的pH=7.2的磷酸缓冲液,杀菌剂50×10-6,甘油50%。

2 生物破胶酶稳定性研究

由于生物破胶酶使用过程中要面临油藏复杂的物理化学条件,同时其破胶活性还会受到压裂液体系中其他助剂的影响,因此,本研究中考察了各种物理化学因素(温度、pH、地层离子和化学助剂等)对生物破胶酶活力的影响。

2.1 温度和pH因素对酶活力保持率的影响

首先,研究温度和pH因素对生物酶活力保持情况的影响,酶活力保持率如图2所示,实验结果表明:生物破胶酶在中低温条件下有良好的热稳定性,在低于50℃的环境中温浴6h后,其酶活力保持率能达到85%以上,而超过50℃后,酶活力保持率随温度升高开始下降,70℃时,温浴后的酶活力仅为初始值的35%;生物破胶酶在非极端pH环境中(pH =5.0~9.0)能较好地维持其活性,而超出这一pH值范围后,酶活力保持率会迅速下降。

图2 温度和pH因素对酶活力保持率的影响

2.2 地层离子和化学助剂对酶活力保持率的影响

本文还对地层离子和化学助剂对生物酶活力保持情况的影响进行了研究,如表3所示。实验结果表明:地层水中的主要无机离子对破胶酶活力无明显影响;而压裂体系中的常规助剂对酶活力的保持有一定影响,本实验中,生物破胶酶在含有EDTA、杀菌剂和交联剂的溶液中温浴6h后,酶活力的保持率分别为81%、76%和94%。现场的压裂液体系非常复杂,因此,在实际应用中,有必要对各种助剂组分对生物酶活性的影响进行预实验。

表3 地层离子和化学助剂对酶活力保持率的影响

3 生物破胶酶的破胶性能研究

3.1 生物酶破胶降黏性能研究

针对中、低温储层的特点,本实验中所使用的压裂液配方为0.35%羟丙基胍胶、6%交联剂(1.0%硼砂溶液)、1.0%黏土稳定剂、0.5%杀菌剂,pH =8.5,生物破胶酶的添加浓度为20U/L。本文研究了不同温度下(20~80℃)的破胶效果,压裂液的降黏效果如图3所示,在40℃和50℃下反应10h后,破胶后的胶液黏度仅为2.23cP和1.97cP,而在30℃和60℃时,破胶后的胶液黏度分别为11.1cP和4.65cP。在破胶反应30min时,压裂液尚保持较高的黏度,维持了较好的携砂能力。可见,本研究中的生物破胶酶,完全可以满足中、低温油藏压裂施工的作业要求。

3.2 物理模拟破胶岩心伤害实验

当压裂液返排时,由于破胶不彻底往往留下很多残渣(固体不溶物),降低裂缝的导流能力。在室内应用物理模拟实验,制作人工胶结岩心模型(10cm×2.5cm)模拟水力压裂伤害过程,50℃恒温箱中,驱替人工配制的模拟地层水并计算模型的原始渗透率;将模型饱和含有20U/L破胶酶的压裂液液,关闭驱替系统,并在恒温箱中进行破胶反应12h;反应结束后,以模拟地层水进行反向驱替,计算返排后的模型渗透率(驱替至压力恒定),并以未添加破胶酶(APS破胶)的实验组作为对照模拟地层伤害实验,并计算伤害率[11]。

图3 不同温度下破胶酶的破胶效果

表4 地层伤害实验

从表4的结果不难看出,相比空白对照,生物破胶酶的加入可以有效实现压裂液破胶降黏,由于生物酶的破胶作用彻底,实验岩心并未观察到显著的地层伤害(伤害率仅为11.37%),远低于对照组30.67%的伤害率,体现了生物酶破胶剂在中、低温油藏压裂施工作业中的良好应用前景。

4 结论

本研究采用响应面优化法获得了影响地衣芽孢杆菌BG1菌株发酵生产生物破胶酶的培养基组成中的显著因素,并通过建立多项数学模型,采用统计分析对模型进行显著性检验来优化发酵培养基。优化得到的最佳培养基组成为:4.08g/L碳源,11.74g/L有机氮源,5.22g/L无机氮源,2g/L磷源,1.0g/L硫源,0.05g/L微量元素。在优化的条件下,地衣芽孢杆菌BG1菌株的生物破胶酶活力达239U/L,表明采用响应面法优化发酵培养基组成是提高菌株产酶活性的有效途径之一,从而为该技术的推广奠定了较好的基础。该菌株产生的生物酶具有良好的稳定性,能够较好地耐受中低温和非极端pH环境,并较好耐受各种无机离子和化学助剂。通过对其破胶性能进行研究,发现该破胶酶能够有效降低压裂液黏度,破胶彻底,对地层伤害小,因此,本研究的研究成果在中、低温油藏压裂施工作业中有着良好的应用前景。

致谢 本研究工作是在中国石化前瞻性项目 “微生物降解压裂残渣和重烃研究” 资助下完成的。在研究中,李宗田教授,中国石化石油勘探开发研究院采油工程研究所苏建政所长和苏长明高级专家都给予了宝贵的指导和建议,对他们表示衷心的感谢。

参考文献

[1]王维明.VES-18清洁压裂液性能试验与应用[J].煤田地质与勘探,2010,38(3):24~31.

[2]周继春,叶仲斌,赖南君.低温低渗气藏酸基新型压裂液增稠剂的研制[J].西南石油大学学报(自然科学版),2009,31(4):131 ~133.

[3]胡凯,易绍金,邓勇.生物酶破胶剂的现状及展望[J].科技咨询导报,2007,21:159.

[4]龙增伟,杨振周,陈凯,等.吉林两井地区低残渣缔合压裂液的研究与应用[J].钻井液与完井液,2009,26(3):56~58.

[5]Reiniche A,Rybacki E,Stanchits S,et lic fracturing stimulation techniques and formation damage mechanism-Implications from laboratory testing of tight sandstone -proppant systems[J].Chemie der Erde,2010,70(53):107~117.

[6]Rahman M K,Suarez Y A,Chen Z,et essful hydraulic fracturing cases in Australia: Investigation into causes of failures and their remedies[J].Journal of Petroleum Science and Engineering,2007,57(70):70~81.

[7]Duffaud G D,McCutchen C M,Leduc P,et cation and characterization of extremely thermostable beta-mannanase,beta-mannosidase,and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068[J].Applied and Environmental Microbiology,1997,63(1):169 ~177.

[8]Gu X,Zheng Z,Yu H,et zation of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method[J].Process Biochemistry,2005,40:3196~3201.

[9]Joshi S,Yadav S,Desai ation of response-surface methodology to evaluate the optimum medium components for the enhanced production of lichenysin by Bacillus licheniformis R2[J].Biochemical Engineering Journal,2008,41:122~127.

[10]Tamaru Y,Araki T,Amagoi H,et cation and characterization of an extracellular beta-1 ,4 - Mannanase from a Marine Bacterium,Vibrio MA - 138[J].Applied and Environmental Microbiology,1995,61(12):4454~4458.

[11]徐兵威,王世彬,郭建春,等.低伤害压裂液体系伤害性研究与应用[J].钻采工艺,2010,33(4):87~89.

指导注水开发缝洞单元物理模拟的相似准则的建立

李爱芬 张 东

(中国石油大学(华东)石油工程学院,山东青岛 266555)

摘 要:建立合理的相似准则对注水开发缝洞单元的物理模拟研究具有重要的指导意义。本文分别通过 方程分析法与量纲分析法推导并得到了用于指导注水开发缝洞单元物理模拟的相似准则群,进一步验证了相 似准则群的正确性,通过对上述相似准则群进行筛选、组合,最终得到六个能够反映缝洞单元注水开发主要 特征的相似准则。研究发现,方程分析法得到的相似准则群可以用量纲分析法得到的相似准则群进行表示,最终得到六个相似准则的物理意义依次为采出程度,压力与重力之比,雷诺数,多条裂缝下的立方定律,缝 洞比,注水量与采油量之比。

关键字:相似准则;缝洞单元;注水开发;方程分析法;量纲分析法

Establishment of Similarity Criteria as Guide for Physical Simulation of Water Flooding in Fractured-vuggy Unit

Li Aifen,Zhang Dong

(School of Petroleum Engineering,China University of Petroleum(East China),Qingdao 266555 ,Shandong,China)

Abstract:It is of important directive significance to establish the proper similarity criteria for physical simulation of water flooding in fractured-vuggy this paper,the similarity criteria guiding physical simulation of water flooding in fractured-vuggy unit has been gotten by equation analysis method and dimension analysis method validity of the similarity criteria has been selecting and combining above similarity criteria,six similarity criteria reflecting the major characteristics of water flooding in fractured-vuggy unit have been results are as rity criteria derived by equation analysis method could be expressed by criteria derived by dimension analysis six similarity criteria are recovery percent of reserve,the ratio of pressure and gravity,Reynolds number,cubic law in the condition of multiple fractures,the ratio of fracture number and vug number,and the ratio of injection volume and oil production.

Key words:similarity criteria;fractured-vuggy unit;water flooding;equation analysis method;dimension analysis method

引言

缝洞单元是缝洞型碳酸盐岩油藏的基本开发单位[1~3],注水开发在缝洞型碳酸盐岩油藏的开采过 程中取得了较好的效果[4,5],因此要合理高效地开发缝洞型碳酸盐岩油藏,就必须先摸清缝洞单元的注 水开发规律。

物理模拟是研究缝洞单元开采规律的重要方法[6~8]。物理模拟要满足相似理论才能保证其自身的 科学性,可以认为,相似准则是开展物理模拟的依据。

目前,在进行注水开发缝洞单元物理模拟实验时,很多学者未考虑相似准则[9~13],用于指导注水 开发缝洞单元物理模拟的相似准则也不多见。本文将分别用方程分析法和量纲分析法[14~16]推导注水开 发缝洞单元物理模拟的相似准则群,在验证相似准则群正确性的基础上,通过整理与分析,筛选出用于 指导注水开发缝洞单元物理模拟的相似准则。

1 方程分析法推导相似准则群

1.1 基本假设

方程分析法推导相似准则,首先要建立描述模拟对象的数学模型。在建立数学模型前,做基本假设 如下。

(1)油藏中存在油水两相流动,由于塔河缝洞型油藏的原油属于低饱和压力原油,忽略油藏中溶 解气的存在;

(2)缝洞型油藏中,大尺度裂缝是主要的流动通道,因此忽略毛细管力的影响[17];

(3)假设在注水开发过程中,注采平衡;

(4)暂不考虑溶洞、裂缝中的充填情况。

1.2 数学模型

数学模型包括连续性方程[18]、运动方程、饱和度方程、辅助方程、定解条件和初始条件。

(1)连续性方程

国际非常规油气勘探开发(青岛)大会论文集

(2)运动方程

当(x,y,z)∈裂缝时,流体流动可以用达西定律形式进行描述,

国际非常规油气勘探开发(青岛)大会论文集

其中,达西定律中的绝对渗透率可以用修正的立方定律[19]进行计算。

国际非常规油气勘探开发(青岛)大会论文集

当(x,y , z) ∈ 溶洞时,流体流功可以用N -S 方程[ 20]A行描述,

国际非常规油气勘探开发(青岛)大会论文集

其中,▽2 Ux,▽2uy▽2Uz为拉普拉斯算子。

将式(7)中三个式子分别乘以dx、dy、dz,再相加,考虑油水两相得:

国际非常规油气勘探开发(青岛)大会论文集

(3) 饱和度方程

国际非常规油气勘探开发(青岛)大会论文集

(4) A助方程

国际非常规油气勘探开发(青岛)大会论文集

采出量:

国际非常规油气勘探开发(青岛)大会论文集

注人量:

国际非常规油气勘探开发(青岛)大会论文集

1.3 归一化处理

为了便于推导,采用归一化的饱和度和归一化的相对渗透率,重新写出上述有关方程。

(1)无因次项的归一化

国际非常规油气勘探开发(青岛)大会论文集

(2)方程的修正

将式(14)、(15)代入连续性方程得:

国际非常规油气勘探开发(青岛)大会论文集

将式(1 7 )、(1 8 )代人运动方程得:

国际非常规油气勘探开发(青岛)大会论文集

其中,k*=krowc或者k*=krwor。

饱和度方程:

国际非常规油气勘探开发(青岛)大会论文集

参数说明:ρo为油密度,g/cm3;ρw为油密度,g/cm3;uo为油相速度,cm/s;uw为水相速度,cm/s;uox为油相在x方向的速度,cm/s;uwx为水相在x方向的速度,cm/s;uoy为油相在y方向的速 度,cm/s;uwy为水相在y方向的速度,cm/s;uoz为油相在z方向的速度,cm/s;uwz为水相在z方向的 速度,cm/s;qo为油相流入(流出)的质量流量,g/s;qw为水相流入(流出)的质量流量,g/s;φ 为储集体总孔隙度;φv为溶洞孔隙度;φf为裂缝孔隙度;So为油相饱和度;Sw为水相饱和度;△S为可 动流体饱和度;Swc为束缚水饱和度;Sor为残余油饱和度; 为归一化的油相饱和度; 为归一化的水 相饱和度;t为时间,s;K为绝对渗透率,μm2;kro为油相相对渗透率;krw为水相相对渗透率; 为 归一化的油相相对渗透率; 为归一化水相相对渗透率;krowc为束缚水饱和度下的油相相对渗透率,常 量;krwor为残余油饱和度下的水相相对渗透率,常量;μo为油相粘度,mPa·s;μw为水相粘度,mPa·s;po为油相压力,10-1MPa;pw为水相压力,10-1MPa;g为重力加速度,m/s2;n为端面裂缝 数量;H为端面高度,m;b为裂缝张开度,μm;δ为立方定律修正系数;e为壁面粗糙度,μm;L′为 油藏长度,km;W为油藏宽度,km;H为油藏高度,km;nf为裂缝密度,1/m;nv为溶洞密度,1/m3;Vv为溶洞平均体积,m3 ;lw为裂缝与流体的接触面积(裂缝长乘以裂缝宽),m2;D为井眼半 径 m;i为注水量,m3/d。

1.4 相似准则的建立

下面以式(19)的油相方程为例,介绍相似准则的推导方法。

将式(19)第一项除以第五项得: (假设速度uo沿L方向);

将式(19)第一项除以第四项得: ;

将式(19)第四项除以第五项得: ;式(19)第一、二、三项因次相同,不再做 处理;

这样推导出3个准则,将其他方程按照这种方法进行处理,最终得到一系列相似准则。此外,无因 次参数本身就属于相似准则,比如: △S、φv、φf。

把推导出来的相似准则进行组合处理,比如:

由 得:

国际非常规油气勘探开发(青岛)大会论文集

最终通过方程分析法得到的相似准则群如下:

国际非常规油气勘探开发(青岛)大会论文集

描述缝洞单元中油水两相的流动需要以下33个物理量:

国际非常规油气勘探开发(青岛)大会论文集

这些变量包括3个基本量纲p、L、t,由相似理论π定理[7],应有33-3 =30个相似准则数,说明 在方程分析法推导过程中漏掉了4个相似准则数。可以通过量纲分析方法补充漏掉的相似准则。

2 量纲分析法推导相似准则

基本量纲包括压力ρ,长度L,时间t。选定包括三个基本量纲的变量ρ,u,L作为基本参数群。缝 洞单元内两相流动模拟涉及的物理量及其量纲如下表1所示。

对于时间t,选取ρo、uo、L作为基本参数。

国际非常规油气勘探开发(青岛)大会论文集

令各基本量纲的指数为零,得齐次方程组,解得a=0,b=1,c=-1,这样就找到了第一个相似 准则:

国际非常规油气勘探开发(青岛)大会论文集

用同样的方法,可以得到每个有因次变量对应的相似准则。

国际非常规油气勘探开发(青岛)大会论文集

存在以下因次相同的物理量组合的相似准则:

国际非常规油气勘探开发(青岛)大会论文集

其它无因次参数,本身就是相似准则:

国际非常规油气勘探开发(青岛)大会论文集

通过量纲分析法得到了30个相似准则,经过对比分析发现,用方程分析法推导得到的相似准则缺 少四个相似准则: 。这样就补齐了方程分析法推导得到的相似准则。

3 两套相似准则的相互验证

上面用两种方法推导了用于指导缝洞单元内两相流体流动模拟的相似准则。方程分析法得到的相似 准则有比较明确的物理意义,但这种方法推导的相似准则往往不够全面。量纲分析法得到的相似准则一 般不会被遗漏,但这种方法是通过将各物理量与基本参数进行组合,使其因次强制为0而得到相似准则 的,因此其得到的相似准则往往缺乏物理含义。用两种方法分别推导相似准则,取各种方法的长处,可 以得到全面而准确的相似准则。

3.1 验证方法

既然同样是指导缝洞单元内两相流体流动模拟的相似准则,那么两套准则应该完全一致。如果其中 一套相似准则群中的每个相似准则都能由另一套相似准则组合表示,则可以认为两套相似准则完全 一致。

下面采用量纲分析法推导的相似准则去验证方程分析法推导得到的相似准则。

表1 缝洞单元内两相流动模拟涉及的物理量及其量纲

续表

3.2 验证过程

首先列举两种方法得到相似准则群,为了区别两套相似准则,将量纲分析法得到相似准则加上标(如 )。

方程分析法得到的相似准则群:

国际非常规油气勘探开发(青岛)大会论文集

量纲分析法得到的相似准则群:

国际非常规油气勘探开发(青岛)大会论文集

通过推导发现:

国际非常规油气勘探开发(青岛)大会论文集

这A套相似准A完全一致,世明上述A种方法得到的相似准A是正确的。

4 物理模拟相似准则的确定

缝洞型碳酸盐岩油藏储层结构复杂,非均质性严重,其物理模拟实验与矿场实际无法做到完全相 似。在研究过程中,应该抓住事物的主要特征。根据几何相似、动力相似、运动相似的要求,对上述相 似准则群进行筛选、整理、分析,最终得到六个能够反映缝洞单元注水开发主要特征的相似准则,见 表2。

表2 物理模拟的主要相似准则

续表

5 结论

本文推导并得到了用于指导注水开发缝洞单元物理模拟的相似准则,得到结论如下:

(1)通过方程分析法得到的相似准则群可以用通过量纲分析法得到的相似准则群来表示,验证了 上述两个相似准则群的正确性。

(2)最终得到了六个能够反映注水开发A洞单元主要特征的相似准A:

国际非常规油气勘探开发(青岛)大会论文集

国际非常规油气勘探开发(青岛)大会论文集

参考文献

[1]鲁新便,张宁,刘雅雯.塔河油田奥陶系稠油油藏地质特征及开发技术对策探讨[J].新疆地质,2003,21(3): 329~334.

[2]荣元帅,刘学利,杨敏.塔河油田碳酸盐岩缝洞型油藏多井缝洞单元注水开发方式[J].石油与天然气地质,2010,31(1):28~32.

[3]钟伟,陆正元.单井注水替油过程中缝洞单元内的油水关系[J].断块油气田,2008,15(4):80~82.

[4]杨旭,杨迎春,廖志勇.塔河缝洞型油藏注水替油开发效果评价[J].新疆石油天然气,2010,6(2):59~64.

[5]康志江.缝洞型碳酸盐岩油藏耦合数值模拟新方法[J].新疆石油地质,2010,31(5):514~516.

[6]白玉湖,周济福.油藏复杂驱动体系物理模拟相似准则研究进展[J].力学进展,2009,39(1):58~67.

[7]郑小敏,孙雷,王雷,等.缝洞型碳酸盐岩油藏水驱油机理物理模拟研究[J].西南石油大学学报(自然科学版),2010,32(2):89~92.

[8],,,et al.A Single-phase Fluid Flow Pattern in a Kind of Fractured-vuggy Media[J].Petroleum Science and Technology,2011,29(10):1030-1040.

[9]Cruz-Hernandez,J.,Islas,J.,Perez-Rosales,C.(2001).Oil Displacement by Water in Vuggy Fractured Porous 69637.

[10]李鹴,李允.缝洞型碳酸盐岩孤立溶洞注水替油实验研究[J].西南石油大学学报:自然科学版,2010,32(1): 117~120.

[11]郑小敏,孙雷,王雷,等.缝洞型油藏大尺度可视化水驱油物理模拟实验及机理[J].地质科技情报,2010,29(2):77~80.

[12]程倩,熊伟,高树生,等.单缝洞系统弹性开采的试验研究[J].石油钻探技术,2009,37(3):88~90.

[13]李俊,彭彩珍,王雷,等.缝洞型碳酸盐岩油藏水驱油机理模拟实验研究[J].天然气勘探与开发,2008,31(4):41~44.

[14]陈月明.注蒸汽热力采油[M].东营:石油大学出版社,1996:178~226.

[15]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.

[16]王丰.相似理论及其在传热学中的应用[M].北京:高等教育出版社,1990.

[17]贾永禄,曾桃,林涛,等.缝洞型碳酸盐岩双渗油气藏产量的变化规律[J].天然气工业,2008,28(5):74~76.

[18]李淑霞,谷建伟.油藏数值模拟基础[M].东营:中国石油大学出版社,2009:38~43.

[19]卢占国,姚军,王殿生,等.平行裂缝中立方定律修正及临界流速计算[J].实验室研究与探索,2010,29(4): 14~16.

[20]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986:96~97.

上一篇:吉利企业供应链管理论文

下一篇:可持续性发展论文范文