欢迎来到学术参考网
当前位置:发表论文>论文发表

解析几何学术论文

发布时间:2023-02-27 18:50

解析几何学术论文

1、高等代数与解析几何课程整合的思考
2、线性代数教材内容与体系结构改革的思考与实践
3、关于空间解析几何中“矢量积”教学的探讨
4、解析几何最值问题探究
5、解析几何的建立和意义

关于算法几何或解析几何或斐波那契数列的论文2000字 谁有啊帮帮忙拜托了高中水平?

递推公式
斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:

显然这是一个线性递推数列。

通项公式

(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)

注:此时

通项公式推导
方法一:利用特征方程(线性代数解法)

线性递推数列的特征方程为:
  
  解得
   , .
  则
  ∵
  ∴  
  解得
  

方法二:待定系数法构造等比数列1(初等代数解法)

设常数 , .

使得

则 ,

时,有

……

联立以上n-2个式子,得:

∵ ,

上式可化简得:

那么

……

(这是一个以 为首项、以 为末项、 为公比的等比数列的各项的和)。

, 的解为



方法三:待定系数法构造等比数列2(初等代数解法)

已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。

解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。

得α+β=1。

αβ=-1。

构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。

所以。

an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。

an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。

由式1,式2,可得。

an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。

an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。

将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。

方法四:母函数法。

对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)

令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。

那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x

.因此S(x)=x/(1-x-x^2).

不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].

因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.

再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……

于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……

其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.

因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

漳州科技职业学院的教师风采

吴长彬,男,福建泉州人,1947年8月生,教授。1975年毕业于福建师范大学数学系。曾任三明职业技术学院院长,现任漳州科技学院校长。1975 -1978年,在三明师范学校任教。1978-2005年,在三明高等师范专科学校先后担任数学系主任、成人教育处处长、发展规划组组长、副校长等职务。2000-2005年任《三明高专学报》主编,并担任筹建三明学院校内工作小组常务副组长。2005-2006年,主持并参与三明职业技术学院的筹建工作,担任三明职业技术学院筹建工作组常务副组长,2006-2009年任三明职业技术学院院长、党委副书记。1975年起,担任《数学分析》、《高等几何》、《空间解析几何》等课程教学工作,先后被评为全国优秀教师、福建省优秀教师、三明市首届“十佳教育工作者”。曾任福建省职业技术教育学会副理事长、福建省职业技术研究会理事、福建省高校体育协会副主席、三明市科学技术协会副主席、三明市泉州商会荣誉会长。主要学术成果:主持参与多项省级研究课题,其中课题《关于培养学生自学能力的研究》获福建省优秀教学成果一等奖;参编福建省师范专科学校数学专业教材《解析几何》;发表《具有幂等零空间的算子》、《关于算子组联合逼近的一些结果》等多篇学术论文。 陈宗懋,浙江海盐人,教授、博士生导师、中国工程院院士。曾任中国农业科学院茶叶研究所所长、中国茶叶学会理事长。现任中国茶叶学会名誉理事长和联合国粮农组织农产品安全委员会副主席、漳州科技学院名誉校长、校务委员会委员。主要学术成果是:在国内率先开创茶叶农残降解规律研究,主持、创建 “茶叶中农药残留控制”和“茶园昆虫化学生态学”等新型学科分支。先后论证世界茶树病虫区系的组成及演替规律,提出主要茶树病虫害防治指标,茶园适用农药、农药安全间隔期、茶叶中农药最大残留限量标准、合理施药技术、无公害茶叶的生产原理和方法等,构建茶园有害生物综合防治体系。先后制定出多种农药在茶树上的安全使用标准,其中18项作为国家标准,5项作为部级标准,在全国推广实施。据测算,茶树病虫害防治水平的提高,对茶叶增产的贡献率达到25%以上。从上世纪80年代起,开始从事农药残留预测研究,建立各类农药在茶树和茶叶中降解的预测模型技术。研究成果被公认为具国际先进水平。领导、建立的实验室还被欧盟确认为中国茶叶出口欧洲唯一认可检验实验室。90年代后期起,还开创了茶树害虫化学生态学研究领域,进行了茶树——害虫——天敌三层营养关系的化学通讯联系研究,取得突破性研究成果,为进一步提高害虫综合治理提供理论基础。曾获得国家级科技成果奖6项,省部级科技成果奖3项。在国内外学术刊物上发表论文200余篇。主编和参加编写《中国茶经》、《中国茶叶大辞典》等专著6本,其中《中国茶经》获国家科技进步三等奖,《中国茶叶大辞典》获第四届国家辞书一等奖和第五届国家图书提名奖。1990年被国务院学位委员会批准为博士生导师,1991年批准享受国务院特殊津贴。1997年获中国科协授予的全国优秀科技工作者称号,1998年又获中华农业科教奖。1997年和2001年两次被浙江省人民政府授予农业科技先进个人称号。已培养多位硕士、博士。 李瑞荣,台湾南投人,教授。1941年2月生。美国芝加哥伊理诺理工学院化学博士,芝加哥市立大学担任化学教授11年,阿冈国家研究所担任教授研究员5年。在美国化学杂志,J.A.C.S及化学动力学等重要期刊上,发表论文十篇。现任漳州科技学院食品加工技术系特聘教授。专长有机化学教学与研究工作。主要研究方向为:乌龙茶之品种,采收季节、发酵、焙火程度,不同嫩度茶叶制品与主要成分,咖啡因,多元酚含量之关系研究;多元酚当保健品、药品添加物之效果研究。 李华钧,重庆市人,1947年10月生,教授。1982年毕业于西南农业大学园艺系茶学专业。曾任西南农业大学食品学系、食品学院副系主任、副院长、院长。专长茶叶生产加工理论与技术:1982年起,在西南农业大学园艺系、食品学系茶学专业任教。1987年10月起,受国家教委公派赴法国蒙彼利埃国立高等农学院学习;1989年3月学成回国至今,在西南大学食品科学学院茶学系从教,担任茶树栽培育种硕士生导师。主要学术成果:《中国茶树品种志》(地方品种篇主编);全国高等农业院校教材《茶树育种学》参编。论文有《析茶树的野生型、栽培型、过渡型》(中国普洱茶国际学术研讨会论文集);《渗透胁迫对茶树幼苗叶片脯氨酸累积和水分含量的影响》等。作为第三届全国农作物品种审定委员会茶树专业委员会成员,以及首届全国茶树品种鉴定委员会常委,多次参与国家级、省级茶树新品种审定和品种推广应用成果鉴定等工作。1985年第一个教师节获西南农业大学优秀教师称号。此后多次受到表彰,2004年因教学工作成绩突出获校“教学督导组推荐奖”。1997—2007年期间任中国茶叶学会理事,重庆市茶叶学会副理事长、名誉副理事长。 姓名:蔡荣章出生年月:1948.02籍贯:台湾课程:茶思想研讨经历:198102创新设计泡茶专用无线电水壶。198103创新规划“小壶茶法”。198210创新设计泡茶专用茶车。198305创办泡茶师检定考试制度。198912创办无我茶会。199910创车轮式泡茶练习法。200010中国国际茶文化研究会荣誉副会长。200211中华茶人联谊会名誉理事。200501第二届台湾陶瓷金质奖评审委员。1980-2008陆羽茶艺股份有限公司总经理。199907武夷茶文化研究会顾问。200210安徽农业大学客座研究员。200212国立高雄餐旅大学客座教授。200412中国国际茶文化研究会学术委员会顾问。200711福建农林大学客座教授。20080425宁波东亚茶文化研究中心荣誉副主任。20090701天福茶学院教学指导委员会委员20100500陆羽泡茶师检试评委著作:1980-2008《茶艺》社论。198404《现代茶艺》。199103四语《无我茶会》。199503《现代茶思想集》。199909《无我茶会180条》。199912《台湾茶业与品茗艺术》。200006《茶学概论》。200102陆羽《茶经》简易读本。200209《茶道教室-中国茶学入门九堂课》。200510《说茶》。200604《茶道基础篇-泡茶原理与应用》。200609《茶道入门三篇-制茶.识茶.泡茶》。200703《茶道入门-泡茶篇》。200811《茶道入门-识茶篇》。200910~《海峡茶道》专栏44期~。201002《中英茶学术语》。201012《中日文茶学术语》。201102《茶席·茶会》201104~《茶博览》96期~蔡荣章专栏论文:2007从茶道之本体结构看茶文化系的课程安排2007论文集199810无我茶会200304茶文化在茶产业中的地位200311茶具机能性要求与陆羽茶艺中心之茶具研发记要200404中华茶艺茶道健康持续发展200409茶叶品饮上的一些观念200502现代台湾人的生活茶事情200506茶道上纯品茗的抽象之美200510现代茶道应谈些什麼200710无我茶会是要求精致的一种茶道体系200805茶道诠释201009现代版曲水茶宴 黄继轸,教授,研究生导师,当今仍在执教的中国著名资深茶学教育家之一。曾任安徽农业大学茶叶生物化学教研室主任、食品厂厂长、校科研督导组成员、安徽省六安市人民政府专家大院首席教授、池州市人民政府及霍山县人民政府科技顾问,众多茶叶深加工企业技术顾问。现任天福茶学院实验中心主任、陶瓷原料研究室主任。天福茶学院专任教师。黄继轸从教四十余年,其中在“太平五大学”(文革时期的职业教育学校)执教4年,天福茶学院校执教4年。 教学、论文、著作(含教材和译著)及科研成果颇丰,曾获教书育人、课程与教材建设、科学进步等多种奖,2003年被评为教书育人先进个人。主要从事茶叶生物化学、茶叶深加工技术、天然饮料加工、陶瓷原料加工、天然产物提取与纯化等领域的教学与科研研究。足迹遍及长城内外,大江南北,为地方人民政府、企业提供科研与新产品开发服务。桃李累累,其中不乏有成就者,如现任:中国茶叶流通协会秘书长、副秘书长,中科院茶叶研究副所长,国家名校中国科技大学副教授、中国人民大学教授、合肥工业大学教授,省级重点高校教授、副教授、校长、副校长,茶业行业龙头企业总裁、副总裁,企业经理,省级茶叶学理事长、副理长等等。在研究陶瓷原料加工的同时,加大对茶文化与茶陶学科的融合研究。 王同和,男,1948年12月出生于安徽庐江,中共党员、副教授、国家高级评茶师、硕士生导师,现任天福茶学院茶叶生产加工技术系主任。  1974年8月毕业于安徽农学院茶叶系留校任教。1974年—1981年从事科学研究工作;1982年至今主要从事教学工作。其中,1979年8月—1991年4月分别在安徽农学院79级研究生班、全国茶学助教进修班学习、北京经济函授大学经济管理专业毕业,1992年8月—1994年9月任黄山市黟县人民政府科技副县长,1994年10月~1997年10月兼任合肥市日高饮品有限公司经理等职,2010年7月至今,任天福茶学院茶叶生产加工技术系主任。  王同和副教授主要从事制茶工程与品质、茶叶感官审评与标准化方向的教学与研究工作。先后承担并主持安徽省科委、商业部科研项目及安徽农业大学教学研究项目等六项;获安徽省星火、科技成果三等奖2项、四等奖1项、商业部科技进步三等奖1项,安徽农业大学教育教学成果奖1项;主持安徽农业大学重点课程建设1项。主编或参编教材5本;发表论文20余篇。

关于数学方向的优秀论文题目

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题目

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

求一篇数学论文

数学建模论文范文--利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。
时间(年份)
人中数(百万) 39 50 63 76 92 106 123 132 145
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组

x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0 (4)
函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

上一篇:专升本论文格式

下一篇:议论文素材短