首页 > 学术论文知识库 > 关于牛顿第一定律的论文题目

关于牛顿第一定律的论文题目

发布时间:

关于牛顿第一定律的论文题目

要写明:作者、出处(期刊杂志)哪年的第几期页码例如:1.张三.物理教育.中学物理教学参考2008(1-2):19-21.

你学校有统一标准的 如没有 参照下面格式弄个吧 比较通用参考文献的著录应符合国家标准,参考文献的序号左顶格,并用数字加方括号表示,如“[1]”。每一条参考文献著录均以“.”结束。具体各类参考文献的编排格式如下:1、文献是期刊时,书写格式为:[序号] 作者. 文章题目[J]. 期刊名, 出版年份,卷号(期数):起止页码.2、文献是图书时,书写格式为:[序号] 作者. 书名[M]. 版次. 出版地:出版单位,出版年份:起止页码.3、文献是会议论文集时,书写格式为:[序号] 作者. 文章题目[A].主编.论文集名[C], 出版地:出版单位,出版年份:起止页码.4、文献是学位论文时,书写格式为:[序号] 作者. 论文题目[D].保存地:保存单位,年份.5、文献是来自报告时,书写格式为:[序号] 报告者. 报告题目[R].报告地:报告会主办单位,报告年份.6、文献是来自专利时,书写格式为:[序号] 专利所有者. 专利名称:专利国别,专利号[P].发布日期.7、文献是来自国际、国家标准时,书写格式为:[序号] 标准代号. 标准名称[S].出版地:出版单位,出版年份.8、文献来自报纸文章时,书写格式为:[序号] 作者. 文章题目[N].报纸名,出版日期(版次).9、文献来自电子文献时,书写格式为:[序号] 作者.文献题目[电子文献及载体类型标识].电子文献的可获取地址,发表或更新日期/引用日期(可以只选择一项).电子参考文献建议标识:〔DB/OL〕——联机网上数据库(database online)�〔DB/MT〕——磁带数据库(database on magnetic tape)�〔M/CD〕 ——光盘图书(monograph on CD-ROM)�〔CP/DK〕——磁盘软件(computer program on disk)�〔J/OL〕 ——网上期刊(serial online)�〔EB/OL〕——网上电子公告(electronic bulletin board online)

仅供契机参考:原为二立:动与静(匀动需第一推动,而匀静非也)外力之用:破坏原本之态破坏与否,又为对立也。(此乃悟也,不明可询:)

爱因斯坦的相对论证明了牛顿第一定律只适用于低速运动仅供契机参考: 原为二立:动与静(匀动需第一推动,而匀静非也) 外力之用:破坏原本之态 破坏与否,又为对立也。 (此乃悟也,不明可询:)

牛顿第二定律的研究论文

21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!

中学物理中的物理模型

摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。

关键词:中学物理;教学;物理模型

一、物理模型的概念及功能

物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。

物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。

人们建立和研究物理模型的功能主要在于:

一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;

二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;

三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。

二、中学物理教材中经常碰到的几种物理模型

物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:

1.物理对象模型 即把物理问题的研究对象模型化。

例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。

另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。

2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。

如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。

教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。

3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。

4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。

5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。

如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。

再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。

6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。

三、物理模型在中学物理教学中的地位和作用

1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一

物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。

如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。

2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托

人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。

爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。

诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。

3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化

例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。

四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法

物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:

1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。

2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。

3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。

4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。

总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。

物理猜想与中学物理教学

【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。

【关键词】中学 物理猜想 物理教学

【中图分类号】 G 【文献标识码】 A

【文章编号】0450-9889(2014)11B-0076-02

随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。

一、物理猜想对中学物理教学有着重要的意义

新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。

1.提高学生学习兴趣和增进学生学习主动性

学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。

2.提高学生的思维能力

在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。

3.有利于学生巩固所学的物理知识

物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。

4.培养学生创新能力

在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。

二、教师在物理课堂教学中引导学生进行物理猜想的方法

教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。

1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想

科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。

2.激励学生讨论,诱发物理猜想

在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。

3.鼓励学生大胆猜想

在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。

4.创造良好的猜想条件

在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。

物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。

【参考文献】

[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)

[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012

[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)

[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)

古代人无法理解地球下面的人为什么不会掉下去,此困惑是由于以自己为参考系而产生的。今天的人们无法理解自由落体运动及天体的公转运动也是惯性运动,此困惑是由于以牛顿惯性为"参考系"而产生的。惯性的实质就是:物体通过某种运动状态来保持或主动改变某种运动状态来达到其内部的熵状态的一种属性。整体科学体系是研究自然整体的整体性质与功能、有序内部结构及其起源与演化过程的科学理论系统。惯性力学严格说来:牛顿第三定律(互为作用力定律)应该是力学"体系"定律,是在各种作用方式力以及各种属性力之间建立关系的定律;去掉牛顿第三定律后的广义力学核心四定律(见[2]文),应该称为"惯性力学"核心三定律(以下简称"惯三律")。"广义"是相对牛顿力学及牛顿惯性而言的。之所以还保留"广义惯性"一词,也是因为只有惯三律被大多数人接受后,才会完成它的历史使命,再改变为"惯性"一词。牛顿第一第二定律(以下简称牛二律)是惯三律的物体外部空间在ρ均匀空间情况下的定律,是其推论,不再是惯性力学的核心公设性质的命题。(一)广义惯性使牛顿力学进化爱因斯坦独具慧眼,从司空见惯的现象中及自由落体运动与质量因素无关的经验事实,总结出了等效原理,且明确与准确地说:物体的同一性质按照不同的处境或表现为"惯性",或表现为"重性"([3]第55页)。这个同一性就是广义惯性,这个处境就是空间。牛顿第二定律实质是其第一定律涵义的数学表达式。所以,广义惯性的发现,其革命意义是指动摇了牛顿第一定律的核心地位。广义惯性包含了牛顿惯性,所以,又是其进化。同时,也说明了需要建立一个取代牛二律的进化性质的核心命题系统的新力学理论。广义惯性又引出了两种空间及其区别的新问题。这个新问题困扰了爱因斯坦的一生,走了一大圈"弯"路后,在他晚年时,才看到了解决这个问题的曙光--物体具有空间的广延性([3]第十五版说明),由此"广延性"再往前走一步,就是[2]文说的ρ空间及其区别的标志是其梯度值的有否。这说明还需要一个新的涉及空间的基本概念及与其相对应的原来等效原理所没有涉及到的新的经验事实:物体质量部分的压强梯度现象(注:在固态的具体物体内部,此"压强梯度"表现为"胁强"),也就是爱因斯坦的物体的空间广延性的具体体现。同时也引出了物体的非刚性及其具有内部空间结构的抽象性质([4]第六章)。于是,"万事俱备",只欠建立一个新的核心命题系统了。可以说,惯三律就是这个系统。广义惯性是由于把"重性"也归于同牛顿惯性一样的物体属性,所以,其革命意义也主要体现在"重力"方面。"引力"是对重力本质的错误认识。广义惯性与场概念把原来引力中的两个平权的物体分离开来:一个是仅表现广义惯性的一般(非整体)物体;另一个是具有产生重力场的特殊性的中心物体。一般物体与中心物体之间已经没有"力"的关系了。但通过重力场(原来引力场与自转惯性离心力合成的重力场涵义需要改变)有"能"的关系(见此文的"ρ空间与能"一节)。到此为止,广义惯性已经完成了其逻辑任务,即取消了引力及导出了中心物体的特殊性(当然也具有广义惯性的一般性)。这个特殊性的中心物体就是整体天体。于是,广义惯性与整体天体就构成了理论的内部逻辑性(也就是"自圆其说")。广义惯性取消了惯性质量与引力质量的区别。当然,更没有质量的第三个属性--产生引力场。说重力场是特殊的ρ空间,也有其对应的经验事实,即具有重力场的质量部分的天体,一般都具有密度及压强(也有温度及磁场因素)与中心距离近似反比分布(中聚度)的现象。同时,其现象也表明了这个天体(中心物体)的特殊性。中聚度现象已经是整体性的一种体现。(二)再看牛顿力学为什么人们回避牛顿第二定律中的"力"(外力)的反作用力就是物体的惯性力的道理呢?就是因为把重力也当作外力(引力)时,物体本身没有反作用力--惯性力(重力加速度与物体质量的大小无关),这正是牛顿力学理论内部的不能"自圆其说"的地方,这也正是爱因斯坦所注意的地方。为了回避这矛盾性(无意识的),不得不让其"外力"担当"广义"的力的重任。"力是物体加速运动的原因"这一没有条件限制的观念,是牛顿力学最主要的思维定势。不管是相对的加速运动还是"绝对"的加速运动,人们都在头脑中马上反映出来要乘上物体的质量,使力成为其运动的原因。于是,其直接错误后果就是把非牛顿惯性系内或重力场内的物体"自由"或有阻力的"不自由"的加速运动,也当作有外力(不包括阻力)正在作用之。之所以把非牛顿惯性系中的外力惯性力叫做虚构力,是说明牛顿力学中还有第二个观念:"力是物体对物体的直接作用"--这是作用方式力,但有的教材除了摩擦力外,把作用方式力几乎都归结于弹性力则是错误的。又从这第二个观念来看其外力惯性力时,真的不存在另一个物体来表现之,只得权宜称为虚构力。当把重力也当作外力时,发现确实有另一个物体(中心物体)与之对应,这可是"真实"的外力了。麻烦又出现了,这个引力是超距作用性质的力,从作用方式力的观念角度来看时,又难理解了。为了让引力回复到可理解的直接作用性,又引起了从牛顿时代起至今的许多人去虚构在两个超距的物体之间飞来飞去的各种"微粒子",以此物来担当引力成为直接作用性的重任。引力本来也是虚构力,还要为这虚构的"东西"再虚构一些东西,麻烦可就大了。因为凡是具有质量的物体都具有广义惯性,也可以说是"万有"惯性。之所以惯性力学在力学体系中占有主要及重要的地位,而其他属性(如弹性与磁性等)力学占次要地位,且以"惯性力"作为力的物理单位,也是由于其"万有"的原因。但作为表现广义惯性力的重力的空间(重力场)及场源物体(整体天体)可不"万有"。这两个角度分不开,还会认为重力(引力)"万有",这又会回到为什么会超距作用的难理解的怪圈。广义惯性使探索"引力作用机制"的研究方向成为毫无意义的方向,是徒劳无功的方向,因为引力本身是由牛二律的局限性而派生出来的虚构的力。(三)再看广义相对论爱因斯坦特有的知识结构(马赫哲学、狭义相对论、四维时空、光、场及黎曼几何),决定了他走上了一条充满荆棘的理论之路。马赫的功绩是看到了牛顿力学体系中有一个缺陷,就是物体的运动状态依参考系的不同而有所不同,于是,作为判断牛顿惯性运动的前提也就成为不确定的了(相对性)。不得已,马赫把现象世界的远处的恒星当作其绝对参考系了。马赫的错误就是把牛顿惯性定律中的物体的属性(保持性)与其运动状态问题混在一起了。爱因斯坦受马赫哲学的启发,又发现了等效原理,但同时又继承了马赫的错误。被夸大为改变人们时空观念意义的四维时空,只不过是用"运动"(还是光运动)角度来规定空间的一种方法。规定有结构的空间可有各种方法,其各种方法是平权的。用什么方法来规定空间则取决于理论与实践的需要。如果去掉了"光速"的弯曲时空还有力学意义的话,与牛顿引力定律正是互为补充的关系本体性的场的描述:一个是以广义惯性"运动"的角度的描述;一个是以广义惯性"力"的角度的描述。而牛顿引力势所包含的空间意义,正是中心结构的ρ非均匀空间(重力场)的经验性的描述。终究是"描述",都不能代替核心命题性质的"表述"。没有明确的命题表述,其描述也就没有明确的理解前提。惯三律与广义相对论都以等效原理为其经验基础。只不过爱因斯坦又走上了光速的等效原理之路。而光速的等效原理是由"思维"实验得来的,且唯一能验证其理论的星光在太阳附近偏转现象,爱因斯坦在具体计算其偏转角度时,实际上是"非常谨慎地用惠更斯原理"([5]第23页)。而惯三律所依据的"低速"等效原理,连幼儿园里的儿童都可以感觉到坐滑梯时的加速度与坐汽车时的汽车加速度的区别,因其身体内有胁强的有否或大小之区别。战斗机飞行员已经体验了低速等效原理的所有内涵。所以,任何脱离与回避"低速"等效原理的力学理论,肯定是不会成功的理论,因为其现象普遍存在于客观世界,且与力学密切相关。爱因斯坦之所以对"光"情有独钟,也许是无意识的回避其理论中的一个内在矛盾:"产生"引力场的中心质量(中心物体)必须很大,而体现弯曲时空(引力场)作用的物体必须很小且产生与不产生引力场无关紧要,这与引力中的两个平权的物体涵义是矛盾的。而"光子"正好是最小的物体,也就回避了这个矛盾。只有"整体天体才产生重力场"的结论,才可以解决这个矛盾。引力波、黑洞与四种相互作用力的统一的课题,来源于爱因斯坦。引力已经不存在了,当然"引力"波也不存在了;如果重力场有边界,重力场就与电磁场不同,当然引力"波"也不存在了。如果以光线在重力场中弯曲的角度而导出的"黑洞",黑洞不存在,因为光线在重力场中弯曲的原理不是由于"引力";如果是由于"弯曲时空"原理而导出的"黑洞",黑洞也不存在,因为本来弯曲时空是由光线的弯曲(光子的广义惯性运动)而规定出来的,反过来又认为光线的弯曲是由弯曲时空所造成的,这是什么逻辑?如果光线在重力场中有红移效应,那么,由此原理而导出的黑洞,黑洞有可能存在。引力都不存在了,也就无所谓四种相互作用力的统一的问题。目前的"大统一理论"仅剩下"引力"没有被统一进去,也正说明了这个问题。经归纳的现象)再变为抽象层次的基本概念的过程,是人们最不习惯的过程,总不容易摆脱"具象"。之所以不习惯,其原因之一也是因为人们先有了原来理论的抽象及已经习惯了的思维方式,即使有了"具象"也看不到其抽象意义。而由抽象变为"具象"的过程,那可容易多了,但也往往"具象"出来客观世界不存在的东西。从逻辑学角度,基本概念是不能被其它概念来定义的概念,其内涵具有一定的模糊性。ρ空间也是如此,只能用"感觉"到的物体质量部分的压强梯度现象来说明之,但又不是压强梯度本身。"真空"是具象空间,真空里照样存在"重力场"的ρ梯度值的有否,可用具象的压强梯度来检验之。但不能认为真空是ρ均匀空间。ρ空间与压强梯度的关系可类比铁粉末直观表现磁场结构的关系。摆脱不了具象,不能变为一个基本概念,也是爱因斯坦的"一无所有"的空间怎能分出两种空间的困惑原因之一,而用"运动"规定出来的弯曲时空又不能区分出是表述了物体的广义惯性还是表述了场的属性。特别强调的是:物体内部空间只能指物体质量部分所占据的空间,也是爱因斯坦晚年醒悟的"物体具有空间广延性"的涵义;而重力场空间不仅包含质量部分(整体天体)的空间,也包含没有质量部分的空间。这样就避免了变为"一无所有"的无边界的抽象参考系而带来的"相对"不清的问题。总的说来,ρ空间仅在数学形式上是标量场(其梯度为矢量场),但在物理意义上,则包含了表述广义惯性、可变为物体内部空间及重力场的本体性场、势、能、熵与质量部分的压强梯度等涵义。

需要我帮忙吗?

首先来复习一下牛顿第二定律是啥:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。 公式:F=ma 阐释合外力F和加速度a两者之间的关系。在生活中的实际应用:用力推或拉物体,物体瞬间获得加速度,开始运动踢足球时足球受到力后,加速度改变,从而改变运动状态

牛顿论文

在英国,有一个年轻人叫艾萨克牛顿,他是研究物理学的。牛顿非常善于思考,经常深入思考一些非常平常的现象。

一天,他正坐在一棵苹果树下休息,这时一个熟苹果掉了下来,砸在了他的头上。当牛顿碰到他受伤的地方时,他想到了一个问题:当他把球抛向空中时,为什么球不总是上升,却总是下降?

牛顿拿起苹果,突然有了一个奇怪的想法。有没有一种无形的力量在起作用,把苹果拖到地上?经过很长一段时间,牛顿终于解决了这个问题,并导出了一个公式,即万有引力定律。

他认为世界上的每一个物体都有一种无形的吸引力来吸引其他物体。重的物体比轻的物体更吸引人。我们生活的地球比地球上所有的东西都要大和重得多。所以所有向上扔的物体最终都会掉到地上。这是地球引力作用的结果。

牛顿的发现不仅可以解释地球上的物理现象,而且可以解释宇宙与天体之间的现象。在地球之外,还有许多其他的行星,如太阳、月亮、火星和木星,它们都被引力所吸引,所以月亮绕着地球转,地球绕着太阳转。

正是这种引力将它们固定在各自的位置,这样,尽管它们在同一个天空下移动,但不会发生碰撞。

小苹果给了牛顿很大的灵感。其实,同样的现象在别人眼里早已司空见惯,但别人都不把它当成一回事。只有牛顿通过自己的思考找到了万有引力定律。

扩展资料

牛顿苹果树是因英国科学巨匠牛顿因苹果从树上坠落而产生有关万有引力的灵感,这株苹果树也因此而声名大振,被视为科学探索精神的象征。其实这是科学史上的一个传奇故事。株使牛顿领悟到万有引力定律的苹果树也因此声名大振,更被视为科学探索精神的象征。

艾萨克·牛顿(Isaac Newton)是英国伟大的数学家、物理学家、天文学家和自然哲学家,其研究领域包括了物理学、数学、天文学、神学、自然哲学和炼金术。

牛顿的主要贡献有发明了微积分,发现了万有引力定律和经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。

参考资料来源:百度百科-牛顿苹果树

《运用无穷多项方程的分析学》(简称《分析学》,1669年)、《流数法与无穷级数》(简称《流数法》,1671年)、《曲线求积术》(简称《求积术》,1691年)。它们反映了牛顿微积分学说的发展过程。

1、牛顿在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律 。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。在经济学上,牛顿提出金本位制度。2、艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。

关于蜗牛论文的题目

高三新材料作文训练——老鹰与蜗牛 阅读下面的文字,根据要求写一篇不少于800字的文章。 有人曾说世界上只有两种动物能到达金字塔顶,一种是老鹰,一种是蜗牛。 要求全面理解材料,但可以选择一个侧面、一个角度构思作文。自主确定立意,确定文体,确定标题;不要脱离材料,作文不要套作,不得抄袭。 一、审题: 此次作文实际上是以“有人曾说世界上只有两种动物能到达金字塔顶,一种是老鹰,一种是蜗牛”这句话所蕴涵的哲理为话题写一篇文章。写作前先要认真审读材料,弄清这句话所蕴涵的哲理。“到达金字塔顶”即意味着取得成功或目标实现,老鹰能到达“到达金字塔顶”,归功于它有一双矫健、敏捷的翅膀;蜗牛能到达“到达金字塔顶”,则归功于它的吃苦耐劳和执著精神。 二、立意: 1、着眼于蜗牛:脚踏实地并持之以恒的努力,能弥补先天的缺陷, 就能“到达金字塔顶”。 2、着眼于老鹰:成功离不开超群的实力。 3、着眼于蜗牛和老鹰:如果你缺少优越的条件,仍有成功的机会,只要你够勤奋而且有恒心;如果你拥有出众的天赋,也不排斥仍需要坚持不懈的毅力和勇气。 三、参考题目: 1、 创业中的蜗牛精神(着眼于蜗牛) 2、 凡人想成功,该走蜗牛路(着眼于蜗牛) 3、 是只蜗牛又何妨(着眼于蜗牛) 4、 用坚持向成功挺进(着眼于蜗牛) 5、 成功源于对生命的执著(着眼于蜗牛) 6、 执著努力,打造成功的宝剑(着眼于蜗牛) 7、 超群的实力是成功的保证(着眼于老鹰) 四、我校各班范文: 求 己 高 三(4)班 付天琦 曾经对《独立宣言》中“人人生而平等”的主旨坚信不疑,可后来疑窦丛生。为什么在同一环境中成长的人,最终的事业成就会判若云泥?为什么我没有科学家的头脑、艺术家的细胞? 看来人终究是不平等的,“平等”二字仅存在于法律的层面罢了。 可不平等就成为我们拒绝成功的理由呢? 世界级大科学家诺贝尔,家境富有,从小就接受良好的教育,而且家庭大力支持他的事业。凭借家境的支撑和自身的努力,最终在物理、化学等领域都取得极深的造诣。 作为普通人的我们固然没有令人称羡的家底,但正因如此,我们只能选择自立自强的求己之路。因为蚕,只有咬破自己织下的茧才能获得新生;蝶,只有自己熬过毛毛虫的末日才能翩翩起舞;人,只有凭借自己的力量才能变得更强。 双目失明、双耳失聪的海伦﹒凯勤亦能成作家;半身瘫痪的张海迪自学而成才;洪战辉谢绝好心人对他兄妹俩的资助,“只要脊梁不弯,就没有扛不起的大山„„”他们没有雄鹰般足以傲人的天赋,亦没有诺贝尔那样殷实的家境,但他们把困难作为垫脚石,凭着对理想的执着与意志的坚强换来克服困难的无穷力量,打造出丝毫不逊于诺贝尔的壮丽人生。 李敖曾说:“上帝管两头,我管中间。”纵然没有“含着金汤匙”的出身,依靠自己,如蜗牛般矢志不渝的攀登。这样,我们不仅可以饱览与雄鹰齐肩的世间美景,还能收获奋斗途中被雄鹰忽视的人生绚烂。 今世的出身早已是前世的注定。人生的华章须靠我们自己奏响。耻于谈论出身的人说:“我感到人都高不可攀,”他不知道,那是因为他跪着。站起来,坚定的迈步,踏实地前行,无畏地突破,摒弃世俗的偏见,以一颗勇敢的心默默地奋斗在这个世界,你会悟到自身的庄严与灿美远比某二代的虚幻光环更加耀眼长存。 在这个世界上最坚强的人,是孤独地只靠自站着的人。 人贵坚持 高三(12)班 赵云娟 当蜗牛拖着柔软的身子,不羡慕雄鹰轻而易举到达金字塔的姿态,秉承信念最终到达塔顶时,我撼然,明白这是坚持的力量! “信念!有信念的人经得起任何风暴!”诗人奥维德说出了人内心力量的最强音。没有信念,不懂坚持,怎么会有“锲而不舍,金石可镂”、铁杵磨成针的佳谈?“孔雀舞”是杨丽萍出众的代表舞,在她的演绎下,她跳的那只孔雀充满了灵性与典雅,有着与自然相近的美感。虽时代在变,但她一直没变,坚守本性,淡然从容,只是坚持把自己所能做的做得完美。纵使别人如何模仿,也学不来她的那种气韵,因为他们坚持不了。 坚持是一块滚烫的钢铁,如瘁如火,在反复的打磨与烧炙中变得坚硬无比。它是最能看出人们最终价值的镜子,清晰深刻。于是,我看见了司马子长忍辱负重,椎心泣血写成的《史记》记世相传,我听见了贝多芬激昂奋进,尽心尽力弹奏的《命运交响曲》回旋荡漾,我仿佛又进入了梵高的内心,看见大把金黄澈亮的向日葵在阳光的照耀下鲜活地生长。他们内心的力量让他们不觉人生的苦运,纵使命运多舛,生活有时候他们灰心,但坚持内心、不懈奋争是他们最好的良药。 坚持,便是坚定与持久。一颗有耐力、忍得起的心是那绚烂的宝石。是不会与脆弱的鲜花一样凋零的;一副行动的身躯,忍住疲累与波折,拨开荆棘与乱草,勇往直前,是如此重要。杨丽萍、贝多芬他们都做到了,闪着光辉,为我们所称扬。 那么失去了坚持的力量,又如何?恐怕就是“锲而舍之,朽木不折”的结局吧。我们都知道龟兔赛跑中乌龟虽知自己慢,但一刻不懈怠而跑完全程完胜兔子的故事。如若乌龟知道自己实力不敌兔子,以为跑了也是白耗力气,不下劲坚持到底,那么怎么会胜利?龟兔赛跑便也失去了其寓意,又能启发人们什么呢? 乘舟破浪的气魄,赖于坚持的力量。我们在人生的路上,须得坚持到底才行! 一步一个脚印 高三(12)班 杨怡恺 天资聪颖,能力超群固然是值得骄傲的资本,但脚踏实地,一步一个脚印更是我们通向成功的不二法宝。 也许大家还记得古代神童仲永的故事。天资聪颖的他令人艳羡,因而被父母寄予厚望。然而一味地炫耀,展示使得他根本无法静下心来学习新知识。年龄在不断增长,而知识却依旧那么多,终究导致他泯乎众人的结局。这是多么令人惋惜的一件事!人生对于他本应是一幅瑰丽的画卷,用绚烂的色彩尽情展示美丽。人生正如一座金字塔,有人说在所有动物中,能攀上顶峰的只有老鹰和蜗牛。仲永的实力不业于老鹰,而凭借他自身的实力也足以像老鹰那样展翅翱翔,勇攀人生的高峰。 但事实用它冷酷的外表向世人昭示了这一切。仲永的人生旅途并没有像老鹰那样平坦顺畅,他最终落入凡人的世界,只能昂头仰望金字塔高不可及的高度。而我想,如果他的人生能够像蜗牛那样脚踏实地,一步一个脚印,金字塔的高度亦何足挂齿? 回首往事,我们有惋惜,有羡慕,而令人又已经给我们留下了太多„„ 华罗庚自学成才,用才学证明一切?童第周稳扎稳打,为中国赢得荣誉;中国游泳队脚踏实地,用成绩宣告众人。并不是每一个都拥有老鹰般超群的实力。成功只需像蜗牛一样的精神,一步一个脚印,定能创造人生的极限! 中国乒坛上永不陨落的明星邓亚萍身材矮小,曾经一度被团队抛弃。但她凭着自己踏踏实实地努力,勤奋地练习,用汗水和泪水书写自己的人生篇章,终于成长为一颗耀眼的明星。透过她的成长历程,我们真切地感受到脚踏实地,一步一个脚印的重要性。试想,如果邓亚萍放弃自己的练习,一味地追求事业的成功,那么她就不会闻名于乒坛。既然没有老鹰矫健的身姿,敏锐的动察力,那就应该有蜗牛般脚踏实地的精神。如果一无所成,那么终将一事无成。 蜗牛的成功并不在于偶然,而是必然的。他虽然不在速度上不占优势,但每一步都踏踏实实,稳扎稳打。 学会做一只蜗牛,脚踏实地,仰望星空。

1,崇高的理想必须由行动来实现 2,找准自己的位置,3不轻言放弃

我发现了蜗牛的秘密傍晚我做完功课,就到阳台上浇花。浇着,浇着,忽然,见到一片君子兰的叶子上有一只蜗牛,它背着一个褐色的螺丝的外壳,正挪动着,细细的触须微微摆动。我找来一根小棍子轻轻地动了它的触须,它的头立刻缩进了壳里,我觉得很有趣。忽然我发现在它爬过的地方,留下了一条亮亮的湿湿的道道。这是什么东西呢?我正思考着,爸爸来到阳台上,我问爸爸:“蜗牛是害虫还是益虫呢?它爬过的地方为什么会留下一条湿湿的道道呢?”爸爸拍拍我的头,说:“儿子,何不自己去观察、发现呢?”我点点头,答应了。爸爸走后,我陷入了沉思:“怎样判断它是害虫还是益虫呢……咦,有了!”我一拍脑门,便从厨房找来一片青菜叶,把蜗牛放在了上面,心想:“如果蜗牛不吃青菜叶就是益虫,如果吃了,就是害虫。”我心里直念叨:“蜗牛蜗牛你可千万不要吃菜叶啊……”第二天一大早我就到了阳台上,看见菜叶上留下许多小洞,便指着蜗牛说:“你这么可爱,怎么会是害虫呢?真是‘知人知面不知心’啊!”那么蜗牛爬过的地方为什么会留下一条湿湿的道道呢?我百思不解,我用手摸了摸,觉得有些黏粘的,用鼻子闻了闻,有些腥腥的,这到底是什么东西呢?“蜗牛蜗牛,这到底是什么你能告诉我吗?”我自言自语,忽然我的眼睛一亮,《少年百科全书》上不是有介绍吗?我急忙跑到房间,从书架上取下书,终于找到了答案,原来这是蜗牛的排泻物!“哈……哈……我发现了蜗牛的秘密了!”我高兴得跳了起来。

1、根据下面的材料,自选角度,自拟题目,联系实际,写一篇不少于800字的议论文。 一只蜗牛,很想做成一番惊天动地的大事业。开始它想东游泰山,一直爬到山顶,可一计算,要实现这个计划,至少需要3000年时间,只好忍痛放弃这个打算。后来它又想南下爬到长江边上,看一看奔腾的江水,可一计算,至少也需要3000年时间。蜗牛知道自己的生命非常短暂,不禁十分悲哀,于是什么也不肯做,最终死在了野草丛中。 这是一个寓言故事,主人公蜗牛想干什么?它干了没有?最终是什么结果? 沿着材料分析,会明确:蜗牛想干“惊天动地”的事,可因为两个目标都太遥远,使宏伟的计划流产.放弃了大目标后的蜗牛“十分悲哀,什么也不肯做,一蹶不振,死于草丛. 蜗牛的悲剧原因是什么? 一是立志不切实际,好高骛远,一是不肯脚踏实地,从平凡的小事入手来实现自己的生命价值.这就是寓意,是材料的主旨. 蜗牛的悲剧对人来说应该吸取那些教训,有哪些启迪?这就是确定目标要恰当,勇于拼搏,永不放弃;正视现实,笑对人生;干大事要从小事做起,人贵有实干精神. 心动不如行动2

牛顿的微积分论文

《运用无穷多项方程的分析学》(简称《分析学》,1669年)、《流数法与无穷级数》(简称《流数法》,1671年)、《曲线求积术》(简称《求积术》,1691年)。它们反映了牛顿微积分学说的发展过程。

wjs6666 ,你好: 1666年牛顿将其前两年的研究成果整理成一篇总结性论文——《流数简论》英文名为Tract on Fluxions 当时虽未正式发表,但在同事中传阅。《流数简论》(以下简称《简论》)是历史上第一篇系统的微积分文献。

1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,对微积分的研究取得了突破性进展。1665年11月,他发明正流数术(微分法),次年5月建立反流数术(积分法)。1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文——《流数简论》,这也是历史上第一篇系统的微积分文献,标志着微积分的诞生。

  • 索引序列
  • 关于牛顿第一定律的论文题目
  • 牛顿第二定律的研究论文
  • 牛顿论文
  • 关于蜗牛论文的题目
  • 牛顿的微积分论文
  • 返回顶部