数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
数学领域中的一些著名悖论及其产生背景
你去学校图书馆看看硕士博士论文,就相近的抄一下就行,主要方向就是,当今社会研究概率论在计算定积分中的应用是十分必要的,什么的
可以上网查书籍目录: 前言第一章 函数、极限与连续第一节 函数第二节 极限第三节 函数的连续性自测题(一)自测题(二)自测题答案第二章 导数与微分第一节 导数概念第二节 导数的计算第三节 函数的微分自测题(一)自测题(二)自测题答案第三章 中值定理与导数应用第一节 中僮定理第二节 洛必达法则与泰勒公式第三节 函数翡单调性、极值和凸性自测题(一). 自测题(二)自测题答案第四章 不定积分第一节 原函数与不定积分的概念第二节 利用凑微分法求不定积分第三节 换元积分法与分部积分法第四节 几种特殊类型函数的积分自测题(一)自测题(二)自测题答案第五章 定积分第一节 定积分的概念与性质第二节 定积分的计算方法第三节 反常积分第四节 与定积分相关的综合性问题自测题(一)自测题(二)自测题答案第六章 定积分的应用 第一节 极坐标简介第二节 定积分的应用自测题(一)自测题(二)自测题答案第七章 向量代数与空间解析几何第一节 向量代数第二节 空间曲面与空间曲线第三节 平面与直线方程自测题(一)自测题(二)自测题答案第八章 多元驻散微分法及应用第一节 多元函数的概念第二节 多元函数微分法第三节 多元函数微分法的应用自测题(一)自测题(二)自测题答案第九章 重积分第一节 二重积分的概念第二节 二重积分的计算第三节 三重积分的计算第四节 重积分的应用自测题(一)自测题(二)自测题答案第十章 曲线积分与曲面积分第一节 对弧长的曲线积分第二节 对坐标的曲线积分第三节 格林公式第四节 对面积的曲面积分第五节 对坐标的曲面积分第六节 高斯公式和Stokes公式自测题(一)自测题(二)自测题答案第十一章 无穷级数第一节 常数项级数及其性质第二节 常数项级数敛散性判别法第三节 幂级数第四节 函数展开成幂级数第五节 傅里叶级数自测题(一)自测题(二)自测题答案第十二章 微分方程第一节 常微分方程的基本概念第二节 一阶微分方程第三节 可降阶的高阶微分方程第四节 高阶线性和常系数线性方程
国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益完善,尤其是在物理学、经济学等应用方面的研究会越来越深入,整个微积分体系会越来越完备
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
The second surface integral calculation is a difficulty and key content of higher mathematics. The second curved surface integral, also known as sitting target surface integral, it said the physical significance of the steady flow of incompressible fluid flow to the surface side of the flow. The second kind of surface integral calculation problem is a comprehensive calculus problem, involves the surface side and the normal vector, partial derivative of function of many variables, double integral and triple integrals, the first kind of curved surface integral and gauss formula, and other article, we respectively from two traditional calculation method and an innovative method to calculate the direction of generalizations about the second type of surface integral calculation method, and combined with typical examples illustrate the use of different methods, easy to master by the techniques of.
可以上网查书籍目录: 前言第一章 函数、极限与连续第一节 函数第二节 极限第三节 函数的连续性自测题(一)自测题(二)自测题答案第二章 导数与微分第一节 导数概念第二节 导数的计算第三节 函数的微分自测题(一)自测题(二)自测题答案第三章 中值定理与导数应用第一节 中僮定理第二节 洛必达法则与泰勒公式第三节 函数翡单调性、极值和凸性自测题(一). 自测题(二)自测题答案第四章 不定积分第一节 原函数与不定积分的概念第二节 利用凑微分法求不定积分第三节 换元积分法与分部积分法第四节 几种特殊类型函数的积分自测题(一)自测题(二)自测题答案第五章 定积分第一节 定积分的概念与性质第二节 定积分的计算方法第三节 反常积分第四节 与定积分相关的综合性问题自测题(一)自测题(二)自测题答案第六章 定积分的应用 第一节 极坐标简介第二节 定积分的应用自测题(一)自测题(二)自测题答案第七章 向量代数与空间解析几何第一节 向量代数第二节 空间曲面与空间曲线第三节 平面与直线方程自测题(一)自测题(二)自测题答案第八章 多元驻散微分法及应用第一节 多元函数的概念第二节 多元函数微分法第三节 多元函数微分法的应用自测题(一)自测题(二)自测题答案第九章 重积分第一节 二重积分的概念第二节 二重积分的计算第三节 三重积分的计算第四节 重积分的应用自测题(一)自测题(二)自测题答案第十章 曲线积分与曲面积分第一节 对弧长的曲线积分第二节 对坐标的曲线积分第三节 格林公式第四节 对面积的曲面积分第五节 对坐标的曲面积分第六节 高斯公式和Stokes公式自测题(一)自测题(二)自测题答案第十一章 无穷级数第一节 常数项级数及其性质第二节 常数项级数敛散性判别法第三节 幂级数第四节 函数展开成幂级数第五节 傅里叶级数自测题(一)自测题(二)自测题答案第十二章 微分方程第一节 常微分方程的基本概念第二节 一阶微分方程第三节 可降阶的高阶微分方程第四节 高阶线性和常系数线性方程
开题报告主要是“泛泛而谈”,你的题目要介绍二重积分的起源发展,重要意义,简略的介绍下二重积分的一些算法,不用具体介绍算法,再稍微介绍点应用方面的知识,都只需简略的介绍。
国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益完善,尤其是在物理学、经济学等应用方面的研究会越来越深入,整个微积分体系会越来越完备
微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。
摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.
关键词:微积分;背景;作用;函数
一、微积分进入高中课本的背景及必要性
在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!
二、微积分在中学数学中的作用
1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.
2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。
3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。
三、国际上一些教材对微积分知识的处理
以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。
当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!
摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。
关键词:微积分;起源;内容;方法
微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:
一、微积分起源的介绍
微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。
介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。
二、介绍微积分内容及方法
微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。
三、为什么要学习高等数学
微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:
微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。
前言
21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。
一、我国微积分教学改革的现状
目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。
首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。
其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。
再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。
二、微积分课改的必要性
随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。
(1)社会高度发展提出的要求
微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。
(2)科技的发展提出的需要
当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。
(3)人类思维发展的需要
微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。
三、微积分课改的内容
根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。
1、课程基本理念的改革
微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。
2、课程内容的改革
根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。
3、课程设计的改革
原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。
4、教学方法的革新
(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。
(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。
5、教学工具的革新。
现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。
四、小结
总结不定积分的运算方法如下:
1、公式法
公式法,顾名思义就是一些常用的不定积分的公式。如果遇到这样的形式可以直接套用。当然,这些不定积分都可以一步步求解得到结果。
2、换元法
换元法有两类,第一类换元积分法又称为凑微分法,第二类换元积分法又称为变量代换法。凑微分法的关键是”凑“,其目的是把被积函数的中间变量变得与积分变量一致,即把dx凑成du。
∫f[φ(x)]φ′(x)dx=∫f[φ(x)]dφ(x)=∫f(u)du,u=φ(x)。变量代换法则是先换元,再积分,最后回代。相比而言,凑微分的步骤是先凑微分后换元(熟练以后也可以直接计算,省略换元的过程)。
3、分部积分法
前面两种方法可以解决大量的不定积分的计算问题,但是对于被积函数是两个不同函数乘积的这种形式采用上述两种方法就失效了。此时需要使用分部积分法来进行求解。换元积分法是在复合函数求导法则的基础上得到的,而分部积分法则是利用两个函数乘积的求导法则来推导的。
4、有理函数积分法
f(x)=Pn(x)Qm(x) ,其中 、Pn(x)、Qm(x) 分别为x的n次多项式和m次多项式。当m>n时,f(x)为真分式,反之,则为假分式。
问题一:不定积分在实际生活中哪些方面有应用?二重积分在实际生活中有什么用?急切求参考! 不定积分,是为定积分打基础的。 因为大量的定积分,都是通过不定积分+牛顿莱布尼茨公式来解的。 二重积分的物理意义, 如果z=f(x,y)是个曲面的话,那么∫∫f(x,y)dxdy表示以z为穹顶的曲面圆柱体的体积。 当然如果一个平面放置于xoy面上,他的面密度为f(x,y)的话,那么∫∫f(x,y)dxdy表示的就是这个平面的质量。 还可以,比如在(x,y)∈D的范围内,求f(x,y)的平均值。 设D的面积为S,那么平均值m=(1/S)∫∫f(x,y)dxdy 问题二:二重积分的本质是什么 不定积分是求全体原函数。 定积分,二重积分是和式的极限。 面积、体积是几何意义。 问题三:定积分 不定积分 微分方程 10分 1、(1)sin(3x)dx=(1/3)sin(3x)d(3x)=-(1/3)d(cos(3x))-->int(sin(3x))=-(1/3)*cos(3x)+C (2).展开被积函数代公式:=3*exp(x)-x+C 2.(1)分部积分=-2 (2)直接代公式=14/3 3.(1)分离变量:dy/y=2xdx-->y= C*exp(x^2) (2)y(x) = (x+C)*x^2:常数变易法,先求奇次方程的特解为Y=A*x^2,再另A=A(x),对 Y=A*x^2求导,代如原方程即可解出A(x)=x+C 问题四:求定积分,有什么窍门吗。。 奇函数,等于0 问题五:求这个不定积分,比较复杂 我算不出 这就是个一阶线性方程:
定积分的算法有两种:
换元积分法
如果 ;x=ψ(t)在[α,β]上单值、可导;当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,
则
分部积分法
设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式:
扩展资料
定积分的性质:
1、当a=b时,
2、当a>b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。
6、如果在区间[a,b]上,f(x)≥0,则
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使
计算定积分常用的方法:
(1)
(2)x=ψ(t)在[α,β]上单值、可导
(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b
则
2.分部积分法
设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式:
拓展资料:
定积分的数学定义:如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n 个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2,3„,n) ,作和式f(r1)+...+f(rn) ,当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x) 在区间上的定积计做/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 这里,a 与 b叫做积分下限与积分上限,区间[a,b] 叫做积分区间,函数f(x) 叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式。
几何定义:可以理解为在 Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值。(一种确定的实数值)
定积分是在不定积分的前提下,把上下限带入求得的数值。集体如何算,没办法笼统讲。积分是导数的逆运算。要记公式,带公式。
答案是 4所谓用定义法就是利用曲边梯形面积求解,这也是定积分的引例。即曲线与x=a,x=b围城的图形面积S就是该函数在[a,b]的积分。具体步骤第一,分割。就是将积分图形分成n个曲边梯形。将【0,4】n等份,分点为4i/n(i=1,2...n)。第i个曲边梯形的面积为 f(4i/n)*(4/n)=32i/n^2-12/n。第二,求和。n个曲边梯形的面积为 Sn=S1+S2+...Sn=W(i=1,n)[32i/n^2-12/n]=16+16/n-12 。{注:W(i=1,n)表示求和符号 i从1到n,没有编辑器打不出来}第三,求极限。因为所求的面积s就是Sn的极限值。即,当分割的曲边梯形边长4/n越小,数量n越多,Sn就越接近S的面积。S=lim(n->无穷)=16+0-12=4 这就是所求函数在0到4的定积分。总结:定积分的定义关键是抓住其几何意义,也就是面积问题。因此,这道题,也可以直接用几何方法得到,就是直接做出函数2x-3的图形。算出其与x=0,x=4围成的图形面积,用在x轴上方图形的面积减去下方的就可以了。