每年4~9月是华南地区雷电灾害的多发季节,雷电灾害给人民带来生命安全和财产损失。本文介绍雷电产生的原因,对施工机械的危害以及对雷电灾害的预防方法和技术,这些方法和技术对同行在施工过程中预防雷电灾害具有普遍的参考意义。 关键词:雷电施工机械危害预防 1雷电的产生 雷电是自然界中一种常见的放电现象。关于雷电的产生有多种解释理论,通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。具体来说,冰晶的摩擦、雨滴的破碎、水滴的冻结、云体的碰撞等均可使云粒子起电。一般云的顶部带正电,底部带负电,两种极性不同的电荷会使云的内部或云与地之间形成强电场,瞬间剧烈放电爆发出强大的电火花,也就是我们看到的闪电。在闪电通道中,电流极强,温度可骤升至2万摄氏度,气压突增,空气剧烈膨胀,人们便会听到爆炸似的声波振荡,这就是雷声。 2雷电危害的种类 雷击的危害主要有三方面:第一是直击雷。是指雷云对大地某点发生的强烈放电。它可以直接击中设备,雷电击中架空线,如电力线,电话线等。雷电流便沿着导线进入设备,从而造成损坏。第二是感应雷。它可以分为静电感应及电磁感应。当带电雷云(一般带负电)出现在导线上空时,由于静电感应作用,导线上束缚了大量的相反电荷。一旦雷云对某目标放电,雷云上的负电荷便瞬间消失,此时导线上的大量正电荷依然存在,并以雷电波的形式沿着导线经设备入地,引起设备损坏。当雷电流沿着导体流入大地时,由于频率高,强度大,在导体的附近便产生很强的交变电磁场,如果设备在这个场中,便会感应出很高的电压,以致损坏。对于灵敏的电子设备,尤需注意。第三是地电位提高。当10kA的雷电流通过下导体入地时,我们假设接地电阻为10Ω,根据欧姆定律,我们可知在入地点A处电压为100kV。因A点与B、C、D点相连,所以这几点电压都为100kV。而E点接地,其电压值为0,设备的D点与E点间有100kV的电压差,足以将设备损坏。据有关统计表明:直击雷的损坏仅占15%,感应雷与地电位提高的损坏占85%。目前,直击雷造成的灾害已明显减少,而随着城市经济的发展,感应雷和雷电波侵入造成的危害却大大增加。一般建筑物上的避雷针只能预防直击雷,而强大的电磁场产生的感应雷和脉冲电压却能潜入室内危及电视、电话及联网微机等弱电设备。 3防雷的方法和技术 在科学技术日益发展的今天,虽然人类不可能完全控制暴烈的雷电,但是经过长期的摸索与实践,已积累起很多有关防雷的知识和经验,形成一系列对防雷行之有效的方法和技术。 (1)接闪接闪就是让在一定范围内出现的闪电能量按照人们设计的通道泄放到大地中去。把一定保护范围的闪电放电捕获到,纳入预先设计的对地泄放的合理途径之中。避雷针是一种主动式接闪装置,其功能就是把闪电电流引导入大地。避雷线和避雷带是在避雷针基础上发展起来的。采用避雷针是最首要、最基本的防雷措施。 (2)接地接地就是让已经纳入防雷系统的闪电能量泄放入大地,良好的接地才能有效地降低引下线上的电压,避免发生反击。过去有些规范要求电子设备单独接地,目的是防止电网中杂散电流或暂态电流干扰设备的正常工作。接地是防雷系统中最基础的环节。接地不好,所有防雷措施的防雷效果都不能发挥出来。防雷接地是防雷设施安装验收规范中最基本的安全要求。 (3)均压连接接闪装置在捕获雷电时,引下线立即升至高电位,会对防雷系统周围的尚处于地电位的导体产生旁侧闪络,并使其电位升高,进而对人员和设备构成危害。为了减少这种闪络危险,最简单的办法是采用均压环,将处于地电位的导体等电位连接起来,一直到接地装置。金属设施、电气装置和电子设备,如果其与防雷系统的导体,特别是接闪装置的距离达不到规定的安全要求时,则应该用较粗的导线把它们与防雷系统进行等电位连接。这样在闪电电流通过时,所有设施立即形成一个“等电位岛”,保证导电部件之间不产生有害的电位差,不发生旁侧闪络放电。完善的等电位连接还可以防止闪电电流入地造成的地电位升高所产生的反击。 (4)分流分流就是在一切从室外来的导线与接地线之间并联一种适当的避雷器。当直接雷或感应雷在线路上产生的过电压波沿着这些导线进入室内或设备时,避雷器的电阻突然降到低值,近于短路状态,将闪电电流分流入地。分流是现代防雷技术中迅猛发展的重点,是防护各种电气电子设备的关键措施。由于雷电流在分流之后,仍会有少部分沿导线进入设备,这对于不耐高压的微电子设备来说仍是很危险的,所以对于这类设备在导线进入机壳前应进行多级分流。采用分流这一防雷措施时,应特别注意避雷器性能参数的选择,因为附加设施的安装或多或少地会影响系统的性能。 (5)屏蔽屏蔽就是用金属网、箔、壳、管等导体把需要保护的对象包围起来,阻隔闪电的脉冲电磁场从空间入侵的通道。屏蔽是防止雷电电磁脉冲辐射对电子设备影响的最有效方法。 4雷电对施工机械的危害及预防 公路施工作业处在露天环境下进行。施工机械的电气控制系统特别是微电子控制装置受雷电直击或雷电感应过电压损害的几率很大。京珠高速公路清远段地处石灰岩山区,在雷雨季节是雷电袭击的高发地区,每当天空中乌云密布大雨来临时,雷电往往会对施工机械进行正面的袭击;而有时即使在天空中没有雨云又不下雨的情况下,感应雷也会时有发生,其产生的浪涌电压入侵并损坏路面摊铺机的微电控制装置,为此,防雷工作势在必行。 (1)在沥青混合料揽拌厂场安装避雷针装置由于沥青混合料搅拌设备及其配套机械集中在一个生产厂场使用,比较容易进行集中防雷,为此,在拌和厂场安装避雷针。避雷针的高度高于搅拌楼的最高点,达到有效的保护半径,防止雷电对任何一台作业机械直击。避雷针接地要可靠,由于石灰岩山区的地质土壤比较干硬,土壤电阻值过大,所以接地网的埋设与广珠东线的做法不尽相同。接地网的角钢桩点埋设土坑要求深左右,角钢在土坑内要露出20cm左右,在土坑内按比例填满木炭和颗粒生盐作为降阻介质,生盐与木炭的重量比例为1:10,即1kg生盐掺合10kg木炭,然后填土复盖。这样可以确保接地电阻值在4以下。当雷电袭击时由避雷针及其引线经过接地网迅速将强大的雷电电流引入大地,防止雷电对机电系统的直击。此外,还对沥青混合料搅拌操作控制室进行屏蔽,做法是将操作室内微电子控制系统的工作接地、保护接地与金属结构的控制室外壳用导体连接在一起,再通过接地引线引入地下接地网,使它们保持相等的地电位,预防静电及雷电。 (2)对路面摊铺机械电气控制装置装设过电压保护器由于路面摊铺机械是随时移动作业的,不可能集中避雷,而处在露天环境下的移动机械电气控制装置最容易受感应雷浪涌电压的入侵,例如沥青沥青摊铺机控制路面平整度和控制机械定位的压力传感器等就深受其害。为了保护这些控制灵敏度极高的机械微电子控制装置免遭感应雷浪涌电压入侵损毁,根据每台机械控制装置的不同构造特点,对其装设过电压保护器。 5结束语 雷电灾害对机械电气控制装置特别是微电子装置的侵害是一种常见的自然灾害,为避免雷电对其侵害,应根据机械电气控制设备的不同构造特点而采用不同的防雷方法。只要合理地选用防雷设备,应定期由专业防雷公司检测防雷设施,评估防雷设施是否符合国家规范要求,施工项目应设立防范雷电灾害责任人,负责防雷安全工作,建立各项防雷安全工作,建立各项防雷设施的定期检测,雷雨后的检查和日常的维护。施工单位在防雷设施的设计和建设时,应根据地质、土壤、气象、环境、被保护物的特点,雷电活动规律等因素综合考虑,采用安全可靠、技术先进、经济合理的设计施工。就会大大降低雷电灾害带来的损失。
电力系统防雷技术应用研究论文
摘要: 雷击对电力系统的破坏会产生严重后果,因而电力系统内外部的防雷要求也越来越高了。因为科技进步使得防雷技术不断发展,而雷电这种自然现象对电力系统的危害还是会一直存在,故而要想让电力系统安全供电,重点还是应该做好防雷工作。文章主要通过雷电对电力系统运行的影响论述来探讨电力系统防雷技术的应用,以期为电力系统的安全运行提供有益建议。
关键词: 电力系统;防雷技术;应用
作为自然现象之一的雷电会对电力系统造成击穿、线路损害、设备失灵等不同的损坏,而且还雷电涌流还会进入系统二次设备,让相关保护装置出现失灵之类的恶性事故,由此严重威胁电力系统的安全运行。也正是因为如此,人们一直在研究雷电及相关的防雷技术,通过大量的研究来研发更为有效的雷电保护装置,为电力系统的安全运行保驾护航。
1雷电与电力系统运行
尽管雷电属于自热现象,但是却是电力系统运行中的不可抗力,雷电是因为正电极存在负电荷而产生,能够在电场周围形成强大的高压,让空气绝缘被影响,受到损坏,而雷电间各种电极不断进行大量放电,尽管放电时间短且不会超过100,不过电流强度却高达100000A。闪电在放电中产生电火,在短时间内周围空气突然膨胀后爆鸣,从而产生了自然雷电现象。电力系统很容易被雷电所袭击,电力、设备与系统都会被电磁、热力影响,造成线路、电线等出现熔毁问题。并且电雷带来的高强度电压、电磁会极大影响电路与电线的绝缘体,只要存在高强度电压,电压强度就会很大,由此出现闪络问题,而这种问题在电力设备、线路等绝缘物体上发生就会让电力系统设备与线路出现损坏。尽管雷电会破坏电力系统的安全运行,不过只要采取合理的防范方法,就能够预防雷电灾害。当下,避雷针(线)安装、电力系统设备绝缘性提升、避雷保护装置设置等是比较常用的雷电防护措施。
2防雷技术在电力系统的应用
避雷器作为雷电流泄放通道,还可以被看成是等电位连接体,安装要对地,而在线路上并联,一般都处于高阻抗环境。雷击可以在一瞬间被避雷器导通,把雷电电流引向地上,同时让设备、线路、大地在等电位上,让电力系统不会因为强电势差而被损坏。雷击能量就打,只使用避雷器是无法完全把雷电流引入地上,也会损坏自身。所以,应该将功能不一样的避雷过压保护器件放置在各个电磁场强度空间。不同器件分工合作,让电流入地,保证低残压,也让避雷器的使用寿命更长。
电源系统防雷
所谓电源系统防雷就是利用避雷过压保护计算机系统电源与相关的交流配电部分,蒋避雷器安装在雷电波可能侵入的电力进线部位。电源系统有很多不一样保护级别。电源避雷器的'选择应该要与额定通流容量、电压保护水平相适应,让避雷器能够抵御雷电冲击。电影避雷器中残压特性十分重要,要想避雷器的保护效果更好就应该要使其残压更低。另外,必须兼顾避雷器能够具有很高的最大连续工作电压。原因就是如果最大连续额定工作电压不够高,避雷器会很快损坏。电源避雷器需要贴上失效警告指示,还有方便监管、维护的遥测端口。电源避雷器要有阻燃作用,防止失效与自毁情况下的起火问题。电源避雷器通常都具有失效分离装置。如果不能避雷就会自动断开电源系统,而且电源系统也会正常运行。在安装电源避雷器的过程中,要注意和电源系统的连接线越短越好,所使用的阻燃型多股铜导线的横截面面积不能超过25mm2,要紧密地并排,可以绑扎布放。避雷器接地线所使用的25mm2到35mm2的阻燃型多股铜导线,要么尽量就近入地,要么就近和交流保护接地汇流排或者直接和接地网连接。
通信系统防雷
一般数据线路上会串联接口避雷器,而且是以不影响数据传输作为应用依据。数据接口的工作带要宽、物理接口要合适,并且还要考虑到接口速率,以更好地保护避雷器。数据设备接口的连接为了增加插损,要少用转接方法,这样才可以让信号更好地传输。而在选择速率高的数据设备接口时,要考虑起驻波比、极间电容、漏电流小、响应时间快的数据避雷器。从信号工作电压层面选择动作电压、限制电压合理的数据接口,以保护避雷器。选择抗雷电冲击力强的数据避雷器时,应该要充分了解设备接口抗雷电要求。数据避雷器的接地连接一定要有效,就近连接接地线与被保护数据设备的地线,而接地线截面不能低于25mm2。
机房接地改造
接地系统在电力系计算机系统避雷过压保护技术中有十分重要的作用。防静电接地、防雷接地、保护接地等都属于接地技术。这些接地的用途、意义、要求都不一样,糖醋分设每个独立接地体是较为常见的,不过,由于雷击环境中,防雷接地系统和别的接地系统有电势差,所以很容易出现反击事故,让电子设备被损坏。所以,需要等电位连接全部接地系统。
3结语 总之,电力系统在不断发展,而且被运用在社会生产生活的各个行业,因此其作用极大。我国经济发展日盛,电量需求巨大,电力供应异常重要。因此,需要对电力系统进行有效保护。一直以来,雷击对电力系统的影响尤甚,因而电力系统中防雷技术的应用受到高度重视。在电力系统防雷技术应用中,我们必须要通过具体的实际情况来采取科学、有效的防雷措施。在对电力系统的防雷工作中,要积极地采取新技术新措施,保证电力系统的正常运行,为人们的生产生活创造安全、稳定的环境。
参考文献:
[1]张金国.电力系统防雷措施研究[J].科技创业家,2013(4):63
[2]王少先.电力系统防雷工程设计浅谈[J].科技资讯,2012(2):51
截止是真实时基极电压和集电极电流负半周肖波输出电压正半周肖波饱和失真时基极电压和集电极电流正半周肖波输出电压正付周肖波共射电路集电极电流和基极电流在放大区成β倍输出电压和输入电压反相如果静态工作点设置的不好就容易出现截止失真或饱和失真信号过强也会出现而且基本型静态工作点不稳定
为了使信号放大器正常工作而不会对输出信号造成任何失真,它需要在其基础或栅极端子上采用某种形式的直流偏置。需要直流偏置,以便放大器可以在整个周期内放大输入信号,同时将偏置“ Q点”设置为尽可能靠近负载线的中间。 偏置Q点设置将为我们提供“ A类”放大配置,最常见的配置是双极晶体管的“共发射极”或单极FET晶体管的“共源”配置。 放大器提供的功率,电压或电流增益(放大倍数)是峰值输出值与其峰值输入值的比值(输出÷输入)。 但是,如果我们错误地设计了放大器电路,并且将偏置Q点设置在负载线上的错误位置,或者将太大的输入信号施加到放大器,则最终的输出信号可能不是原始输入信号的精确再现。波形 换句话说,放大器将遭受通常称为“放大器失真”的影响。考虑下面的公共发射极放大器电路。 通用发射极放大器 由于以下原因,可能会导致输出信号波形失真: • 由于不正确的偏置水平,可能不会在整个信号周期内进行放大。 • 输入信号可能太大,导致放大器晶体管受到电源电压的限制。 • 在输入的整个频率范围内,放大可能不是线性信号。 这意味着在信号波形的放大过程中,发生了某种形式的放大器失真。 放大器的基本设计是将小电压输入信号放大为更大的输出信号,这意味着对于所有输入频率,输出信号会不断变化某个因数或值(称为增益)乘以输入信号。先前我们看到,该倍增因子称为晶体管的Beta,β值。 常见的发射极或什至常见的源极型晶体管电路对于较小的AC输入信号都可以正常工作,但是存在一个主要缺点,即双极放大器的偏置Q点的计算位置取决于所有晶体管的相同Beta值。但是,此Beta值将与相同类型的晶体管不同,换句话说,由于固有的制造公差,一个晶体管的Q点不一定与相同类型的另一晶体管的Q点相同。 然后,由于放大器不是线性放大器,会发生放大器失真,并且会导致一种称为“失真失真”的放大器失真。仔细选择晶体管和偏置元件可以帮助最小化放大器失真的影响。 振幅失真当频率波形的峰值衰减时,会导致振幅失真,这是由于Q点偏移而引起的失真,并且在整个信号周期内可能不会发生放大。输出波形的这种非线性如下所示。 偏置不正确导致的幅度失真 如果晶体管偏置点正确,则输出波形应与输入波形具有相同的形状,只是放大(放大)。如果没有足够的偏置并且Q点位于负载线的下半部分,则输出波形将看起来像右边的波形,其负半部分“截止”或被削波。同样,如果偏置太大,并且Q点位于负载线的上半部分,则输出波形将看起来像左边的波形,其正半部分“截止”或被削波。 同样,当偏置电压设置得太小时,在周期的负一半期间,晶体管无法完全导通,因此输出由电源电压设置。当偏置太大时,周期的正半部分会使晶体管饱和,输出几乎降为零。 即使设置了正确的偏置电压电平,由于大的输入信号被电路增益放大,输出波形仍然可能失真。即使偏置正确,输出电压信号也会被钳位在波形的正负部分,不再类似于正弦波。这种幅度失真称为削波,是“过驱动”放大器输入的结果。 当输入幅度变得太大时,削波变得很明显,并迫使输出波形信号超过电源电压轨,波形信号的峰值(+ ve half)和波谷(-ve half)部分变得平坦或“剪下”。为避免这种情况,必须将输入信号的最大值限制在一定水平,以防止出现上述削波效应。 削波引起的振幅失真 幅度失真大大降低了放大器电路的效率。失真的输出波形的这些“平顶”是由于不正确的偏置或输入的过度驱动所导致的,不会对所需频率下的输出信号强度产生任何影响。 说了这么多,实际上,一些著名的吉他手和摇滚乐队更喜欢通过将输出波形严重钳位到+ ve和-ve电源轨上来使其失真的声音高度失真或“过度驱动”。同样,增加正弦波上的削波量会产生很大的放大器失真,从而最终会产生类似于“方波”形状的输出波形,然后可以在电子或数字合成器电路中使用该波形。 我们已经看到,对于DC信号,放大器的增益水平会随信号幅度而变化,但除了幅度失真以外,放大器电路中的AC信号还会发生其他类型的放大器失真,例如频率失真和相位失真。 频率失真频率失真是另一种放大器失真,当放大水平随频率变化时,会在晶体管放大器中发生。实际放大器将放大的许多输入信号包括所需的信号波形(称为“基本频率”)以及叠加在其上的多个不同频率(称为“谐波”)。 通常,这些谐波的幅度是基波幅度的一部分,因此对输出波形影响很小或没有影响。但是,如果这些谐波频率的幅度相对于基频增加,则输出波形可能会失真。例如,考虑以下波形: 谐波引起的频率失真 在上面的示例中,输入波形包括基频和二次谐波信号。结果输出波形显示在右侧。当基频与二次谐波结合使输出信号失真时,就会发生频率失真。因此,谐波是基频的倍数,在我们的简单示例中,使用了二次谐波。 因此,谐波频率是2 *ƒ或2ƒ基频的两倍。然后三次谐波会3ƒ,第四,4ƒ,等等。在包含电抗元件(例如电容或电感)的放大器电路中,谐波始终会引起频率失真。 相位失真相位失真或延迟失真是一种放大器失真,当输入信号与其在输出端的出现之间存在时间延迟时,它会在非线性晶体管放大器中发生。 如果我们说输入和输出之间的相位变化在基频处为零,那么最终的相角延迟将是谐波和基频之间的差。该时间延迟将取决于放大器的结构,并且将随着放大器带宽内的频率而逐渐增加。例如,考虑以下波形: 除高端音频放大器外,大多数实际的放大器都具有某种形式的放大器失真,即“频率失真”和“相位失真”以及幅度失真的组合。在大多数应用中,例如在音频放大器或功率放大器中,除非放大器失真过大或严重,否则通常不会影响放大器的工作或输出声音。
三极管作用:
教材没有错,由于电源电压不变,增大电阻Rb,相应的电流Ib会减小
根据三极管的放大电路特性:Ic=βIb
那么Ic也会随之Ib的减小而减小,根据三极管的特性曲线
不难发现Q点就会下移。
假如原Q1对于Ic数值为5mA, 现在Ic减小为3mA,那么对应的工作点就是Q3
而输出特性斜率=1/Rc。所以跟输入没有任何关系
如果你用的是三极管组成的放大电路,一定要选择好静态工作点,有饱和失真和截止失真,都是静态工作点没选好;如果是用集成运放,那么失真的情况比较少,只要输入信号不太大或者太快,应该没问题。总之就是要根据你的要求选择好运算放大器的型号。建议做模拟电路的话,熟悉一种仿真软件,Orcad的PSPICE或者NI Multisim都很好用,先把仿真做好,在画PCB。
失真的根本原因是电压过高或过低,调节静态工作点是可以消除的。调节集电极与基极的电压。满足正偏即可。
失真通常有两种,一种是饱和失真,一种是截止失真,前者应当降低工作点,后者应该抬高工作点.如果双向都失真,说明信号幅度太大,这时应增大电源电压,用反馈减小放大倍数,或减小输出时上拉(或下拉)的阻值等.总的来说,不管是哪种放大器,第一要检查静态工作点,第二要检查信号幅度是否超过放大电路可以支持的范围. 好好学模电吧,呵呵,刚开始学总感觉头大,不过习惯就好了.
1、强电磁环境干扰下的数据通讯问题。2、强电磁环境脉冲破坏下的电子设备的防护问题。3、强电磁环境下的人的防护问题。
先给你一些建议: 1.论文写作应建立在丰富的材料的基础上,正式撰写论文之前,应当围绕选题广泛收集资料,并对材料进行整理提炼,写出一篇反映本论题的各种观点的综述性文章 2.论文写作要按照选题、收集资料、编写提纲、撰写初稿、修改初稿、定稿的顺序进行。定稿前论文要多次修改。 3.定稿后的论文应包括下列内容: (1)题目 (2)提纲 (3)中文摘要、关键词 (4)正文 (5)参考文献 (6)英文摘要、关键词 下面就是一些题目,不知有没有适合你的。希望对你有帮助吧! 1、库仑定律的实验及其应用 2、正负粒子相互环绕产生的辐射 3、用麦克斯韦理论谈电磁波在介质界面上的入射角、反射角、折射角的关系 4 ~用麦克斯韦理论谈电磁波在介质界面上的反射、折射振幅和位相的关系 5、矩形波导中TE10波的最大功率 6、麦克斯韦方程组的建立探讨 7、对电磁场的能量和动量深入的认识 8、电磁场的能量和动量在狭义相对论条件下的表达形式 9、电磁场和介质相互作用分析 10、矩形波导的发展过程 11、“惟一性定理”的应用 12、电动力学方程的洛仑兹协变性 13、论证矩形波导内不存在TEm0或T Eon波 14、电磁波辐射初探 15、电动力学基本方程四维协变形式的推导希望采纳
要写好教研论文,首先要选好题目,其次要尽量多地获得这一选题的相关资料,还要实实在在地进行教学研究,做到理论与实践相结合。下面我收集了一些关于初中物理教学论文题目,希望对你有帮助
1、 在物理教学中培养学生创新能力的探讨
2、谈谈中学物理课堂教学艺术
3、兴趣——学生学习物理最好的老师
4、物理习题隐含条件的探讨
5、中学物理教学中的研究性学习探讨
6、高中“课题研究”教学案例总结
7、中学物理课程的基本理念分析
8、论物理教育中的科学素养培养
9、新的中学物理课程目标分析(择其某一项)
10、中学物理教学中的美育素材研究
11、物理教学中的创造人格培养
12、物理教学中学生自学能力培养探究
13、试论物理教学中的科学探究
14、对高考“理科综合”科目的改革的思考
15、未来中学物理教师素质结构之设想
16、现行物理教学大纲及教材的有关评价
17、对高中某一物理概念或物理规律的教学研究(电磁学,光学方面)
18、中学物理教师继续教育问题的思考
19、高一物理新教材的比较与评价
20、论非智力品质在物理学习中的形成与作用
1、缠态与量子通信述评
2、光折变材料的光信息存储研究进展
3、纳米结构ZnO研究状况
4、纳米尺度中的量子力学
5、由相对论的创立看物理学的思想方法
6、从经典力学到量子力学的思想体系探讨
7、光电子技术的发展现状及其应用前景分析
8、用麦克斯韦方程组讨论晶体双折射现象(电磁学,光学)
9、计算半径为R的球的热传导现象(热学及统计物理学)
10、用麦克斯韦方程组讨论晶体双折射现象(电磁学,光学)
11、用傅里叶变换计算(单缝、圆孔)衍射的光强分布(光学)
12、论物理学中的理想模型
13、多媒体课件的制作(Flash/Authorware)
14、激光全息实验的设计(光学)
15、物理学中的美学问题探讨(物理学史)
16、四层楼电梯自动控制系统的设计
17、简易稳压直流电源设计
1、复摆实验仪的研究
2、杨摸量实验仪研究
3、落球法液体粘滞系数测定仪的改进
4、浅议氦氖激光器在光学实验教学中的应用
5、全息照相实验技巧探讨
6、实验数据的处理和测量不确定度计算
7、标准不确定度合成中应注意的问题及讨论
8、钢丝的切变模量与扭转角度关系的研究
9、物理实验测量和分析的基本方法
10、向心力实验装置研究
11、重力加速度测量实验装置研究
12、液体表面张力实验装置研究
13、MATLAB在声学实验中的应用
14、非线性电阻特性的实验研究
15、简易万用表的设计制作及校准
16、体效应管负阻特性的测量研究
17、微波光学实验研究
18、组合测量在物理实验中的应用
19、用电阻应变片测量微小形变实验方法的改进与研究
电磁学计算方法的研究进展和状态摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术
电磁学是物理学的一个分支。电学与磁学领域有著紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。 主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。电磁学或称电动力学或经典电动力学。之所以称为经典,是因为它不包括现代的量子电动力学的内容。电动力学这样一个术语使用并不是非常严格,有时它也用来指电磁学中去除了静电学、静磁学后剩下的部分,是指电磁学与力学结合的部分。这个部分处理电磁场对带电粒子的力学影响。电磁学的基本理论由19世纪的许多物理学家发展起来,麦克斯韦方程组通过一组方程统一了所有的这些工作,并且揭示出了光作为电磁波的本质。电磁学的基本方程式为麦克斯韦方程组,此方程组在经典力学的相对运动转换(伽利略变换)下形式会变,在伽里略变换下,光速在不同惯性座标下会不同。保持麦克斯韦方程组形式不变的变换为洛伦兹变换,在此变换下,不同惯性座标下光速恒定。二十世纪初迈克耳孙-莫雷实验支持光速不变,光速不变亦成为爱因斯坦的狭义相对论的基石。取而代之,洛伦兹变换亦成为较伽利略变换更精密的惯性座标转换方式。静磁现象和静电现象很早就受到人类注意。中国远古黄帝时候就已经发现了磁石吸铁、磁石指南以及摩擦生电等现象。系统地对这些现象进行研究则始於16世纪。1600年英国医生威廉·吉尔伯特(William Gilbert,1544~1603)发表了<论磁、磁饱和地球作为一个巨大的磁体>(Demagnete,magneticisque corporibus et de magnomagnete tellure)。他总结了前人对磁的研究,周密地讨论了地磁的性质,记载了大量实验,使磁学从经验转变为科学。书中他也记载了电学方面的研究。
电磁,物理概念之一,是物质所表现的电性和磁性的统称。如电磁感应、电磁波等等。电磁是丹麦科学家奥斯特发现的。电磁现象产生的原因在于电荷运动产生波动,形成磁场,因此所有的电磁现象都离不开磁场。电磁学是研究电磁和电磁的相互作用现象,及其规律和应用的物理学分支学科。麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术,深刻地影响着人们认识物质世界的思想。电磁是能量的反应是物质所表现的电性和磁性的统称,如电磁感应、电磁波、电磁场等等。所有的电磁现象都离不开磁场;而磁场是由运动电荷产生的。运动电荷可以产生波动。其波动机理为:运动电荷e运动时,必然受到其毗邻e地阻碍,表现为运动电荷带动其毗邻1向上运动,即毗邻随同运动电荷e一起向上运动;当毗邻1向上运动时,必然受到其自身毗邻1地阻碍,表现为毗邻1带动其自身毗邻向上运动,即毗邻2随同毗邻1一起向上运动。这样以此向前传播,形成波动。显然,真空中这种波动的传播速度为光速。