比较法比较法是证明不等式的最基本方法,具体有"作差"比较和"作商"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)例1已知a+b≥0,求证:a3+b3≥a2b+ab2分析:由题目观察知用"作差"比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。 ∵(a3+b3)(a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证明: =(a-b)2(a+b)又∵(a-b)2≥0a+b≥0∴(a-b)2(a+b)≥0即a3+b3≥a2b+ab2例2 设a、b∈R+,且a≠b,求证:aabb>abba分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同"1"比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小证明:由a、b的对称性,不妨解a>b>0则aabbabba=aa-bbb-a=(ab)a-b∵ab0,∴ab1,a-b0∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)基本不等式法利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及 变形有:(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)(2)若a、b∈R+,则a+b≥ 2ab (当且仅当a=b时,取等号)(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)例3 若a、b∈R, |a|≤1,|b|≤1则a1-b2+b1-a2≤1分析:通过观察可直接套用: xy≤x2+y22证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立练习2:若 ab0,证明a+1(a-b)b≥3综合法综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。例4,设 a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252证明:∵ a0,b0,a+b=1∴ab≤14或1ab≥4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252练习3:已知a、b、c为正数,n是正整数,且f (n)=1gan+bn+cn3求证:2f(n)≤f(2n)分析法从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。要证c-c2-ab<a<c+c2-ab只需证-c2-ab<a-c<c2-ab证明: 即证 |a-c|<c2-ab即证 (a-c)2<c2-ab即证 a2-2ac<-ab∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知∴ 不等式成立练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)2放缩法放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。例6:已知a、b、c、d都是正数求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。 证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2练习5:已知:a<2,求证:loga(a+1)<16换元法换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。(1)三角换元:是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。例7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<1证明: ∵x,y∈R+, 且x-y=1,x=secθ , y=tanθ ,(0<θ<xy )∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ=sinθ∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤3(2)比值换元:对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥4314证明:设x-1=y+12=z-23=k于是x=k+1,y=zk-1,z=3k+2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2=14(k+514)2+4314≥4314反证法有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是"至少"、"唯一"或含有否定词的命题,适宜用反证法。例9:已知p3+q3=2,求证:p+q≤2分析:本题已知为p、q的三次 ,而结论中只有一次 ,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。证明:解设p+q>2,那么p>2-q∴p3>(2-q)3=8-12q+6q2-q3将p3+q3 =2,代入得 6q2-12q+6<0即6(q-1)2<0 由此得出矛盾 ∴p+q≤2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0数学归纳法与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。例10:设n∈N,且n>1,求证: (1+13)(1+15)…(1+12n-1)>2n+12分析:观察求证式与n有关,可采用数学归纳法证明:(1)当n=2时,左= 43,右=52∵43>52∴不等式成立(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①要证①式左边> 2k+32,只要证2k+12·2k+22k+1>2k+32②对于②〈二〉2k+2> 2k+1·2k+3〈二〉(2k+2)2> (2k+1)(2k+3)〈二〉4k2+8k+4> 4k2+8k+3〈二〉4>3 ③∵③成立 ∴②成立,即当n=k+1时,原不等式成立由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n> 1324构造法根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。1构造函数法例11:证明不等式:x1-2x <x2 (x≠0)证明:设f(x)= x1-2x- x2 (x≠0)∵f (-x)=-x1-2-x+x2x-2x2x-1+x2=x1-2x- [1-(1-2x)]+x2=x1-2x-x+x2=f(x)∴f(x)的图像表示y轴对称∵当x>0时,1-2x<0 ,故f(x)<0∴当x<0时,据图像的对称性知f(x)<0∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)练习9:已知a>b,2b>a+c,求证:b- b2-ab<a<b+b2-ab2构造图形法例12:若f(x)=1+x2 ,a≠b,则|f(x)-f(b)|< |a-b|分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2于设A(1,a),B(1,b)则0A= 1+a2
最基本的就是作差比较,另外还有作商的。此外还有用数学归纳法(如琴生不等式的一般形式)放缩法,调整法(如的排序不等式),还有就是直接代公式。
高数证明不等式的方法确如楼上所说. 而用初等数学证明不等式,特别是代数不等式,无论是技巧性还是是灵活性,都比高数方法强得多! 按我自己的体会,常用的有: (1)作差比较法. (2)作商比较法. (3)公式法. (4)放缩法. (5)分析法. (6)归纳猜想、数学归纳法. (7)换元法. (8)构造.构造函数、复数、向量、数列等. (9)反证法. (10)综合法,即由因导果法. (11)函数单调性法. (12)凸函数法. (13)局部不等式法. (14)增量代换法. (15)磨光变换法. (16)导数法. (17)重要不等式法.如: 基本不等式; 柯西不等式; 赫尔德不等式; 排序不等式; 权方和不等式; 舒尔不等式; 贝努利不等式; 母不等式; 卡尔松不等式; … … 等等.
证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。
比较法
①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;
②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a
综合法
由因导果。证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。
分析法
执果索因。证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。
放缩法
将不等式一侧适当的放大或缩小以达到证题目的。
数学归纳法
证明与自然数n有关的不等式时,可用数学归纳法证之。
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
换元法
换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
构造法
通过构造函数、图形、方程、数列、向量等来证明不等式。
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。
1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算 函数图像中的对称性问题 泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用 “1”的妙用“数形结合”在解题中的应用 “数学化”及其在数学教学中的实施 “一题多解与一题多变”在培养学生思维能力中的应用 《几何画板》与数学教学 《几何画板》在圆锥曲线中的应用举例 Cauchy中值定理的证明及应用 Dijkstra最短路径算法的一点优化和改进 Hamilton图的一个充分条件 HOLDER不等式的推广与应用 n阶矩阵m次方幂的计算及其应用 R积分和L积分的联系与区别 Schwarz积分不等式的证明与应用 Taylor公式的几种证明及若干应用 Taylor公式的若干应用 Taylor公式的应用 Taylor公式的证明及其应用 Vandermonde行列式的应用及推广
证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。
作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。不等式证明是一个非常重要的内容,在数量关系上,在对不等式证明题进行分析,寻找解(证)题的途径时,提倡综合法和分析法同时使用,如同打山洞一样,由两头向中间掘进,这样可以缩短条件与结论的距离。
不等式证明方法:
比较法:①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a
综合法是由因导果的证明方法。用综合法证明不等式时,应注意观察不等式的结构特点,选择恰当的公式作为依据,其中均值不等式是最常用的,证法一两次运用三元均值不等式证明,证法二主要是运用不等式的性质证明。
春风又绿江南岸,明月何时照我还?
最小公倍数和公因数
论文研究般较宽泛领域看定性研究与定量研究;取材面看实证研究(实际调查案例析基础)与文献归纳等;析手看归纳、演绎与比较析等等要看专业专业运用研究
春风又绿江南岸,明月何时照我还?
看你使用的目的了如果你是想要证明一个别的东西,但是证明的过程中需要用到别人的这个不等式的结论,那么直接用就可以,标注好引用就行了如果你的最终目的是证明这个不等式,那么你就不能直接用了,就得想一种全新的方式证明它,否则就属于抄袭了。
柯西不等式证明写法如下:
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
相关信息:
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。
不等式在数学中占有重要地位 在中学数学 高等数学 微积分 几何学中都在出现 不等式是相对等式而提出的 现实生活有许多的不等式 所以不等式很重要
论文研究般较宽泛领域看定性研究与定量研究;取材面看实证研究(实际调查案例析基础)与文献归纳等;析手看归纳、演绎与比较析等等要看专业专业运用研究
春风又绿江南岸,明月何时照我还?
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系
毕业论文研究方法怎么写,为什么很难下笔
(1)文献研究法根据所要研究内容 ,通过查阅相关文献获得充足的资料,从而全面地了解所研究课题的背景、历史、现状以及前景。(2)研究项目分析法在进行理论的搜集与分析之后,根据现有的研究项目对宠物进化模型,宠物行为模型模型的整体系统进行分析与设计,实现理论与实践的相结合,使理论有理有据,设计更合理。