首页 > 学术论文知识库 > 供热研究论文

供热研究论文

发布时间:

供热研究论文

一、树立“五讲”意识,提高宣传质量 1.讲形象。以企业文化为依托,重塑企业形象,打造企业品牌,倡导主流方向,使“炼就一流,浇铸辉煌”的企业精神成为先进文化的主导者。 2.讲政策。冶炼宣传工作是专业性和政策性很强的工作,如果我们不了解它的工艺流程,就可能偏离宣传报道的真实性,会产生误解,造成负面影响。 3.讲艺术。要有实事求是的原则,要做到讲真话、言真情、举实例,在真实的前提下,做好“巧”字文章。 4.讲责任。一要勤,做到勤学习、勤思考、勤观察、勤写作;二要准,要有职业敏感性,要准确把握、深度挖掘,使报道更具新闻价值;三要恒,宣传报道要持之以恒,宣传氛围要紧贴冶炼企业的实际,不断加强。 5.讲奉献。作为宣传思想的工作者,要奉献自己的才能,在艰巨繁重的工作中默默付出,营造有利于发展,创作出具有自身特色为主导精神食粮,贡献自身的价值。 二、大胆探索、创新宣传模式 要努力创新宣传形式,不断创新内容,改进宣传方法,要更加贴近实际,贴近生活,贴近群众,增强宣传的针对性和实效性,积极扩大宣传的覆盖面。既要有集中性宣传,又要有经常性宣传;既要有声势浩大的群众性宣传,又要有深入细致的针对性宣传;既要有深度,又要有广度。要充分利用自办网页的优势,灵活运用新闻报道、专题专栏等多种形式进行宣传报道,并积极向集团公司新闻中心投稿。针对以往不足加以改进,实现由单一信息向调研性、综合性信息转变,由常规信息向特色信息转变,由事后报送向及时报送转变。 三、严守宣传纪律,确保宣传的正确导向 “用正确的舆论引导人”,是新形势下党的新闻宣传事业的一个基本原则。一定要旗帜鲜明、立场坚定,做到积极主动、有声势、有力量、有效果;在舆论引导上要得当。宣传工作政治性、政策性很强,一定要增强政治意识、大局意识、责任意识,严守宣传纪律,确保正确导向。要主动和各部门多联系、多沟通,虚心向有关专家和专业人员学习,努力掌握政策法规和业务知识,确保宣传报道工作的全面性、准确性,确保宣传报道工作不出任何纰漏。使舆论引导具有一定的吸引力、感召力和激发力。 四、宣传思想工作要找准切入点,讲求实效性 我们必须以广大职工的利益为出发点和落脚点,从职工关心的热点、难点问题人手,深入实际,有针对性的做好宣传引导和说服教育工作,才能切准员工的思想脉搏。很多职工对深化改革中的切身利益比较关注,甚至很多人对改革产生了忧虑思想。 五、创新上下功夫,充分发挥宣传思想工作“助推器”作用 1.观念创新。不断与时俱进,宣传思想工作的主体和客体都是人,必须在观念创新上走在前面。宣传思想工作要始终坚持以企业生产经营为中心,服从服务于改革发展稳定大局,为企业的改革发展提供坚强的思想保证、精神动力和智力支持,这是做好企业宣传思想工作的出发点和落脚点。同时,要坚持“以人为本”的思想,在“人”字上做文章、下功夫,注重人性化管理,从解决职工群众工作、生产与生活中的实际问题着手解决思想问题。充分发挥人的积极性、主动性、创造性。 2.内容创新。宣传思想工作的创新,将能更加有效地发挥其生命线的作用,促进其物质文明、政治文明和精神文明的协调发展,促进优秀企业文化诞生。从而拓宽服务大局、服务群众的领域和渠道,努力贴近实际、贴近生活、贴近群众。 在新的形势下,应在继承和发扬优良传统的同时,根据中心工作的要求和广大群众的需求,积极开展各种活动,认真研究影响人们思想形成、发展、变化的因素所具有的多样性、复杂性特点,运用多种手段和形式开展宣传思想工作。以企业文化建设、企业管理、劳动竞赛以及其它生产经营活动为载体,寻求适应现代企业制度的开展宣传思想工作特别是思想政治工作的有效途径;当前,应特别注重适应高新技术的迅猛发展,积极利用现代网络技术拓宽宣传思想工作领域,增强网上宣传的主动性、针对性,加强网络宣传思想工作。

暖通专业在计算 方法 、程序编制和工程应用几方面都取得了显著成绩。下面是由我整理的暖通专业技术论文,谢谢你的阅读。

暖通空调技术与节能

摘要:随着人们生活水平的日益提高,人们生活的节奏逐渐加快及心理压力的不断增大,使得人们的工作生活环境应该予以重视。而在人们的工作生活环境中倡导环保和节能的生活方式越来越重要。本文主要是对暖通空调技术与节能进行分析。

关键词:暖通空调 技术 节能

2009年9月22日,国家主席胡锦涛在联合国气候变化峰会开幕式上发表题为《携手应对气候变化挑战――在联合国气候变化峰会开幕式上的讲话》的重要讲话,郑重承诺今后中国将进一步把应对气候变化纳入经济社会发展规划,并继续采取强有力的 措施 :一是加强节能、提高能效工作;二是大力发展可再生能源和核能;三是大力增加森林碳汇;四是大力发展绿色经济,积极发展低碳经济和循环经济,研发和推广气候友好技术。明确提出了建设生态文明的重大战略任务,强调要坚持节约资源和保护环境的基本国策,坚持走可持续发展道路,在加快建设资源节约型国家。可见节能对于一个国家乃至世界时是多么的重要。本文主要从节能方面浅谈暖通空调技术。

1.室内设计参数

常规情况下,在冬季供暖时,室内计算温度每降低1℃,能耗将减少约5%~10%;在夏季供冷时,室内计算温度每升高1℃,能耗将减少约8%~10%。室内设计参数必须在规定的参数范围内取值。近几年,低温地板辐射采暖系统已经取代散热器采暖,之所以采用这种方式,主要是因为这种方式具有能耗小、舒适性高、容易分户计量、不占用房间使用面积等优点。

2.采暖设计

采暖空调热负荷为12650KW,热指标为。热源由城市热网供给,一次水供回水温度为95/70℃,经热交换后,高温二次水供回水温度为85/60℃,供采暖系统及空气、新风处理机组使用。各类机房、自行车库等设5-8℃的值班采暖,人防掩蔽体采暖设计温度为18℃,厕所为16℃;低温二次水供回水温度为60/50℃,供风机盘管和汽车坡道化雪系统使用,或者化雪系统由于什么原因没有使用。为保证一层室内良好的温度环境,抵挡大门的冷风侵入,在各大门入口处均设置了热空气幕。

以空气为热泵的热源在寒冷地区进行采暖是当前研究的 热点 。因为它和以往的燃煤、燃油、直接用电等取暖方式比较的话,在环保、节能、安全使用,甚至经济等方面有突出的优点,其可推广性也超过了水源、地源热泵。

地板采暖的空气热泵机组容量的选择

机组容量(W)=当地建筑采暖设计负荷()×用户采暖的建筑面积()÷(1-)×

室外机最好安装在冬季主导风的背风面,应该设置遮雪蓬,机组如果安装在平台上,则底面应抬高至少20cm,以免化霜结冻,机组吸风口距障碍物至少25cm,双机之间距离至少20cm。

地板下埋管的设计

空气热泵作为热源时,供水温度或供回水平均温度应尽可能设计得低些,以使机组效率尽可能高,又由于工程实践证明本机组的供回水温差较少仅2℃-3℃,所以,选择地下埋管时可参照“低温热水地板辐射供暖应用技术规程”( DBJ/T01-49-2000)附录 E-1至 E-3中平均水温35℃一栏,按照地板所需散热量选择间距,然后,将管道直径放大到Φ20/16成间距缩小一档即可。

3.风系统设计

集中空调系统的排风热回收

一直以来,业内人士只是从经济方面的角度来衡量热回收装置的利弊,而环保与节能则被忽视。当今,业内人士考虑的角度有所转变,现在从环保和节能这个角度来衡量热回收装置的利弊。

空调区域排风中的热能量是非常多的,如果把这些热能量加以回收利用,那么环保和节能定会实现。如果新风和排风采用专门独立的管道输送,那么有利于集中热回收装置的设置。新风和排风采用热回收装置进行湿热或者全热交换,节能效果非常明显的表现出来。

空调风系统

(1)有资料显示,以我国南方地区为例,夏季室内设计温度如果每降低1℃或冬季设计温度每升高1℃,其工程投资将增加6%,能耗将增加8%。该数据很明显地说明,适当提高夏季以及降低冬季的室内空气温度,都将起到显著的节能效果。与此同时,为保证室内空气质量以及人们对新鲜空气的需要,现行《采暖通风与空气调节设计规范》对最小新风量作出明确规定,要求建筑满足国家现行有关卫生标准。研究表明,加大新风量能够在一定程度上解决室内空气质量问题,但增加了空调能耗。新风定值必须按照规范来确定,因为新风量对于能耗和人体健康有着非常重要的作用,如果人员密度较大时,新风的供应按人员的密度来进行的话是非常不经济的。我国建筑采用了新风需求控制(检测室内CO2浓度),值得注意的是:新风量变化,排风量随着也发生变化,否则造成负压,可能会适得其反。

(2)暖通设计师对于规范中新风量的规定表示赞同。暖通设计师认为,在目前中央空调清洗不够规范的背景下,加大新风量是必要的。不过,对于室内设计温度的要求,他们却持保留态度。业内人士有这样的一个说法:“如果说节能像一棵树,有很多枝杈可以作为思路,那么,业主方的意见更像那个根。他们的态度,将成为决定暖通专业乃至建筑节能的根本性因素。”业内人士表示,建设方的意见非常重要。

要想增加新风量或者增强风机盘管处理室内回风的能力,风机盘管加新风的新风口应单独或布置在盘管出风口的旁边,而不应该布置在盘管回风吸入口。

(3)房间面积或空间较大、人员较多或有必要集中进行温度控制的空气调节区,其空气调节风系统宜采用全空气空调系统,不宜采用风机盘管系统,以利于集中处理、调节,发挥有利因素,弥补之前产生的问题。

(4)建筑空间高度大于或等于10m、且体积大于时,宜采用分层空调系统。与全室性空调方式比,分层空调系统夏季可以节能30%左右,但是冬季并不节能。通常设计时,夏季的气流组织为喷口侧送,下回风,高大空间上部排风;而冬季一般在底层设置地板辐射或地板送风供暖系统,也可将上部过热的空气通过风道送至房间下部。

(5)多个空气调节区合用1个空气调节风系统,各区负荷变化较大、低负荷运行时间较长,且需要分别调节室内温度,在经济条件允许时,宜采用全空气变风量空气调节系统。设计时应注意:要求采用风机调速改变系统风量,而不能采用恒速风机而改变系统阻力调节;其次,应采取保证最小新风量的措施,避免因送风量减少,造成新风量减少而不满足卫生要求的后果;再者,调节末端送风口风量时,推荐采用串联式风机驱动型末端装置以保证室内的气流分布。

(6)在某些情况下,像屋顶传热量较大、吊顶内发热量较大、吊顶空间较大(此时的吊顶至楼板底的高度超过),如果采用吊顶内回风,导致空调区域增大、空调耗能上升,这样非常不利于节能。所以对于建筑顶层或者吊顶上部有较大热量、吊顶空间较高时,直接从吊顶回风是不合理的。

4.围护结构

北京市建筑设计研究院原院长、北京市建筑设计研究院顾问总工程师吴德绳认为,暖通专业既然是建筑节能的支柱力量,因此,目光不仅要盯住如何优化暖通空调系统设计,更应该有所转移,在围护结构设计方面重点考虑。

围护结构在节能工作中,扮演着愈来愈重要的角色。所谓围护结构节能,通常是指通过改善建筑物围护结构的热工性能,使得建筑在夏季隔绝室外热量进入室内,冬季防止室内热量泄出室外,以保持室内尽可能接近舒适温度,减少通过辅助设备来达到合理舒适室温的负荷,并最终达到节能的目的,如通过采暖、制冷设备达到节能。

传统住宅建筑的围护结构是普通黏土砖,简单架空屋面和单层玻璃钢窗,它们的传热系数分别为、和。而“节能住宅”的围护结构中外墙和屋面采取了保温措施,外窗采用中空塑钢窗或断热中空铝合金窗,它们的传热系数分别为 、和,使围护结构的节能贡献约占25%。采用能效比高的采暖、空调设备(按照国家标准,房间空调器的能效比:制冷>,采暖>),使采暖、空调设备的节能贡献约占25%,两者相加总体达到节能50%的目标。

据介绍,围护结构的节能设计应该从墙体、窗户、屋面等三个方面考虑。对于设计人员而言,如何处理建筑玻璃幕墙的问题,在业内一直存在很大争议。普通玻璃幕墙是建筑节能不能实现的因素之一。统计数据表明,夏季通过玻璃窗的日照热可占制冷机最大负荷的30%,冬季单层玻璃的热损失约可占锅炉负荷的20%。窗体节能技术主要从减少渗透量、减少传热量、减少太阳辐射能三个方面考虑。另外,在保证室内采光良好的前提下,合理确定窗墙比十分重要。当窗墙面积比超过50%时,负荷将明显增加。不仅是外围护结构,内围护结构在设计中同样重要。暖通设计师要比普通建筑师更懂得建筑节能的途径,所以暖通设计师和普通建筑师多进行沟通效果才会更好。

5.实现节能

暖通空调的设计师在方案设计时,首先应深入了解业主的能源状况以及对空调的使用状况和是否有余热、废气等条件,然后对各种能源方案进行合理综合的对比。设计师在设计时应考虑的重点是:如何利用可再生能源和低品位能源。

暖通设计师在设计阶段完成基础工作之后,最关键的就是环保和节能的实现,而环保和节能的实现是通过综合利用各种先进技术、利用各种可再生资源来实现的。

利用自然条件来满足人们对于室内温度的需求,这是最理想的方式。现在通过各种设备实现对温度的调节,只不过是对人们的过错进行补救。冷热源是设计师最关注的一点,因为其能耗往往能占空调系统总能耗的50%左右。

地源热泵系统就是在这种形势下快速发展起来的,它利用地下恒温层土壤热显著提高空调系统效率。同时,采用新能源利用的供给方式,实现冷、热、电三联供;利用燃气、汽、电力能量转换的原理联合循环使用,将工业流程最尾端的余热收集起来,用于供冷系统空调冷冻水和供热系统的生活热水,这样,能源的利用率可提高至70%~80%左右。这些都给暖通空调设计师提供了广泛的节能设计思路。

6. 总结

随着全球逐渐变暖这种现象的出现,空调现在已经是人们生活中不可或缺的一部分,它使人们工作生活更加舒适,人们对于空调也有了一定的依赖性。然而,环保和节能是当今非常重要的问题,因此,在暖通空调设计方面,暖通空调的环保和节能是目前空调技术方面发展的方向,也就是说,城市供热环保和节能是目前亟须加强和可持续发展的问题。

参考文献:

[1] 赵君利. 暖通空调节能从设计开始.中国建设报,2010,(03).

[2] 胡锦涛活动报道集,2009,(09)

[3] 刘金瑶,李婉茹,刘鹏华. 浅谈暖通空调的节能.暖通空调,2008,(04).

[4] 张莉,李尧,朱玉明.暖通空调节能设计分析.山西建筑,2010,(09).

[5]__荣.建筑工程的暖通空调设计.施工技术与设计,2008,(07).

[6] 万蓉. 基于气候的采暖空调耗能及室外计算参数研究.西安建筑科技大学, 2009,(08).

点击下页还有更多>>>暖通专业技术论文

一、供热系统消耗能量的环节和评估1.供热系统消耗能量的环节供热系统由热源反热能送达热用户,一般都要经过热制备、转换、输送和用热这几个环节。我国城市集中供热热制备主要来自燃烧化石燃料(煤、油、气)的区域锅炉房和城市热电厂。区域锅炉房的主要耗能设备是锅炉、燃料输送及灰渣清除机械、鼓风机和引风机、水制备和输配系统的水泵(循环水泵、补水泵和加压泵);它们耗用的能源是燃料、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。热电厂是由抽凝式、或背压式(包括恶化真空)供热机组排(抽)汽通过热能转换装置(通常称为首站热交换器)传递给热网系统;首站是供热系统的热源,主要耗能设备是热交换器、输配系统的水泵。它们耗用的能源是蒸汽、电力、水和热;通常可能用单位供热量的消耗量来评定耗能水平。热能输送由热网承担,供热管道由钢管、保温层和保护层组成,其结构依敷设而异。管道敷设有架空、管沟和直埋三种方式。它们的能量消耗是沿途散热的热损失和泄漏的水、热损失。一般可用热网热效率来表示其保温效果和保热程度;热网补水率来表示热网水泄漏的程度。在热网管线上有时还设置中间加压泵,以降低和改善系统水力工况(设置在非空载干线上,还能节省输送电耗),它的能量消耗设备是水泵,可用单位供热量的耗电量来评定耗能水平。 毕业论文 能量转换是通过热力站交换器把一级网的热能传递给二级网,并由它输送到热用户。热力站是二级网的热源,主要耗能设备是热交换器、二级网系统循环水泵和补水泵。它们耗用的能源是一级网高温水/蒸汽、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。用热环节即终端系统用热设备。城市集中供热主要是建筑物内的采暖(为简化分析只谈最大热用户)。一般都是通过采暖散热器把热传给房间以保持舒适的室内温度。它的耗能设备是采暖散热器。其能耗量取决于建筑维护结构保温性能、保持的室内温度和外界环境的温度;其耗热量可通过计量进入的循环水量和供、回水温差积分获得。通常以单位供暖面积的耗热量来评定耗能水平。2.系统热耗的估计供热系统从热制备→转换→输送→用热环节的能量进入和输出必须相等,即:输入能量=可用能量+∑能量损失能源利用率=可用能量/输入能量可以这样认为:供热系统是由多个子系统组成。热用户是终端,采暖散热器是终端用热设备。热力站、二级网和终端组成二级网子系统,热力站热交换器成为该子系统的能量转换点,一级网水则为它的热源。锅炉房(或热电厂首站),一级网和热力站组成一级网子系统,热力站是该子系统的热用户,锅炉受热面(或首站热交换器)成为能量转换设备,锅炉(或热电厂流经汽机制蒸汽)是热源。锅炉本体(或热电厂)自成一个子系统,称为热源子系统。若设采暖散热器耗为NO,二级网管路热损失为E1,泄露漏热损失E2,热力站内热损失E3,二级网管路热损失为E4,泄漏热损失E5,锅炉房(首站)内热损失E6。输入能量是燃料热N3,能量损失包括化学不完全燃烧损失E7、固体不完全燃烧损失E7、飞灰热损失E8、灰渣热损失E9,排烟热损失E10、(热电厂还应增加一项;供热分担的厂内热损失E11),输出则是二级网子系统的输入能量N2。 毕业论文 则:一级网子系统的输入热量N1=NO+E1+E2+E3一级网子系统热能利用率B1=100×NO/N1(%)二级网子系统的输入热量 N2=N1+E4+E5+E6二级网子系统热能利用率B2=100×N1/N3(%)热源子系统的输入热量N3=N2+E7+E8+E9+E10(+En)热源子系统热能利用率B3=100×N2/N3即锅炉热效率(热电厂热效率)(%)供热系统热能利用率B=B1×B2×B33.系统电耗的估计系统电耗评估与热能评估一样可以子系统后叠加。系统主要耗电设备有循环水泵、补水泵、鼓风机和引风机等,它们单位供热量的电耗由下式计算:(1)水泵耗电量式中,G……水泵运行流量 m3/h;ΔH……水泵运行扬程 m;η……水泵运行效率%;∑NO……系统供热量; h……有效小时数。(2)风机耗电量可用同一个计算公式。此时式中,G……风机运行风量 h;ΔH……风机运行风压 m;η……风机运行效率(对皮带传动应包括机械传动效率)%;∑NO……系统供热量4.系统泄漏损失的估计系统泄漏损失导致水资源和热能两方面损失。毕业论文 (1) 水资源损失量可认为等于系统补水量BS。若系统运行循环水量为G,则系统补水率P=100×BS/G (%)(2) 系统泄漏热损失由下式计算:单位供热量的泄漏热损失BR=(P×G×ρ×c(t1-t0)/∑NO)式中ρ……水的密度,C……水的比热,t1……供水温度,t0……水源温度二、从供热系统供热现状看节能潜力下面列举一些实例,一是说明供热系统供热现状能耗存在着很大的差别,节能潜力巨大。二是说明经科学技术来改进和完善的系统,节能效果显著。1.1993年北京对住宅供暖煤耗进行抽查,结果是煤耗差别很大;数据如表2-1;1993年北京住宅供暖煤耗情况统计 表2-1单位供暖面积煤耗(kg/m2)22253139占全市最单位的百分数(%)5204530与全市煤耗平均值比较(%)说明:H煤发热量为毕业论文 全市煤耗平均值为 Kg /m2。2.沈阳惠天热电有限公司沈海热网(原沈阳第二热力公司)应用微机监控,节能可观:该公司于1993年12月7日对33个微机监控的热力站统计,采暖平均热指标为·m2,而无微机监控的热力站统计,采暖平均热指标为42 Kcal/h·m2。这说明采用微机监控,实施科学运行,消除系统失调,可节能15%左右。3.山东省荣成市供热公司安装自力式平衡阀,即节能又增收:该公司文化站(热力站)是以热电厂蒸汽为热源的一个热力站。供热面积12万平方米,分东、南、西北三条支线,连接91热用户。1997年在供水或回水管上共安装73台自力式流量控制器(除末端和压差较小的引入口不设置外,占全部热用户的80%),使热网系统水力工况大为改善;原来三条支线的供回水温差分别为东区℃、南区℃、西北区℃,现在的供回水一样,都是13℃,实现了水力平衡;经调整后的单位供热面积循环水量在2-3公斤/小时,大多数在公斤/小时,达到设计要求;在与去年蒸汽用量持平的情况下,增加供热面积1万平方米,增收用户热费达万元。只运行一强45KW的水泵(原来是二台30KW的水泵),节约循环水泵电费约70万元。说明二级热网改善,解决水平失调,就可节约热能8%,循环水泵电功率减少25%。毕业论文 .山东省烟台技术开发区热力公司发现架空和地沟敷设管道的热损失很大:该公司于去年冬天对热力管道保温状况进行测定。发现热网效率低于90%,其中架空和地沟热损失占,其保温效果远不如直埋敷设。经初步整理的结果如表2-2。三种敷设方式管道保温状况实测数据表 2-2敷设方式架空地沟直埋管道外径(mm)820820529测点间距(m)3552133.52647保温材料/厚度(mm)海泡石/20岩棉/68聚氨脂/50实测流量(m3/h)22281364→→管壁温度(℃)→→→单位面积热损失(W/m2)85057292沿途温度降(m2/km)说明:实测时间:. 实测时室外温度:3-4℃ 毕业论文 .山东省烟台市民生小区计量收费改造试验有效果:1997年在建设部城建司的指导下,美国霍尼韦尔公司与烟台市合作在烟台市民生小区建立示范点进行计量收费的实验。试验有单管式和双管式系统,并有相应的对比楼。试验楼内采暖系统入口都安装热量计、散热器前都设温控阀;入口的自力式压差控制阀、立管的平衡阀、散热器回水支管制流量表、散热器上的热分配器按不同方案设置、对比楼内只在采暖系统入口安装热量计。根据一个冬季运行的数据表明,没有过热和地冷现象,用户满意,能耗都低于对比楼,节能率。三、供热系统能耗悬殊的原因分析1.设备效率的不同¨锅炉热效率是衡量热源子系统热能利用率的指标。体现燃料热被有效利用的程度。,燃煤供热锅炉的设计热效率(≥7MW)一般在75-85 %(燃油、汽供热锅炉热效率在90%左右)。但在使用时,由于锅炉结构、燃料供应、技术水平、管理水平、人员素质等方面不同的原因,使锅炉的运行效率差别很大。好的,能达到设计热效率,保证锅炉出力。差的,燃烧不完全、排烟温度高、各项热损失大,热效率不及50%,锅炉出力大帐降低;导致能源浪费,大气环境污染增加。¨风机、水泵效率是电能转化为有用功的份额,体现电能被有效利用的程度:目前,风机、水泵效率一般在55-75%。它们的流(风)量和扬程(压头)的选择与配置是十分重要的,选择与配置得当,装机电功率合适,运行工作点处于设备高效率区域,电耗少。选择与配置不当(一般是偏大),装机电功率偏大,运行工作点偏离设备高效率区域,则电耗多,两者的相差可达10-30%。不仅如此,锅炉的鼓、引风机配置不当,还会导致锅炉热效率下降。循环水泵配置不当,还会系统水力工况。 毕业论文 风机是热源子系统的主要附属设备,水泵是热网(一级和二级)网子系统的主要设备。其电耗大小,不但对电资源有影响,也对运行成本有显著影响。由于城市集中供热热负荷有随气候及用热变化的特点,设置变速风机和水泵已在并被实践证明可以进一步节能。2.输送条件的不同:¨热网热效率是输送过程保热程度的指标,体现管道保温结构的效果。一般热网热效率应大于90-95%。从上面实测情况看,直埋敷设管道能达到这一要求;而架空和管沟都达不互要求,其热损失远大于10%。如果地沟积水,管道泡水,保温性能遭破坏,其热损失甚至大于裸管。这一广泛存在于早期建设的热网。¨热网补水率可近似认为(忽略水热胀冷缩的补充)是输送过程失水的指标。目前,热网(特别是二级网)运行补水率差别很大,在范围变化。正常情况下,应在2%左右;好的,补水率可在1%以下;差的,管道泄漏和用户放(偷)水严重,补水率可达10%左右。系统泄漏丢失的热水,补充的是比回水低得多的冷水(一般是10-15℃),要把它加热到供水温度至少是循环水的三倍(二级网运行供水温度一般为55-85℃,回水温度40-60℃)。这就是说,系统补水不仅是水耗问题,热耗是更大的问题。例如:补水率1%,即相当于减少至少3%的供热量;补水率10%,则相当减少至少30%的供热质量,其差别多大呀! 毕业论文 .运行技术水平的不同:¨热网水力失调度是流量分配不均程度的指标:按用户热负荷分配流量,使每个用户室温达到一致且满足要求,则失调度为1,即热网无水力的失调,若分配不当,出现冷,热不均现象,说明有水力失调,其失调度是大于或小于1。大于1,会把用户室温过高,导致热量浪费,小于1,会使用户室温达不到要求,供热不合格是不允许的。为解决失调问题,正确的做法应该是改进和完善热网,如在终端设置自力式流量平衡阀或其它有效措施;但至今仍然有大量的系统工程不同程度地采用'大流量小温差'来缓和这一问题。其实,'大流量小温差'运行并不减少供热量的热损失,而且带来循环水泵电耗的在幅度增加和热源供热量的增大(电耗与流量、扬程成正比;在管网不变条件下,电功率随流量的三次方变化)。实例说明,解决水力失失调,系统在设计流量下运行,能挖出8-15%的供热量。¨科学运行调度实施按需供热,实现设备长期在高效率区间运行:做到这一点,供热能耗就会降低,违背这一点的,供热能耗就会升高。下面仅举几例说明:☆根据实际情况,制订调节方式:目前,一般采用质调节。有些系统条用质、量并调,在初、末寒期适当减少循环不泵运行台数,就明显降低电耗。国外普遍采用量调节,其原因是:①量调节的循环水泵电耗最少。从上说,在管道尺寸已经确定的情况下,减少流量和降低电耗是三次方关第。如流量减少30%,电功率节省,对于多数地区一长段时间用70%左右的流量运行,年减少电耗40%左右是不成问题的。这是一个十分可观的节能数字。②量调节对用户用热量变化的响应比质调节快得多,质调节的温度变化从热源到用户的传递是以流速进行,管道中水流速为1至2米/秒,传送到1公里远的用户需要的时间是8分20秒-16分50秒,如果传送到10公里远的用户就需要小时;如果水流速低,传递时间将增加。而量调节是以声速传递,其响应几乎是同步的,因此,一级网采用量调节是发展趋势。量调节应采用变速循环水泵,采用阀门节流的量调节运行,省电很少。 毕业论文 按照室外温度绘制运行负荷图、温度图、流量图甚至时间图,并以它们指导运行。这样可以避免初、末寒期供大于需,浪费能量。☆热源的容量和台数是由设计人员根据设计负荷、最大负荷、最小负荷和平均负荷的大小而确定的。运行时应根据热负荷的大小选择投入台数,这是因为锅炉热效率是随运行负荷变化的,一般地说,每台都维持在80%以上负荷能获得高效率运行。低负荷运行效率降低,这里有10%以上的节能潜力。☆设置热源和热网的微机监控系统,可实行最优化的运行调节和控制,实践已说明是目前实现运行节能的有效技术措施。4.管理体制和水平的不同:¨供热单位正处于体制转轨过渡时期,自我经营、自我改造和自我发展的思想和能力有差别:在供热从福利变为商品、经营单位从事业机构转变以的期间,有的已经成为自负盈亏的企业(包括承包的),为质量保证和效益驱动,在上级主管部门支持下积极以科学技术改进和完善系统,以高质量商品供给用户,以减少能耗来降低成本和提高经济效益。有耕耘就会有收获,因而能源利用率逐年提高。有的还停滞不前留原来的位置,热费收不上、效益谈不上、改造无资金;老系统、老设备、老,于是,能耗就居高不下,能源利用率也就居高不下毕业论文 ¨供热单位管理水平的不同显著影响能耗:人员和技术管理、系统和设备的检查、保养、维修和改造更新,……等差别对能耗影响是不言而喻的。例如,链条炉采用分层燃烧技术,就能改善燃烧提高热效率,保护和保持管道无泄漏和保温结构完好,就能减少大量能源浪费;严格水处理和保持水质,维持转换设备传热表面清洁,就能减少传热热阻、提高设备传热效率;对用户实行计量收费,就能刺激用户节能的积极性;……等等。不一一列举。四、依靠科学技术提高供热热源利用率1.利用科学技术提高能源利用率:所谓'节能潜力'是预测一定时期内,耗能系统和设备的各个环节,利用当前科学技术,采取技术上可行、经济上合理、优化系统和设备以及用户能接受的措施后,可取得的节能效益(减少能耗量或降低能耗率)。也就是说,预测通过技术改造和用户可接受的有效措施后,可取得的系统能源利用效率提高的程度。2.与先进评估指标的差距体现节能的潜力:节能的潜力是通过分析对比得出的。目标是反各个耗能环节现有的耗能指标提高到先进水平,其运行评估指标的变化量则体现了节能潜力。因此,其潜力大小于对比对象和自身的基础有关,所以,各单位、各系统的潜力是不可能完全相同的。毕业论文 各环节欲追求的先进评估指标可以选用:①上最好的水平;②国内先进水平;③全国平均水平;④国际先进水平;⑤理论上能达到的最高水平。而且,随着节能科学技术的发展,系统和设备的不断进步和完善,选择先进的评估指标也会不断变化。3.寻找能耗差距,制订可行措施,挖掘节能潜力:每个供热低位要定期检测评估各耗能环节的能耗指标,对比先进指标寻找能耗差距,分析能耗差别的原因,结合实际情况,研究和提出为实现先进指标的可行(包括技术和管理等方面)方案,经技术经济论证认为技术可行且经济合理后才能(分期或一次)实施。实施后,在运行中再检验是否达到预测的应挖掘的节能潜力和经济效益。

计量供热研究分析论文

房屋建筑工程施工是我们最常见的建设项目之一,在写作房屋建筑学论文时,我们要重视论文的题目,千万不能忽视论文的题目的重要性。。下面是我带来的关于房屋建筑学论文题目的内容,欢迎阅读参考!房屋建筑学论文题目(一) 1. 山区乡村建筑洪水冲击作用可视化研究 2. 房屋质量 保险 制度下质量检查机构运行机制研究 3. 山区乡村建筑洪水作用荷载试验研究 4. 木构架砖围护墙房屋的拟静力试验研究 5. 基于玻化微珠保温混凝土既有砌体房屋抗震加固与节能改造一体化研究 6. 夯土房屋纵横墙交接处裂缝成因及其预控 措施 研究 7. 既有建筑顶部钢结构加层的结构设计与抗震性能分析 8. 广东沿海典型低矮建筑调研与风荷载特性的试验研究 9. 基于建筑和结构安全统一的废旧集装箱改造房构造的研究 10. 从建筑到村落形态 11. 城市房屋拆迁补偿制度研究 12. 关于《危险房屋鉴定标准》的应用研究 13. 现有小高层钢筋混凝土房屋的抗震鉴定与加固 14. 现代木结构建筑之墙体构造研究 15. 云南传统民居建筑抗震加固 方法 的研究 房屋建筑学论文题目(二) 1. 澜沧江中下游流域传统聚落研究初探 2. 村落人居环境与建筑朝向生态的可持续发展 3. 沈阳周边村镇砌体结构学校建筑抗震性能研究 4. 湖南省村镇砖砌体房屋抗震施工方法及质量控制研究 5. 多层砌体房屋的抗震鉴定研究 6. 低层建筑表面风荷载数值模拟研究 7. 大庆地区房屋结露发霉治理技术研究 8. 汶川地震中村镇建筑的震害分析及抗震减灾措施研究 9. 夯土墙承重房屋的局部受压性能研究 10. 太阳能技术在建筑上的应用研究 11. 汶川地震房屋震害分析及抗震鉴定方法的研究 12. 西安老城区宗教建筑修复与保护研究 13. 抗震设防建筑的易损性及震害指数研究 14. 砌块建筑裂缝成因及处理技术研究 15. 混凝土砌块建筑裂缝及渗漏处理技术研究 16. 低层砌体住宅房屋简化设计及施工质量控制 17. 国内外房屋建筑物管理制度的比较和借鉴 房屋建筑学论文题目(三) 1. 高速公路服务区建筑设计研究 2. 多层砌体结构房屋震后鉴定及加固研究 3. 传统木结构建筑抗震性能试验研究 4. 多层砖混结构房屋抗震构造措施研究 5. TTU标模及平顶罩棚类低矮建筑的风洞试验研究 6. 摩擦滑移减震技术在村镇砌体房屋结构中的应用 7. 可行性研究及减震效果分析 8. 建筑外墙饰面检测维修优化分析 9. 山区乡村建筑洪水冲击破坏数值模拟研究 10. 住宅建筑计量供热自力式差压控制阀及热计费问题的研究 11. 云南农村民居新建房屋夯土墙竹筋加固的试验研究 12. 美日德建筑节能立法及其启示研究 13. 轻钢龙骨体系多层房屋力学性能比较分析 14. 现代木结构建筑之屋顶构造系统的研究 15. 武汉地区办公建筑节能设计研究 16. 砖砌体结构房屋震害分析及设计建议 17. 喇嘛甸油田建筑节能措施研究 猜你喜欢: 1. 房屋建筑学的论文 2. 房屋建筑学论文 3. 房屋建筑学毕业论文 4. 房屋建筑学设计论文 5. 房屋建筑学小论文

一、供热系统消耗能量的环节和评估1.供热系统消耗能量的环节供热系统由热源反热能送达热用户,一般都要经过热制备、转换、输送和用热这几个环节。我国城市集中供热热制备主要来自燃烧化石燃料(煤、油、气)的区域锅炉房和城市热电厂。区域锅炉房的主要耗能设备是锅炉、燃料输送及灰渣清除机械、鼓风机和引风机、水制备和输配系统的水泵(循环水泵、补水泵和加压泵);它们耗用的能源是燃料、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。热电厂是由抽凝式、或背压式(包括恶化真空)供热机组排(抽)汽通过热能转换装置(通常称为首站热交换器)传递给热网系统;首站是供热系统的热源,主要耗能设备是热交换器、输配系统的水泵。它们耗用的能源是蒸汽、电力、水和热;通常可能用单位供热量的消耗量来评定耗能水平。热能输送由热网承担,供热管道由钢管、保温层和保护层组成,其结构依敷设而异。管道敷设有架空、管沟和直埋三种方式。它们的能量消耗是沿途散热的热损失和泄漏的水、热损失。一般可用热网热效率来表示其保温效果和保热程度;热网补水率来表示热网水泄漏的程度。在热网管线上有时还设置中间加压泵,以降低和改善系统水力工况(设置在非空载干线上,还能节省输送电耗),它的能量消耗设备是水泵,可用单位供热量的耗电量来评定耗能水平。 毕业论文 能量转换是通过热力站交换器把一级网的热能传递给二级网,并由它输送到热用户。热力站是二级网的热源,主要耗能设备是热交换器、二级网系统循环水泵和补水泵。它们耗用的能源是一级网高温水/蒸汽、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。用热环节即终端系统用热设备。城市集中供热主要是建筑物内的采暖(为简化分析只谈最大热用户)。一般都是通过采暖散热器把热传给房间以保持舒适的室内温度。它的耗能设备是采暖散热器。其能耗量取决于建筑维护结构保温性能、保持的室内温度和外界环境的温度;其耗热量可通过计量进入的循环水量和供、回水温差积分获得。通常以单位供暖面积的耗热量来评定耗能水平。2.系统热耗的估计供热系统从热制备→转换→输送→用热环节的能量进入和输出必须相等,即:输入能量=可用能量+∑能量损失能源利用率=可用能量/输入能量可以这样认为:供热系统是由多个子系统组成。热用户是终端,采暖散热器是终端用热设备。热力站、二级网和终端组成二级网子系统,热力站热交换器成为该子系统的能量转换点,一级网水则为它的热源。锅炉房(或热电厂首站),一级网和热力站组成一级网子系统,热力站是该子系统的热用户,锅炉受热面(或首站热交换器)成为能量转换设备,锅炉(或热电厂流经汽机制蒸汽)是热源。锅炉本体(或热电厂)自成一个子系统,称为热源子系统。若设采暖散热器耗为NO,二级网管路热损失为E1,泄露漏热损失E2,热力站内热损失E3,二级网管路热损失为E4,泄漏热损失E5,锅炉房(首站)内热损失E6。输入能量是燃料热N3,能量损失包括化学不完全燃烧损失E7、固体不完全燃烧损失E7、飞灰热损失E8、灰渣热损失E9,排烟热损失E10、(热电厂还应增加一项;供热分担的厂内热损失E11),输出则是二级网子系统的输入能量N2。 毕业论文 则:一级网子系统的输入热量N1=NO+E1+E2+E3一级网子系统热能利用率B1=100×NO/N1(%)二级网子系统的输入热量 N2=N1+E4+E5+E6二级网子系统热能利用率B2=100×N1/N3(%)热源子系统的输入热量N3=N2+E7+E8+E9+E10(+En)热源子系统热能利用率B3=100×N2/N3即锅炉热效率(热电厂热效率)(%)供热系统热能利用率B=B1×B2×B33.系统电耗的估计系统电耗评估与热能评估一样可以子系统后叠加。系统主要耗电设备有循环水泵、补水泵、鼓风机和引风机等,它们单位供热量的电耗由下式计算:(1)水泵耗电量式中,G……水泵运行流量 m3/h;ΔH……水泵运行扬程 m;η……水泵运行效率%;∑NO……系统供热量; h……有效小时数。(2)风机耗电量可用同一个计算公式。此时式中,G……风机运行风量 h;ΔH……风机运行风压 m;η……风机运行效率(对皮带传动应包括机械传动效率)%;∑NO……系统供热量4.系统泄漏损失的估计系统泄漏损失导致水资源和热能两方面损失。毕业论文 (1) 水资源损失量可认为等于系统补水量BS。若系统运行循环水量为G,则系统补水率P=100×BS/G (%)(2) 系统泄漏热损失由下式计算:单位供热量的泄漏热损失BR=(P×G×ρ×c(t1-t0)/∑NO)式中ρ……水的密度,C……水的比热,t1……供水温度,t0……水源温度二、从供热系统供热现状看节能潜力下面列举一些实例,一是说明供热系统供热现状能耗存在着很大的差别,节能潜力巨大。二是说明经科学技术来改进和完善的系统,节能效果显著。1.1993年北京对住宅供暖煤耗进行抽查,结果是煤耗差别很大;数据如表2-1;1993年北京住宅供暖煤耗情况统计 表2-1单位供暖面积煤耗(kg/m2)22253139占全市最单位的百分数(%)5204530与全市煤耗平均值比较(%)说明:H煤发热量为毕业论文 全市煤耗平均值为 Kg /m2。2.沈阳惠天热电有限公司沈海热网(原沈阳第二热力公司)应用微机监控,节能可观:该公司于1993年12月7日对33个微机监控的热力站统计,采暖平均热指标为·m2,而无微机监控的热力站统计,采暖平均热指标为42 Kcal/h·m2。这说明采用微机监控,实施科学运行,消除系统失调,可节能15%左右。3.山东省荣成市供热公司安装自力式平衡阀,即节能又增收:该公司文化站(热力站)是以热电厂蒸汽为热源的一个热力站。供热面积12万平方米,分东、南、西北三条支线,连接91热用户。1997年在供水或回水管上共安装73台自力式流量控制器(除末端和压差较小的引入口不设置外,占全部热用户的80%),使热网系统水力工况大为改善;原来三条支线的供回水温差分别为东区℃、南区℃、西北区℃,现在的供回水一样,都是13℃,实现了水力平衡;经调整后的单位供热面积循环水量在2-3公斤/小时,大多数在公斤/小时,达到设计要求;在与去年蒸汽用量持平的情况下,增加供热面积1万平方米,增收用户热费达万元。只运行一强45KW的水泵(原来是二台30KW的水泵),节约循环水泵电费约70万元。说明二级热网改善,解决水平失调,就可节约热能8%,循环水泵电功率减少25%。毕业论文 .山东省烟台技术开发区热力公司发现架空和地沟敷设管道的热损失很大:该公司于去年冬天对热力管道保温状况进行测定。发现热网效率低于90%,其中架空和地沟热损失占,其保温效果远不如直埋敷设。经初步整理的结果如表2-2。三种敷设方式管道保温状况实测数据表 2-2敷设方式架空地沟直埋管道外径(mm)820820529测点间距(m)3552133.52647保温材料/厚度(mm)海泡石/20岩棉/68聚氨脂/50实测流量(m3/h)22281364→→管壁温度(℃)→→→单位面积热损失(W/m2)85057292沿途温度降(m2/km)说明:实测时间:. 实测时室外温度:3-4℃ 毕业论文 .山东省烟台市民生小区计量收费改造试验有效果:1997年在建设部城建司的指导下,美国霍尼韦尔公司与烟台市合作在烟台市民生小区建立示范点进行计量收费的实验。试验有单管式和双管式系统,并有相应的对比楼。试验楼内采暖系统入口都安装热量计、散热器前都设温控阀;入口的自力式压差控制阀、立管的平衡阀、散热器回水支管制流量表、散热器上的热分配器按不同方案设置、对比楼内只在采暖系统入口安装热量计。根据一个冬季运行的数据表明,没有过热和地冷现象,用户满意,能耗都低于对比楼,节能率。三、供热系统能耗悬殊的原因分析1.设备效率的不同¨锅炉热效率是衡量热源子系统热能利用率的指标。体现燃料热被有效利用的程度。,燃煤供热锅炉的设计热效率(≥7MW)一般在75-85 %(燃油、汽供热锅炉热效率在90%左右)。但在使用时,由于锅炉结构、燃料供应、技术水平、管理水平、人员素质等方面不同的原因,使锅炉的运行效率差别很大。好的,能达到设计热效率,保证锅炉出力。差的,燃烧不完全、排烟温度高、各项热损失大,热效率不及50%,锅炉出力大帐降低;导致能源浪费,大气环境污染增加。¨风机、水泵效率是电能转化为有用功的份额,体现电能被有效利用的程度:目前,风机、水泵效率一般在55-75%。它们的流(风)量和扬程(压头)的选择与配置是十分重要的,选择与配置得当,装机电功率合适,运行工作点处于设备高效率区域,电耗少。选择与配置不当(一般是偏大),装机电功率偏大,运行工作点偏离设备高效率区域,则电耗多,两者的相差可达10-30%。不仅如此,锅炉的鼓、引风机配置不当,还会导致锅炉热效率下降。循环水泵配置不当,还会系统水力工况。 毕业论文 风机是热源子系统的主要附属设备,水泵是热网(一级和二级)网子系统的主要设备。其电耗大小,不但对电资源有影响,也对运行成本有显著影响。由于城市集中供热热负荷有随气候及用热变化的特点,设置变速风机和水泵已在并被实践证明可以进一步节能。2.输送条件的不同:¨热网热效率是输送过程保热程度的指标,体现管道保温结构的效果。一般热网热效率应大于90-95%。从上面实测情况看,直埋敷设管道能达到这一要求;而架空和管沟都达不互要求,其热损失远大于10%。如果地沟积水,管道泡水,保温性能遭破坏,其热损失甚至大于裸管。这一广泛存在于早期建设的热网。¨热网补水率可近似认为(忽略水热胀冷缩的补充)是输送过程失水的指标。目前,热网(特别是二级网)运行补水率差别很大,在范围变化。正常情况下,应在2%左右;好的,补水率可在1%以下;差的,管道泄漏和用户放(偷)水严重,补水率可达10%左右。系统泄漏丢失的热水,补充的是比回水低得多的冷水(一般是10-15℃),要把它加热到供水温度至少是循环水的三倍(二级网运行供水温度一般为55-85℃,回水温度40-60℃)。这就是说,系统补水不仅是水耗问题,热耗是更大的问题。例如:补水率1%,即相当于减少至少3%的供热量;补水率10%,则相当减少至少30%的供热质量,其差别多大呀! 毕业论文 .运行技术水平的不同:¨热网水力失调度是流量分配不均程度的指标:按用户热负荷分配流量,使每个用户室温达到一致且满足要求,则失调度为1,即热网无水力的失调,若分配不当,出现冷,热不均现象,说明有水力失调,其失调度是大于或小于1。大于1,会把用户室温过高,导致热量浪费,小于1,会使用户室温达不到要求,供热不合格是不允许的。为解决失调问题,正确的做法应该是改进和完善热网,如在终端设置自力式流量平衡阀或其它有效措施;但至今仍然有大量的系统工程不同程度地采用'大流量小温差'来缓和这一问题。其实,'大流量小温差'运行并不减少供热量的热损失,而且带来循环水泵电耗的在幅度增加和热源供热量的增大(电耗与流量、扬程成正比;在管网不变条件下,电功率随流量的三次方变化)。实例说明,解决水力失失调,系统在设计流量下运行,能挖出8-15%的供热量。¨科学运行调度实施按需供热,实现设备长期在高效率区间运行:做到这一点,供热能耗就会降低,违背这一点的,供热能耗就会升高。下面仅举几例说明:☆根据实际情况,制订调节方式:目前,一般采用质调节。有些系统条用质、量并调,在初、末寒期适当减少循环不泵运行台数,就明显降低电耗。国外普遍采用量调节,其原因是:①量调节的循环水泵电耗最少。从上说,在管道尺寸已经确定的情况下,减少流量和降低电耗是三次方关第。如流量减少30%,电功率节省,对于多数地区一长段时间用70%左右的流量运行,年减少电耗40%左右是不成问题的。这是一个十分可观的节能数字。②量调节对用户用热量变化的响应比质调节快得多,质调节的温度变化从热源到用户的传递是以流速进行,管道中水流速为1至2米/秒,传送到1公里远的用户需要的时间是8分20秒-16分50秒,如果传送到10公里远的用户就需要小时;如果水流速低,传递时间将增加。而量调节是以声速传递,其响应几乎是同步的,因此,一级网采用量调节是发展趋势。量调节应采用变速循环水泵,采用阀门节流的量调节运行,省电很少。 毕业论文 按照室外温度绘制运行负荷图、温度图、流量图甚至时间图,并以它们指导运行。这样可以避免初、末寒期供大于需,浪费能量。☆热源的容量和台数是由设计人员根据设计负荷、最大负荷、最小负荷和平均负荷的大小而确定的。运行时应根据热负荷的大小选择投入台数,这是因为锅炉热效率是随运行负荷变化的,一般地说,每台都维持在80%以上负荷能获得高效率运行。低负荷运行效率降低,这里有10%以上的节能潜力。☆设置热源和热网的微机监控系统,可实行最优化的运行调节和控制,实践已说明是目前实现运行节能的有效技术措施。4.管理体制和水平的不同:¨供热单位正处于体制转轨过渡时期,自我经营、自我改造和自我发展的思想和能力有差别:在供热从福利变为商品、经营单位从事业机构转变以的期间,有的已经成为自负盈亏的企业(包括承包的),为质量保证和效益驱动,在上级主管部门支持下积极以科学技术改进和完善系统,以高质量商品供给用户,以减少能耗来降低成本和提高经济效益。有耕耘就会有收获,因而能源利用率逐年提高。有的还停滞不前留原来的位置,热费收不上、效益谈不上、改造无资金;老系统、老设备、老,于是,能耗就居高不下,能源利用率也就居高不下毕业论文 ¨供热单位管理水平的不同显著影响能耗:人员和技术管理、系统和设备的检查、保养、维修和改造更新,……等差别对能耗影响是不言而喻的。例如,链条炉采用分层燃烧技术,就能改善燃烧提高热效率,保护和保持管道无泄漏和保温结构完好,就能减少大量能源浪费;严格水处理和保持水质,维持转换设备传热表面清洁,就能减少传热热阻、提高设备传热效率;对用户实行计量收费,就能刺激用户节能的积极性;……等等。不一一列举。四、依靠科学技术提高供热热源利用率1.利用科学技术提高能源利用率:所谓'节能潜力'是预测一定时期内,耗能系统和设备的各个环节,利用当前科学技术,采取技术上可行、经济上合理、优化系统和设备以及用户能接受的措施后,可取得的节能效益(减少能耗量或降低能耗率)。也就是说,预测通过技术改造和用户可接受的有效措施后,可取得的系统能源利用效率提高的程度。2.与先进评估指标的差距体现节能的潜力:节能的潜力是通过分析对比得出的。目标是反各个耗能环节现有的耗能指标提高到先进水平,其运行评估指标的变化量则体现了节能潜力。因此,其潜力大小于对比对象和自身的基础有关,所以,各单位、各系统的潜力是不可能完全相同的。毕业论文 各环节欲追求的先进评估指标可以选用:①上最好的水平;②国内先进水平;③全国平均水平;④国际先进水平;⑤理论上能达到的最高水平。而且,随着节能科学技术的发展,系统和设备的不断进步和完善,选择先进的评估指标也会不断变化。3.寻找能耗差距,制订可行措施,挖掘节能潜力:每个供热低位要定期检测评估各耗能环节的能耗指标,对比先进指标寻找能耗差距,分析能耗差别的原因,结合实际情况,研究和提出为实现先进指标的可行(包括技术和管理等方面)方案,经技术经济论证认为技术可行且经济合理后才能(分期或一次)实施。实施后,在运行中再检验是否达到预测的应挖掘的节能潜力和经济效益。

冷热电三联供应用研究论文

这样吧,如果是您是写论文的话,可以借鉴《燃气冷热电三联供工程技术规程CJJ145-201》《分布式冷热电联产系统装置及应用》等。你提及的这些问题在实际的应用中并没有统一的规定,是根据用户的实际需求而来的,通过技术经济对比得到最后的方案。吸收式溴化锂机组有多种,热水和蒸汽包括烟气都可以吸收,只是COP不同。希望能抛砖引玉。

压空属于物理储能方式的一种,它与抽水蓄能齐名,无论是存储时间、放电功率、还是运行寿命,都有着卓越的表现,但它同样有着自身的缺点,比如系统复杂,比如受地域影响等。 一 压缩空气原理 压缩空气的基本原理很简单,在电网负荷低谷期将电能用于压缩空气,将空气高压密封在报废矿井、储气罐、山洞、过期油气井或新建储气井中,在电网负荷高峰期释放压缩空气推动汽轮机发电的储能方式,原理如下图所示。若需要更近一步解释,你只需锁定储气罐内的空气即可,两个动作,充气时储存能量,膨胀时释放能量。 然而,如果你在此处宣布已经掌握了压空技术,为时过早。要知道,原理不能解决任何问题,需要在原理的基础上舔砖加瓦,优化利用,才能达到合理的应用标准。于是,压空的各种变异横空出世,为了便于理解,我温度、压力、容积等方面着手,一步步深入介绍。 温度 我先强调一点:温度是一种能量。对于压缩机而言,压缩过程温度越低,耗费电能越少;与之相反,对于膨胀机而言,膨胀起始点温度越高,膨胀过程中得到的有用功越多。所以,降低压缩温度,或者提高膨胀进气温度,是提高系统效率的一种重要而有效的手段。请看下图变异1,在压缩机的出口增加了冷却器,以回收压缩热,在膨胀机(或涡轮机)的入口增加回热器,以提高进气温度。回热器的热量可由冷却器供给,如果必要,涡轮机的出口废弃也可以进一步回收,这取决于废弃的温度品味。该系统叫称为回热式系统。 相较于原理型系统,回热系统储电效率有所增加,然而它的不足在于,冷却器和回热器分开设置,在热量回收过程中存在较大热损失。为解决这一问题,有人提出绝热压缩空气系统,变异2,参照下图。将压缩过程中产生的热量存储起来,然后在发电过程中用这部分热量预热压缩空气,冷却器和回热器合为一体,对外进行绝热处理,业内称作先进绝热压缩空气储能系统(AA-CAES),该系统面临的最大挑战是如何经济、有效地设计和制造出压力工作范围大的压缩机、涡轮机和除热器。 一切比较完美,但还忽略一点,即使100%回收利用,压缩过程中产生的热量不足以使涡轮机持续长时间稳定运行,换句话说,只靠自身的热回收很难保持系统抵抗外部负荷波动。热量不够怎么办?引进额外热源,天然气,将天然气与来自储气罐的高压空气混合燃烧,推进涡轮机旋转发电。请看下图,变异3。对比以上系统,它的可靠性最高,稳定性最强,灵活性最优,所以在德国1978年建造首套压空储能电站时,果断采用这种方案。然而,变异3的引发的问题在于:消耗化石能源,增加温室气体排放。于是在国内做压空系统的高校研究所想方设法消除对外在热源的利用,比如清华大学的卢强院士,推非补燃压空系统。此处必须加句评论,难度都很大,不用补燃,系统复杂程度会提高,可靠性也会有波动,平衡各个功能单元,是一件技术含量很高的工作。 2 压力 谈到这里,如果你站起来宣布掌握了压空技术,我会告诉你又早了。除了温度之外,还有一个参数没有讲,压力!与温度相比,压力的影响更加多元。压缩阶段,压力越高,同等温度下空气密度越大,同等体积的储罐储存的空气量更多,储能密度更高;膨胀阶段,初始入口压力越高,出口压力越低,有用功输出越高。 现在的问题来了,能不能只使用一台压缩机,比如从1个大气压直接压缩到100个atm?膨胀过程从40个atm膨胀到1atm?我可以负责任的告诉你,理论上可以,但如果你真敢这么做,保证系统电-电转换效率会低的让你下不来台!如何解决这一问题?热力学给出的指引是多级压缩,中间冷却,可显著降低压缩过程中的电力消耗;多级膨胀,中间加热,可显著增加膨胀过程中的发电量,综合起来,储电效率必然显著提高。 下图为非补燃多级压缩系统图,可以看出,在每台压缩机后加装热回收器,通过回热系统将热量传递到各级膨胀机的入口处。 当系统采用绝热压缩时,综合多级压缩和多级膨胀,组成的系统如下图所示。 采用燃气补热的系统,多级压缩阶段与非补燃一致,不同的是在各级膨胀机入口加装燃烧室,详见下图。 容积 压空系统的技术痛点在于气体的密度太低,常压下空气密度为,即使在10Mpa高压下密度也只有100kg/m3左右,相比水的1000kg/m3,差了足足十倍,这意味在相同储存质量下,空气的罐子要比水大十倍。要解决大规模空气存储的方法至少有3个,方法一,就地取材,寻找废弃的矿井,进行密封承压方面的改造,然后将空气压入其中,这种方法既经济又可靠,而且储量惊人,比如德国的Huntorf压空电站可储存30万立方的空气,但是,这种方式受制于地形限制,灵活性差,比如我想在南京建一座压空电站,即使金坛的溶洞再优越,我也用不上。方法二,高压储气罐,该方式操作灵活,完全不受地域地形限制,比如中科院在廊坊的示范项目,采用2个直径,长10m的储罐,每个储存45m3的高压空气,储罐压力10Mpa,储罐设备属于特种设备范畴,无论从制造,安装还是运行,都要经过严格的检查,成本相对较高。方法三,空气液化。为了进一步减小储罐体积,有专家想到了变态,将气体液化,密度将增加上百倍,于是体积减少上百倍,通过设计,使膨胀机出口的空气温度低于(℃)时,空气被液化,系统流程见下图,这种系统的特点是体积小,管路复杂,效率低。我在一次讲座上跟东大热能所的肖睿教授聊天时得知,他测算过液化压空储能的理论效率60%,实际效率能打七折就已经很不错了。 冷热电三联供 在储能领域,压空算是个另类,不能用传统的评价标准衡量它,比如只追求电-电存储效率,压空肯定毫无优势,非补燃机组能达到40%已算很不错了。但它在发电的同时,还能兼顾供冷和供热,俗称冷热电三联供,其实原理没有任何改变,只是将压缩过程产生的热量用于供热,膨胀机出口的低温空气用于制冷,膨胀产生的有用功用于发电,详见下图。冷热电三联供的特点是能源利用效率高,若以热能利用为基础测算,系统效率可达70-85%。 二 系统特点 在储能家族中,压空和抽水蓄能属于一个阵营,即是一种可以大功率,长时运行的物理储能技术,各种技术对比见下图(CAES),技术特点如下: (1)输出功率大(MW级),持续时间长(数小时); (2)单位建设成本低于抽水蓄能,具有较好的经济性; (3)运行寿命长,可循环上万次,寿命可达40年; (4)环境友好,零排放。 三 系统结构 一套完整的压空系统五大关键设备组成:由压缩机、储气罐、回热器、膨胀机以及发电机,结构详图如下。 压缩机 压缩机是一种提升气体压力的设备,见下图。压缩机的种类和压缩方式各不相同,但设计者会更关心它的进出口压力参数,表征为四个参数,一是工作压力区间,二是压缩比,即进出口压力比值,三是进出口温度或绝热效率,四是压缩功率与流量。清华大学卢强院士的500kw压空系统中所用其中一台压缩机参数为:进气压力1atm,25℃,排气压力,143℃,压缩比,轴功率。 储气罐 储气罐是高压空气的出厂场所,说白了就是一个岩洞或者一个罐子。这里还是要强调,温度是一种能量,60℃和20℃条件下,空气的能量大不一样,所以有必要对储罐进行保温处理,尽量维持罐内温度一致,减小对流损失。尺寸与耐压等级等制造问题,交给工厂。 回热器 回热器是热交换器的统称,包括预热器,冷却器,换热器等等,回热器的功能是通过温差传热回收热量,达到节能效果。 膨胀机 膨胀机的英文名字叫“turbine”,又叫透平,也有叫涡轮机的,它的功能是通过膨胀,将空气的内能转化为动能,推动与之相连的发电机,又将动能转化为电能,见下图。标定膨胀机的参数有进出口压力与温度,膨胀系数等。 发电机 发电机是一种发电设备,将各种形式的能量转化成电能,此处略过。 四 压空系统应用领域 (1)调峰与调频。大规模压空系统最重要的应用就是调峰和调频,调峰的压空电站分为两类,独立电站以及与电站匹配的压空系统。 (2)可再生能源消纳。压空系统可将间断的可再生能源储存起来,在用电高峰期释放,可显著提高可再生能源的利用率。 (3)分布式能源。大电网和分布式能源系统结合是未来高效、低碳、安全利用能源的必然趋势。由于压空具备冷热电联供的优点,在分布式系统中将会有很好的应用。 五 性能评价指标 为了更清楚表达工作过程的能量传递,我借用了哈佛大学Azziz教授论文中的一张图,见上图。其中W为电功,Q为热量,箭头向内代表进入系统,向外表示系统输出,流程箭头代表空气流向。一目了然,比如压缩机工作消耗的电能来自于电网,膨胀时向电网输出电能,都能直观看到,并且判断:系统用电越小越好,回收的热量越多越好,向外输出的电能越大越好。 在我看来,表征系统性能的参数主要有两个,一个是电能存储效率,另一个是系统能量效率。电能存储效率是电能输出与输入的比值,这对电网运营至关重要;系统能量效率是输出的电能+热能与输入之比,表征整个系统的总效率,这对压空系统至关重要。 六 国内外压空项目 德国Huntorf Huntorf是德国1978年投入商业运行的电站,目前仍在运行中,是世界上最大容量的压缩空气储能电站。机组的压缩机功率60MW,释能输出功率为290MW。系统将压缩空气存储在地下600m的废弃矿洞中,矿洞总容积达×105m,压缩空气的压力最高可达10MPa。机组可连续充气8h,连续发电2h。该电站在1979年至1991年期间共启动并网5000多次,平均启动可靠性。电站采用天然气补燃方案,实际运行效率约为42%,扣除补燃后的实际效率为19%。 美国McIntosh 美国Alabama州的McIntosh压缩空气储能电站1991年投入商业运行。储能电站压缩机组功率为50MW,发电功率为110MW。储气洞穴在地下450m,总容积为×105m,压缩空气储气压力为。可以实现连续41h空气压缩和26h发电,机组从启动到满负荷约需9min。该电站由Alabama州电力公司的能源控制中心进行远距离自动控制。与Huntorf类似的是,仍然采用天然气补燃,实际运行效率约为54%,扣除补燃后的实际效率20%。 日本上砂川盯 日本于2001年投入运行的上砂川盯压缩空气储能示范项目,位于北海道空知郡,输出功率为2MW,是日本开发400MW机组的工业试验用中间机组。它利用废弃的煤矿坑(约在地下450m处)作为储气洞穴,最大压力为8MPa。 中国 我国对压缩空气储能系统的研究开发开始比较晚,大多集中在理论和小型实验层面,目前还没有投入商业运行的压缩空气储能电站。中科院工程热物理研究所正在建设先进压缩空气储能示范系统,该系统为非补燃方案,理论效率41%,实际运行效率33%。 在建的项目有江苏金坛压缩空气储能电站,利用盐穴储气,占地平方公里,最大容腔体积32万㎡。 七 国内企业和机构 中科院热物理所 中科院工程热物理所在10MW先进压缩空气储能系统研发与示范方面,已完成10MW先进压缩空气储能系统和关键部件的设计,基本完成宽负荷压缩机、高负荷透平膨胀机、蓄热(冷)换热器等关键部件的委托加工,正在开展关键部件的集成与性能测试;全面展开示范系统的集成建设,于2016年6月完成。 清华大学电机系 清华大学电极控制理论与数字化研究室,由卢强,梅生伟等带头,该团队主要研究智能微电网,压缩空气储能等,压空方面的主要路线为非补燃型压缩空气储能技术。 澳能(毕节) 澳能集团有限公司简称澳能工业,成立于2011年,是在与中国科学院工程热物理所合作开发超临界压缩空气储能技术,利用电网负荷低谷期的余电或可再生资源发电不能并网的废电将空气压缩到超临界状态并存储压缩热,利用系统过程存储的冷能将超临界空气冷却液化存储(储能);在发电过程中,液态空气加压吸热至超临界状态(同时液态空气中的冷能被回收存储),并进一步吸收压缩热后通过涡轮膨胀机驱动发电机发电(释能)。通过系统热能和冷能的存储、回收,实现系统效率的提高。超临界压缩空气储能利用空气的超临界特性,同时解决了传统压缩空气储能依赖大型储气室和化石燃料的两个技术瓶颈。关于微控新能源 深圳微控新能源技术有限公司(简称微控或微控新能源)是全球物理储能技术领航者。公司全球总部位于深圳,业务覆盖北美、欧洲、亚洲、拉美等地区,凭借“安全、可靠、高效”的全球领先的磁悬浮能源技术,产品与服务广泛受到华为、GE、ABB、西门子、爱默生等众多世界500强企业的信赖。 面向未来能源“更清洁、高密度、数字化”的三大趋势,公司持续致力于为战略性新兴产业提供能源运输、储存、回收、数据化管理提供系统解决方案。

这个三联供比较复杂,简单的说就是用锅炉烧水制热、高温烟气可以用来发电,至于制冷的话可以理解成通过锅炉烧溴化锂水溶液,高温使得水从里面蒸发变成水蒸气,水蒸气变成水就相当于冷凝器,而浓的溴化锂溶液吸水可以看成蒸发器,详细的可以看下远大直燃机

1 燃气冷热电三联供(CCHP)简介 发展背景随着人类生产和生活的发展,各种常规能源的大量消耗促使人们一方面不断探索利用太阳能、地热等各种可再生能源,另一方面更在积极寻求高效、环保的能源利用方式。随着分布能源技术的不断发展,以天然气为主要燃料,推动燃气轮机或内燃机发电,再利用其发电余热向用户供冷或供热的燃气冷热电三联供(CCHP)系统已成为分布式能源的一种主要形式。 基本原理 燃气冷热电三联产系统基本原理是——温度对口、梯级利用。这种能源利用方式通过对能源的梯级利用,充分的利用了天然气这种珍贵的一次能源,提高了系统综合能源利用率。 三联供系统的特点随着天然气进入城市,天然气在能源结构中的利用比例将逐步上升。目前城市天然气基本用于采暖,冬夏城市的峰谷日差已经高达近8倍。用气结构的不合理导致了天然气资源浪费以及输配管道、门站等天然气设施利用率的下降, 引起供气成本增加和燃气价格上升。冷热电联产冬季可以供暖,夏季则可以替代电空调制冷而节约大量电力,同时减小大电网负担。因此,以天然气为燃料的热电冷联产系统一方面可以扩大天然气使用量,另一方面具有燃气系统、电力系统双重调峰的作用。天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。美国有关专家预测如果将现有建筑实施CCHP的比例从4%提高到8%,到2020年二氧化碳的排放量将减少30%。

住宅楼供热计量方法研究论文

引言: 随着2001年9月1日北京市建委颁发的《北京市建筑节能管理规定》京建法[2001]689号文,以及《北京市新建集中供暖住宅分户热计量设计技术规程》(DBJ01-605-2000)的出台,规定了我们必须按节能的方针进行采暖设计,把“热”作为商品来向用户收取热费。停止福利供热,按面积收费改为由居民家庭直接交采暖热费,从而使居住建筑分户计量成为建筑节能的重要手段之一,把采暖节能变成人们使用热量时的一种自觉行动。这不仅仅是采暖收费制度的改革,也导致了传统的采暖设计方法的转变。无论是从建筑围护结构的热工性能,采暖系统的布置,热负荷的计算等多方面都带来了观念性的挑战。2.建筑围护结构热工性能及体形系数对建筑节能的重要影响:2001年之前的主要节能手段,仅限于居住建筑改善墙体和门窗的保温性能,当然,这是很有意义的。而分户热计量和收费,建立了用户的经济利益与能耗的直接关系,将会减少供热过量建筑采暖热量的无效消耗,同时使开发商真正意识到建筑围护结构的热工性能的重要意义。保证居住建筑围护结构传热系数 K(W/m2.℃)满足《北京市民用建筑节能设计标准(采暖居住建筑部分)北京地区实施细则》(DBJ01-602-97)的规定。可目前建筑专业大多喜欢追求建筑外观上大玻璃的通透效果,使得建筑物的窗墙比大都超过规范推荐值。这就对围护结构(特别是外窗)的传热系数及建筑的体形系数有较高的要求。我在设计建外SOHO一、二期住宅建筑中,就碰上此类问题。日本建筑大师山本理显所做的方案中,为了追求外表美观,外墙面除了柱子、梁、少量的墙体外均为落地大玻璃。这个方案国内能否满足节能要求,经过热工计算,它的体形系数及建筑物耗热量指标分别如下表,从表中看出,由于严格控制了外窗的传热系数和体形系数,使得该方案的耗热量指标qH< W/m2。同时,我发现,同样的平面当楼层下调至3层时,其体形系数大于时,为满足节能要求,外窗的传热系数必须达到 W/m2.℃,正常情况下的中空玻璃已无法满足这种K值要求,必须用洛依玻璃才可能达到。这一点充分反映了建筑物围护结构的热工性能及体形系数在建筑节能中的相互关系,也是在做住宅分户采暖设计时首先应注意的问题。 * 分户采暖设计中热负荷计算时值得注意的问题: .基本耗热量:按《住宅设计规范》(GB50096-1999)(2003年版)规定:卧室、起居室和卫生间温度为 18℃,但室内采暖计算温度应按提高2℃来计算,即20℃,以此温度与室外采暖计算温度的温差,计算出的耗热量为每个房间的基本耗热量。.户间传热量:传统的住宅设计,并不考虑户与户之间的热传递,当部分房间空置、或部分住户降低采暖标准、或有的住户间断采暖时,户与户之间的墙体及楼板就会有较大的热传递量,一般散热器采暖户间传热按6℃温差计;当采用地板辐射采暖时,则按8℃温差计算。不可简单地按基本负荷的附加系数取值。只有当户间传热量大于基本耗热量80%时,按基本耗热量的倍计,此举为避免增加不必要的投资。基本耗热量及户间传热量之和是布置室内散热器及户内管道管径的计算依据。.如若该房间采用地板辐射采暖时,则室内计算温度应比室内采暖温度降低1~2℃来计算温差。且地板表面温度不得大于60℃,以防地面由于温度过高而产生龟裂。.在设计建筑物采暖热力入口时,对户外供热量要求,则应仍按基本耗热量提出。.通常按规范要求做的节能建筑,整幢住宅楼采暖热负荷指标绝大部分可<52 W/m2(塔楼甚至可以做到40~43 W/m2,板楼可做到45~48 W/m2,)。 * 分户热计量采暖系统的各种形式: .独立燃气炉采暖:北京时代庄园东区(为连排别墅式)即采用此种形式,每户根据采暖热负荷再加上生活热水用热量,来选择壁挂炉的大小和型号,将壁挂炉设置在封闭阳台或面积较大的厨房内,靠外墙设置,且炉体设有单独通向室外的排烟及进气风管,并可根据起居室的温度来自动调节天燃气火力大小,控制出水温度,有严格自动熄火装置。壁挂炉自带采暖用循环水泵,需注意的是当系统末端为风机盘管时,要校核该水泵扬程。时代庄园工程系统末端为散热器,壁挂炉选用依马强制排风产品,其质量安全可靠。目前该项目已经竣工。 另据北京市环保局意见,在高层建筑不推广此种做法,因其排放物-氮氧化物浓度超过《大气环境质量标准》) GB3095-1996)中二级标准,但在多层(如回龙观小区)或别墅区使用效果良好,氮氧化物排放浓度合格。用户室温调节自如。.低温发热电缆地板辐射采暖:在建筑保温较好的住宅内,使用电热采暖,是可行的,从能源利用上分析,把高品位电能当作热能使用是不经济的,但随着2002年北京供电局出台《北京市电采暖低谷用电优惠办法》的通知,经过一次投资与运行费用比较,若合理使用是可行的。如北京龙潭路住宅小区,采用低温发热电缆地板辐射采暖,由于该小区建筑保温做的较好,墙体采用欧文斯科宁的外保温材料,K值达到 W/m2K,外窗为进口产品,K值达到 W/m2K。经过去年一个冬季的试运行测定,使用效果良好,运行费用为35元/平方米,总体比热水采暖费用略高一点。.集中热水采暖分户热计量:目前大多数住宅建筑仍以集中供热为主。经过3年设计经验的积累,下面将总结几条集中热水采暖分户热计量设计的经验:根据《分户热计量设计规程》DBJ01-605-2000第条规定,采暖热力入口要设置热量表及各种阀门、压力表、温度计、水过滤器及平衡阀等装置,其中热量表要注明额定流量以便订货。各居民用户须设置户用热表,锁闭阀,水过滤器等,并且要一户一表。.建筑物热力入口处要说明该系统热负荷及系统总阻力,因为户内部分装了户用热表,其采暖水阻力约为30kPa,再加上热力入口的总热表及各种附件阻力,提供外网设计依据时总阻力值约在50kPa左右。目前小区采暖外网设计较为混乱,有的住宅小区部分建筑物是2000年以前建成的,未设分户热计量装置,而现在新建的住宅均设了分户计量装置,二者水阻不平衡,外网又用一套热力管道系统,结果阻力相差甚大,新建楼群室温达不到标准,连调试都难以解决。目前东冠英小区即是如此。我认为这个问题应提醒重视。住宅楼内的公共用房、商业用房、人防、地下车库等应单独设置采暖热表,便于将来收费方便。一个单元的采暖公用立管及户用入口装置要设置在户外,一般设在楼梯间的公用管井内,这样物业管理人员可将拒付采暖费的用户进行锁闭,立管放气也可在管井操作,不必进入户内,减少物业管理与用户间的纠纷。散热器应选用铸铁无沙型或钢制型,以免堵塞热表。每个散热器宜设温控阀,以实现分室调温。采暖系统水平敷设有双管同程式,双管异程式,单管串联式,双管放射等形式。. 高层建筑采暖公用立管应注意热膨胀问题,每户水平支管与立管连接处宜设软连接(金属软管),以防由于热表或分集水器固定而立管胀缩导致接口开裂。. 每户的户用入口宜设泄水装置,泄水管可引至下一层管井内,以便维修或装修时,将户内水平管道泄空。但管井内不宜做垫层,否则三通接头在垫层内。5.采暖用塑料类管材选用及施工问题:. 从公用立管户用入口引入室内开始至户内的采暖管道多为埋在地面面层内,该管道采用塑料类管材,常用的有铝塑复合管,PB管,PE-X管,PP-R管。.埋在面层内的塑料管不得有接头,当采用PB管或PP-R管时,连接散热器处可以采用热熔连接,面层厚度一般不小于50mm。.采用塑料类管材时,供暖热水温度不宜高于85℃。.选用塑料类管材时,应考虑管材温度、压力及使用寿命为50年来选择使用等级,采暖管材可按5级来选,其壁厚应根据管材许用设计环应力和系统承压之间的关系来计算,或按《低温热水地板辐射供暖应用技术规程》附录J-1~4表来选择。当采暖热水温度为90℃时,应按5A级来选择塑料管材的厚度。.在《北京市新建集中供暖住宅分户热计量设计技术规程》(DBJ01-605-2000)中第条中明确:“在垫层内埋设的管道:除采用下分双管式系统连接散热器处的PB管和PP-R管可采用相同材质的专用连接件进行热熔外,其它管材和所有管材在其它部位均不应设置连接配件。”而实际市场中PP-R管为直段管材,长度一般为6~8米,如果房间内需连接的管道长度超过8米,其接头处必须上翻,影响美观,垫层内做热熔接头又违反规范;同样,管径大于25mm的PB管市场上只有直段管材,问题与PP-R管相同;管径小于25mm的PB管材市场上有盘管,但是盘管的弯曲半径有一定要求,且有弯曲方向性,这就导致了PB管在某些转角处不能紧贴墙边且离墙较远,若在靠墙处有散热器时,就需在干管上做三通,接出一段支管再接散热器或采用弯头作为热熔连接件,此两种热熔连接件(三通、弯头)都在垫层内又违反了规范。而如果否定这两种做法,等于否定了PB和PP-R这两种管材。北京幸福家园一、二期工程中就遇到此问题,质量检查监督站就此问题提出疑义,经几次讨论,并咨询了北京市建筑设计标准化办公室,得到的答复是上述两种做法是可行的。但目前技术规程与实际施工验收有矛盾,我认为应尽快对规程进行修订,保持其初衷:减少埋在地下的隐患;同时又要让先进的材料及做法普遍推广,并持续发展下去。.埋地管道穿卫生间时的做法问题:目前的标准图集和规程中均未提及。在实际工程中各种做法都有:有采暖用塑料管道走卫生间防水层上,水平穿防水卷边的;有管道走卫生间防水层下,接散热器支管竖直穿防水层的;两种做法穿防水层处均做防水套管。但每种做法均存在一定问题和隐患。前者做法,当卫生间不做结构降板时,防水套管下部空间太小,一般仅为10mm~20mm,工人不便操作,防水处理很难到位,在卫生间闭水试验时,很容易从套管渗漏到其它居室,在朗琴园一期工程中就发生了此种情况,在住户购房时引起了纠纷。后者做法,防水套管不好固定,尤其是采暖以后,由于管道的热伸缩则更要破坏防水涂料层,致使卫生间内的水泄漏到下层用户,也要引起纠纷。通过经验总结,我目前通常采用不穿防水层的做法:采暖干管不进入卫生间,接散热器的支管埋入卫生间侧墙(非承重墙),并上翻至防水卷边上部(一般为30cm)进入卫生间,一进入卫生间就接散热器,保证不影响高点放气。而卫生间散热器要高于地面30cm安装,只要散热器布置时注意与其它洁具协调即可。这种方式用于北京幸福家园一、二期工程,通过一个采暖季的使用,效果较好,甲方及业主均满意。6.采暖分户热计量各种形式经济比较:新建或改建采暖系统应根据该地区具体条件来选择热媒,根据环保要求,城市热力气源、电源、水源等因素做相应的技术经济比较,由开发商和设计人员共同协商决定,下面列出各种能源的一次性投资和运行费用参考价格。

住宅按户计热与控制问题,在我国是先由供暖收费问题引起的,随着住宅商品化的进程,现已提升到必须进行的程度。建设部已明令要求自2000年1月1起正式实施。也就是说,我们今后的设计,必然是符合上述要求的设计。至于老的住宅如何改造,那是另一个方面的事情,另有一些解决的办法。应当说,计量与控制的目的在于提高供暖质量,以及在此前提下节省供暖能耗。显然不能以收费作为最终目的,而只能是全项工作的一部分。从技术角度说,计量本身不能节能,控制才有可能节能。下面仅对这一问题结合国内目前的进展情况,作一些分析与综述,以供同行参考。一、适合住宅按户计热与控制的几种供暖方式住宅的特点是以户为单位,从而有一户到多户的不同组合,因此,适合单户供暖的方式也是多种多样的。在目前能源多样化的条件下,可行的方式也较多,并不限于集中热水供热供暖系统。但是,由于城市集中供热目前以及今后仍是主流,所以大量的问题是解决集中热水供暖条件下的分户计量。而由于能源及住户要求的多样化,对其它住宅供暖方式,也应当有条件的使用,并进行必要的探讨。笔者认为,目前住宅供暖可用的方式大致有以下几种:1 一户一炉 包括燃油、燃气、燃煤炉(某些地区已受到限制)。各户自成小的供暖系统。这实际是近百年来一直存在的住宅供暖方式之一,只是燃料的品种有变化。2 电热供暖 包括低温电热辐射供暖、电热散热器供暖等。3 热泵供暖是与空调一机两用,夏季供冷、冬季供热。自然,这种机组对室外空气温度有相应的要求,并不是所有采暖地区都可选用的。4 集中供热的分户供暖 包括一户一个热力进口的各种形式,如:(1)直供式 户内可为水平单管、水平双管等各种形式,以保证运行、方便安装为原则。对单元式住宅,采用按单元设公用总立管,各户设一个热力进口的共用立管的分户独立供暖系统,基本得到大家的认同。(2)间供式一户设一个小型的户用型换热器,器后为独立的(热媒水不与户外热网相通)小系统。(3)地板辐射供暖 由于水温一般要求低于60℃,所以,当户外热网水温高于60℃时,户内应设换热器,成为间供式。前述的(1)、(2)、(3)方式,各户热计量实际已转化为燃料或电计量,控制方式也相应进行了转换,便于解决,不属于工程设计中量大面广和目前较难处理的问题。所以,下面重点对集中热水供热条件下分户计量与控制问题作进一步阐述。二 单元式住宅中各户供暖热负荷及系统水力计算问题1 负荷计算问题单元式住宅中,由于入住率不满及各户的自主调节和控制(有可能在一定时间内全关),就可能出现两个问题:一是邻户或本户隔内墙传热问题;二是间歇供热问题。这两个问题不仅很可能出现,并且一旦出现就影响很大。户间传热问题又受住宅档次、入住情况、住户情况等各方面的影响,不同工程的差别太大,难以用简单的办法解决。目前较为一致的看法是应通过计算确定户间传热量,但计算该户间供热量时应取多大的温差以及计算的方法等都缺乏理论及实践上的可靠的依据。有的地区出于设计的需要,作了一些规定,户间传热计算温差对于集中供热采用散热器采暖的房间取6℃,对于地板采暖的房间8℃,单户热源(燃油、气炉等)取10℃;户间传热按50~70%(顶层按70~80%)的概率计算记间内围护结构(内隔墙、楼板)的传热;同时户间供热量不应超过房间常规热负荷的80%,超出部分不再计入。方案阶段也可采用负荷附加系数进行估算,该系数一般取~,外围护结构较多者取小值,外围护结构较少而内围护结构较多者取较大值。2 水力计算问题由于负荷计算一过去常用的按连续供暖计算方法的不同,就使散热器配置量大于按连续供热所需的散热器数量。由间歇供热的调控,会在某些时段达最大值(间歇供热所需)。这就使某一房间、或某一住户在这段时间内的供热量激增。相应要求户内的管道配置应能满足间歇调控的需要,即按最大供热量配置散热器及管道,其它靠调控解决。而户外的多户共用立管,如果仍按各户最大供热量叠加,显然会导致管径过大,实际上也是不需要的。因为不可能各户所有房间都同时达到最大供热量,即存在一个同时使用系统,其数值需要经过实践和分析后才能恰当取定的。笔者认为,可按本立管在连续供暖计算所得水量得基础上乘以~的附加系数即可,这样就能保持一定的调控余地。至于室外外网,也应当分析其运行情况,充分满足各楼、各户调控的需要,避免调控时供热不足(水量长不上去)。三 热计量及收费问题热计量的方式很多,目前常见的有以下二种试:一是用热量表计算供暖系统的供热量;二是计量户内各散热器的散热量(用蒸发式或电子式热量分配表)。根据我国目前的情况,较一致的看法是:新建住宅以采用热量表(一户一表)比较适宜,设于各户的总热力进口处(公用管井或专供热表的部位);蒸发式和电子式热分配表适合于旧供暖系统的改造。随着管理水平的提高,还应辅以微机管理系统。由于单元式住宅各户所处的位置不同,会因为屋顶、山墙、地板及朝向的影响,使各户的实耗热量出现很大的差异,此外还有户间传热的问题,所以,在正确的热计量后,还会出现如何合理收费的问题。如有的采用"面积加热表综合收费法",即按建筑面积收取20~30%的热费作为基本费,其余按热表计量数值收费。国外在这方面积累了不少经验,但如何与中国国情相适应,还是一个需进一步研究的课题。四 管道及散热器安装这里仅就公用立管的分户供暖系统进行阐述:1 管道安装(1)一个单元内各户的公用立管,宜设于专门的管井内。管井在楼梯间处,可按建筑情况设一个大管井或两个小管井。小管井的最小尺寸也不应小于500×800mm,并应设检查门(或查表门)。公用立管宜采用下供下回方式,以利于减少自然压头的影响。在这一系统中,各户为独立的小系统,户内系统的总水流阻力较大,使自然压头的影响力减弱,可扩大双管系统适用的楼层数。总立管的顶部应设自动放风阀。(2)户内管道安装方式,随所选用的系统制式不同而有不同的处理方法:a、地板辐射采暖及一器(散热器)一管的章鱼式系统 管道在地板垫层内敷设(用铝塑管或交联聚乙烯管道等),垫层内不能有接头(有专门的施工安装要求),垫层的厚度一般在70~90mm。b、水平串联系统 可采取局部过门处理,其余沿地板上明装的敷设方式。c、上行下给式系统 上行供水管可沿顶棚下敷设,下部回水管可局部作过门处理或沿墙予留小的管槽。至于管道如何与装修配合,只能随工程而异。d、双管并联系统 多将两根管道均设于下一层的吊顶内(或专门进行装饰处理)。2 散热器的要求及安装住宅内的散热器不一定强调设于外墙的窗下,可以从尽量减少管道安装困难的要求出发,靠内墙设置。出于热表及高精度控制阀门对水的洁净度要求,散热器内腔要干净。所以铸铁散热器如不是"内腔无粘砂型"就要避免使用,否则容易导致仪表及阀门失灵。其余种类的散热器可参照"安全可靠、轻薄美新"的综合要求选取用。安全可靠指热工性能稳定、足够的承压能力和耐腐蚀年限、能适应供热水质等,只有在这些条件满足后才可以考虑重量轻、厚度薄(少占地)、式样美、造型新颖的问题。根据我国的情况,规范要求换热器系统水的PH≤,锅炉水质的PH为10~12,含氧量。对钢制散热器来说,能适应水的PH值要求,但氧腐蚀问题还会由于失水量过大而严重存在。目前的产品中,已采取内防腐措施的钢制散热器及用钢管为过水元件的钢制散热器还是可以选用的。至于一户一炉的单户系统,由于水质管理可靠,可不受限制。无内防腐措施措施的铝制散热器,只能用于PH<的热水供暖系统,并且要求水的PH值要稳定,如果波动太大也是很危险的,有可靠防腐处理的铝制散热器,可以用于PH≤12的热水供暖系统;铜铝复合管材的铝制散热器及铜铝对流型散热器,耐腐蚀性能较好,可以用于PH≤12的热水供暖系统。散热器的选用应按实际的水温(即不同部位的散热器进出口的水温)为依据按实际测定的散热量计算公式计算后决定。对于对流型(串片型)散热器,由于管内水流速的大小对散热量的影响很大,所以必须按实际的水流速计算散热量。目前,多数国产对流散热器尚未给出流速修正系数;国外引进的对流散热量仅给出高流速()下的散热量,其它情况进行折减。而一般双管系统中每组散热器内的水流速仅上下,这就有可能出现大的计算误造成配片错误。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

1、引言2001年3月,国家对《采暖通风与空气调节设计规范》GBJ19-87采暖部分进行了局部修订,把设置分户热计量和室温控制装置作为强制性规定。北京市于2000年12月出台了北京市标准:《新建集中供暖住宅分户热计量设计技术规程》,对分户热计量采暖设计作出了一系列具体规定。在国家和地方强制性标准规范下,新建住宅热水集中供暖系统普遍进行了分户热计量设计。笔者在从事设计质量抽(审)查工作中,接触到一些分户热计量采暖工程设计,总体上看,基本上符合有关规范、标准、规程的要求,但也发现一些值得商榷的问题。现将发现的问题及个人的一些想法概述如下:2、有关标准、规定、规范的回顾自1996年以来,国家对新建集中供暖住宅分户热计量设计,陆续出台了规程、规范,其条款表述是逐步明确、越来越严格的。1996年7月1日起施行的国家《民用建筑节能设计标准》(采暖居住建筑部分)JGJ26-95第条规定:“在进行室内采暖系统设计时,设计人员应考虑按户热计量和分室控制温度的可能性”。1999年6月1日起实施的《住宅设计规范》GB50096-1999第条规定:“集中采暖系统设计宜能实施分室温度调节并为实施分户热计量预留条件”。2000年10月1日起施行的国家《民用建筑节能管理规定》(建设部令76号)第五条规定:“新建居住建筑的集中采暖系统应当使用双管系统,推行温度调节和户用热量计量装置”。2000年12月1日北京市出台了北京市标准:《新建集中供暖住宅分户热计量设计技术规程》DBJ01-605-2000,对北京地区的分户热计量设计进行了具体规范。这是国内较早的有关分户热计量设计的地方法规。为其它采暖地区分户热计量设计提供了参考。2001年4月1日起施行的国家《采暖通风与空气调节设计规范》GBJ19-87采暖部分2001年局部修定条文条规定:“新建住宅热水集中采暖系统应设置分户热计量和室温控制装置”并且将此条文列为强制性条文,要求设计必须严格执行。2001年9月1日起施行的《北京市建筑节能管理规定》(北京市人民政府令第80号)第八条规定:“新建建筑工程必须选择先进合理的采暖供热方式,采用高效的管道保温与热调控计量技术和节能型材料、设备、器具。在新建住宅采暖设计中,室内系统如仍采用传统的垂直单管串联系统或垂直单、双管串联系统,很难满足上述规范、规程的要求,必须对传统的采暖系统形式进行彻底的改变,应“采用共用立管的分户独立系统形式”,“按分户设计热量表的热计量方法进行设计”,做到一户一表。3、室内计算温度应区别于非分户热计量的普通住宅未考虑分户热计量的普通住宅,室内计算温度应按文献3中条规定执行,室内最低计算温度:卧室、起居室(厅)和卫生间18℃,厨房15℃,有洗浴器并有集中热水供应系统的卫生间宜按25℃设计。采用分户热计量的普通住宅,宜参照文献5规定取值,各房间室内采暖计算温度应在文献3的基础上相应提高2℃,即卧室、起居室(厅)和卫生间18 2=20℃,厨房15 2=17℃。原来按20℃或22℃计算的高级住宅,采用分户热计量后,其卧室、起居室(厅)和卫生间应按20 2=22℃或22 2=24℃计算,为居住者留有一定幅度内热舒适度的选择余地。但有的新建集中供暖住宅采用分户热计量采暖系统,室内计算温度仍按文献3规定的卧室、起居室(厅)18℃,采用是不妥当的,居住者少有热舒适度选择余地;还有的设计,不管什么性质的房间,室内计算温度一律按18℃或20℃采用也是不妥当的,应根据不同房间不同功能要求,选用不同的温度,如厨房宜为15℃~17℃,而不应按18℃或20℃计算,带洗浴器且有集中热水供应系统的卫生间宜为25~27℃,而不应按18℃或20℃计算。设置分户热计量的住宅,当采用低温热水地板辐射供暖系统时,在进行供暖热负荷计算时,宜将室内计算温度降低2℃;因为地板辐射供暖是在辐射热和空气温度双重作用下对房间进行供暖,形成了较合理的室内温度场分布和热辐射作用,相对于常规对流式供暖方式可有2~3℃的等效热舒适效应,为安全考虑,文献6提出将室内采暖计算温度降低2℃。如北京地区,室外采暖计算温度为-9℃,对分户热计量的普通住宅,其卧室、起居室(厅)室内计算温度20℃,计算温差29℃,采用地板采暖时,按室温降低2℃取值,计算温差应为27℃;对高级住宅,其卧室、起居室(厅)22℃,计算温差31℃,采用地板采暖时,按室温降低2℃取值,计算温差应为29℃。对于地板热水辐射供暖系统,将室内计算温度降低2℃,即按18~20℃计算供暖热负荷,由于等效热舒适效应,同样可以达到室内20~22℃的温度效果。4、户间传热量不应计入采暖系统的总热负荷内在实施分户热计量和分室控制温度后,将会出现部分房间采暖、部分房间间歇使用或较大幅度调节室温等情况,这就必须考虑户间传热负荷影响的问题。而解决这个问题可有两种方案:一是与邻户因室温差异而形成的热传递,可采用提高室内计算温度进行计算,主要房间按相应设计标准提高2℃,户间传热负荷的温差可按6~8℃计算,二是必要时对户间隔墙和楼板进行适当保温,保温最大传热系数,笔者认为,可参照文献2中条表中外墙(体型系数≤)传热系数限值取用。户间传热应予考虑,这是没有问题的,但必须明确一点,户间传热并不会使建筑物总热负荷增加,故户间传热负荷仅可作为确定户内供暖设备的因素,不应统计在供暖系统总热负荷内。文献1中条规定,“在确定分户热计量采暖系统的户内采暖设备容量、计算户内管道时,应计入向邻户传热引起的附加,但所附加的热量不应统计在采暖系统的总热负荷内”。文献5中条也规定:“户间传热量仅作为确定户内供热设备容量和计算户内管道的依据,不应计入户外供暖干管热负荷和建筑总热负荷内”。在实际工程设计中,有的暖通设计人员未注意户间传热量与户内供热设备容量及建筑总热负荷的这种相互关系,而将户间传热负荷也计入建筑总热负荷中,致使采暖总热负荷增加较多,造成浪费。某局级干部住宅楼,建筑面积6 295m2,设计采用分户热计量采暖系统,总采暖热负荷,单位面积采暖热负荷指标高达;而某军职经济适用房,建筑面积9524m2,总采暖热负荷419kW,单位面积采暖热负荷指标仅44W/m2.二者单位面积热负荷指标相差一倍之多。究其原因,除了二者建筑围护结构保温做法、热负荷计算参数取值稍有差异外,主要的是前者将户间传热统计在采暖系统的总热负荷内,而后者仅将户间传热负荷作为确定户内供暖设备容量和户内管道的依据,未计入总热负荷内,致使其单位面积热负荷指标出现了这样大的异差。5、户用热量表不宜设在户内文献1中条规定:分户热计量热水集中采暖系统的共用立管和入户装置宜设于管道井内,管道井宜邻接楼梯间或户外公共空间“。文献5中条规定:”共用立管宜设在户外,并与锁闭调节阀门和户用热量表组合设置于可锁封的管井或小室内“,”户用热表设置于户内时,锁闭调节阀和热量显示装置应在户外设置“。这里对分户热计量热水集中采暖系统共用立管和入户装置设置位置提出了明确要求,共用立管及户内入口装置(包括热量表及锁闭调节阀等)宜设在户外,起码锁闭调节阀和热量显示装置应在户外设置。这样,既可满足对公共功能管道的设置要求,也利于防止人为损坏、方便管理,避免入户读表。有的新建住宅采用分户热计量采暖系统,将共用立管及户用热表设在北阳台上,有的新建住宅分户热计量设计采用低温热水地板辐射采暖,将共用立管及户用分、集水器设在厅内,户用热量表亦予留在此处,这是不妥当的,查热表时还得入户读表,管理不便。6、散热器恒温阀应注意其传感器的选择和设置散热器恒温阀是分户热计量采暖系统室温调节的重要装置,其传感器的选用和设置同散热器是否装设暖气罩有关。如建筑上不设暖气罩,恒温阀传感器可采用内置式,如建筑上设置暖气罩,恒温阀传感器应选用外置式。文献1中条规定:“安装在装饰罩内的恒温阀必须采用外置传感器”。传感器应设置在能正确反映房间温度的位置。某些新建住宅工程分户热计量采暖系统,每组散热器供水支管上均装设有恒温阀,但未注明传感器内置还是外置,建筑专业设计说明中明确要求每组散热器均设暖气罩,这样,工程施工安装时可能出错:如果施工时订购、安装的是内置传感器的恒温阀,那将失去室温控制作用,因为装在暖气罩内的传感器反映的是暖气罩内的局部温度,并非室内温度。笔者认为,散热器上设有恒温阀的分户热计量采暖系统,为确保室温调控效果,散热器最好不设暖气罩,而将省下的钱用来购置、安装高效节能并具有装饰功能的散热器(目前许多散热器均具有这种功能,设计选择的余地相当大)。如果设计选用的散热器既高效节能,又与建筑装饰协调,具有良好的装饰功能,用户是完全可以接受的。如果有的用户执意要装暖气罩,暖通设计文件中一定要特别注明选用外置传感器的恒温阀。7、埋地采暖热水管道水流速度应符合规范要求文献1中条规定:“采暖管道的敷设应有一定的坡度,对热水管……坡度宜采用,不得小于……”,这是对传统的供暖系统而言。对于分户热计量供暖系统,如果供、回水管道明敷,也应该执行此规定。但如果管道埋设在垫层内,垫层厚度有限,管道亦要求按≥坡度敷设是难以做到的。所以该条又规定:“如因条件限制,热水管道(包括水平单管串联系统的散热器连接管)可无坡度敷设,但管中的水流速度不得小于”。文献5中条也规定管道“无坡度敷设时,管中水流速度不宜小于”。这一规定,主要是考虑便于排除空气,当水流速度达到时,方能把管中的空气泡带走,使之不能浮升。实践证明,热水采暖系统中的空气是最有害的因素,当管中有空气积存时,往往会影响热水正常循环,造成某些部位不热,产生噪声。暖通设计人员对有效排除空气必须引起足够的重视。某些住宅工程分户热计量采暖系统,采用水平单管异程系统,设在80~100mm厚的垫层内的管道为无坡敷设,有的一个住户分几个采暖环路,造成诸多管段中的水流速度<,不能满足规范中规定的最低流速限值,可能会造成管道局部积气,影响系统正常使用。这就要在系统分环时,不要过小,户内系统最好采用水平单管同程系统,另外管径选择不宜过大,管道平均比摩阻宜按60~120Pa取用,管道内热水流速以不超过最大允许流速为限。8、水力平衡计算应考虑垂直共用立管的重力水头目前,新建住宅分户热计量供暖系统设计,一般均采用新双管系统,即共用立管的分户独立采暖系统形式。这种系统,在计算共用立管各并联环路间水力平衡时,应计及垂直共用立管重力水头,以避免出现垂直失调现象。文献5中条规定:“各并联环路之间的水力平衡应计及垂直共用立管的重力水头”。重力水头值可按设计供回水温度条件下重力水头值的2/3计算。当供回水温度为95/70℃时,其重力水头计算值△P=2/3 ()h= (kg/m2),如层高为h=,则每层计算重力水头值为(mmH2O)。当供回水温度为80/60℃时,其重力水头计算值为△P= (kg/m2),如层高为,则每层计算重力水头值为(mmH2O)。有的新建住宅分户热计量采暖设计,在计算共用立管各并联环路间水力平衡时,未考虑这一重力水头值,可能会带来各并联环路(各户)水力不平衡,出现垂直水力失调现象,造成上下冷热不均。9、住宅内公共用房、公用空间应单独设置采暖系统和热计量装置文献1中条规定:“对建筑内的公共用房和公用空间应单独设置采暖系统和热计量装置”。文献5中条也规定:“住宅内的公共用房和公共空间应设置独立供暖系统和热计量装置”,住宅内的公共用房和公共空间是指住宅楼底层的商场等公共场所及地下室的办公、设备、库房等公共用房。某高层住宅的地下室为办公用房,其采暖系统设有6个采暖环路,每个环路供回水管均单独由大楼供、回水干管接出、接入(地上层各主立管亦由此供、回水干管接出接入)未单独设置热计量装置,不符合上述规范的要求。这种系统也不利于热计量装置的独立设置,此系统若设热计量装置,需设6套才行,显然不合理、不经济。较为合理、经济的做法应是:从大楼供、回水干管单独接出一路,合理组织地下办公用房的采暖系统,并在接出部位单独设一套热计量装置。10、设计选用的塑料管材应注明壁厚文献1中条规定:埋在垫层内的“采暖加热管的材质和壁厚的选择,应按工程要求的使用寿命、累计使用时间以及系统运行的水温、压力条件确定”;文献5中条规定:“塑料类管材的性能指标和选择计算,可参照北京市标准《低温热水地板辐射供暖应用技术规程》有关规定,对散热器供暖系统使用条件分级选择,应按不低于5级的要求”;文献6中条规定:“加热管的材质和壁厚,应按工程使用条件经计算选择确定,选择方法和计算数据可参见附录H、I、J”。附录H提供了加热管材质和壁厚选择计算方法,附录I列出了加热管材的使用条件分级,附录J列出了PB管、PE-X管、PP-R管等三种管材的许用设计环应力σD、计算值和最小壁厚。XPAP(交联铝塑复合)管计算所需数据未提供,但因其许用设计环应力大于PE-X管,故可参照PE-X管确定其所需最小壁厚。某些新建住宅分户热计量采暖设计,采用散热器供暖系统,供回水管采用铝塑复合管(XPAP),埋设在垫层内,但未进行管壁厚的选择计算,图纸上仅标注了所选管道公称外径DN20,未注明使用条件分级和壁厚,这是不符合要求的。因为使用条件分级不同,各类塑料管材许用设计环应力不同,所需管材壁厚不同,即使使用条件分级相同,由于管内工作压力不同,所需管材材质和壁厚也是不同的。因此,设计图纸上不仅应标注所选管材的公称直径,而且应注明使用条件分级和壁厚。在图纸上按要求标注壁厚,设计人员可能麻烦点,增加了些许工件量,但方便了订货、施工和质检,是完全应该的。塑料管管径标注,可采用无缝钢管的标注方法,如公称外径为DN20,壁厚为2,可标注为De20×2(De—示塑料管外径),公称外径为DN25,壁厚为,可标注为De25×、热费征收不能单独依据热量表读数分户热计量采暖系统,热费征收主要应依据热量表读数,但单独依据热量表记录收取热费又是不合理、不公正的。住户所处部位不同,外围护结构朝向不同、面积大小不一,形成的热负荷差异较大。同样的供暖参数和要求,处于不同朝向的住户,外围护结构传热量不同,热量表读数会有所不同,北向住户最不利,南向住户最有利,东西住户居中。同一朝向,处于不同部位的住户,外围护结构面积不同,耗费的传热量不同,热量表读数不同,处于楼层中间层的住户,由于仅有一面外墙,传热量小,热负荷小,热量表读数小;处于底层的住户,增加了地板传热,处于顶层的住户增加了屋顶传热,热量表读数增多,处于大楼尽端的住户,相对中间住户增加了一面外墙,传热量增加,热量表读数增多;要知道,这些住户的地面、屋顶、端墙等,不仅服务于该住户,而且服务于整个单元甚至全楼住户,故这部分多出的外围护结构传热形成的热负荷不应只由这些部位的住户承担,而应由全单元、全楼住户共同承担。由于这部分热量不可能单独计量,故只能采用按适当比例分摊的办法进行处理。分户热计量采暖系统,热费征收是一项非常复杂、政策性很强的工作,大部分可按热量表记录收取,相当一部分应由大家分摊。究竟按多大比例分摊,应考虑多方面的因素,除住户所处部位不同外,还有部分采暖用户间歇使用或较大幅度调节室温引起另一部分用户户间传热量增加等,都需要进行认真分析、计算、论证和研究。国家和地方应进行大量调查研究和认真细致的工作,根据具体情况,出台热量收费实施办法和细则,对各种可能出现的情况,作出明确、合理、详细的规定,尽量使热费征收工作做到科学、合理、公正。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

断电对市政供热的影响研究论文

城市热岛的成因及控制

论文导读:“城市热岛效应”也称“大气热污染现象”,是指城市市区气温高于郊区气温,高温城区处于低温郊区的包围之中,在用等温线表示的气温分布图上,形成内高外低的岛屿形式,故称为“城市热岛效应”。环保专家认为,“热岛效应”80%的因素归咎于绿地和湿地的减少,城市热量的排放因素只占20%,所以城市热岛效应的控制重点是绿地和湿地的建设。而卫星热红外遥感技术能有效、全面地探测到下垫面的温度特征,周期性、动态地监测城市热环境变化趋势,是研究城市热岛效应的有效手段。

关键词:城市热岛效应,城市热环境,成因,控制

一、城市热岛效应

“城市热岛效应”也称“大气热污染现象”,是指城市市区气温高于郊区气温,高温城区处于低温郊区的包围之中,在用等温线表示的气温分布图上,形成内高外低的岛屿形式,故称为“城市热岛效应”。

城市热岛效应使城市年平均气温比郊区高出1 ℃以上,夏季城市局部地区的气温有时甚至比郊区高出6 ℃以上。在全球高速城市化的背景下,城市热岛已经成为影响城市环境的要素之一,对城市公共健康、空气质量、能源消耗等方面构成了严重威胁。

二、城市热岛效应成因分析

城市热岛效应的形成与许多因素有关,城市化是形成热岛现象的主要原因。

1、下垫面的变化

城市微气候的形成与城市人工构筑的下垫面有着密切的关系。由于城市与郊外的下垫面不同,形成各自的热环境和热平衡(图1、图2)。

图1郊外的热平衡图2城市内的热平衡

城市地表无机化,越来越多的地表被建筑物、混凝土和柏油所覆盖,绿地和水面的减少使蒸发作用减弱,大气得不到冷却;同时,这些人工构筑物热容量小,在相同太阳辐射条件下,比自然绿地、水面等升温快。

2、人工热源的影响

城市中大量的人为热排放也是产生热岛的重要原因。工厂生产、交通运输以及居民生活都需要燃烧各种燃料,每天都在负外排放大量的热量。

3、城市中的大气污染

城市中的机动车,工业生产以及居民生活所产生的氮氧化物、二氧化碳和粉尘待排放物,这些物质会吸收城市中人工构筑物的热辐射,产生温室效应,从而引起大气进一步温升。在城市热岛现象的影响下,城区气温比周围郊区的农村高,城市地区的热空气上升,并在高空向四周扩散,周围郊区的较冷空气流入城区,这样就形成城市特有的热岛环流。城郊工厂排出的污染物可随热岛环流由低空吹向城区,使城市污染物浓度升高,进一步增强了城市的热岛效应。

4、城市建筑物密度和负荷

高密度的建筑物增加了太阳辐射的直接吸收和太阳辐射反弹吸收, 城市中高层建筑物林立,影响风的自然流动,也是导致城市热岛效应的原因之一。

5、城市能耗

城市大量的能耗增加了表面大气的温度,也使热岛效应增强。特别是夏季高温天气下的建筑空调负荷大大增强了热岛效应,反过来,城市热岛效应又增加了空调能耗,形成恶性循环。

此外,城市建成率、几何形状、城市规模和城市地理位置也与热岛效应存在明显的相关关系。

三、城市热岛效应的控制

绿地和水面是有效缓解城市热岛效应,调节和改善城市微气候环境的最有效因素。环保专家认为,“热岛效应”80 %的因素归咎于绿地和湿地的减少,城市热量的排放因素只占20 % ,所以城市热岛效应的控制重点是绿地和湿地的建设。

1、大力推广城市立体绿化

植物对太阳辐射的吸收率高,透过率低;植物可通过蒸腾作用带走大量热量,提高空气湿度;特别是树木通过遮挡阳光可以大量减少辐射热。植物对太阳辐射的反射率一般为10 %~20 % ,对红外线的反射率高达70 %以上。研究表明,当一个区域的绿化覆盖率达到30%,热岛强度明显减弱;绿化覆盖率大于50%,热岛缓解现象极其明显。植物因为进行光合作用,可以产生良好的环境效益,这对缓解全球温室效应,补救臭氧层空洞都会起到非常重要的作用。

在城市绿化中应进行合理的乔灌草搭配,尤其是乡土树种的种植。应舍弃一味种植草坪和名贵树木的不合理做法。论文参考网。由于城市用地紧张,城市绿化中除了进行水平方向森林规划外,应向立体绿化方向发展。城市有大量的水泥或混凝土屋顶、墙体、立交和边坡,这些裸露表面为立体绿化提供了可能。发展立体绿化是缓解城市热岛效应的重要方法。

建筑物的屋面是建筑与大气接触的重要界面。而城市中屋面的面积占去了整个城市面积的50 % 左右。增加屋顶绿地覆盖面积,不仅可以降低空调能耗, 而且还能调节室外气温.具有减缓城市热岛效应的作用,生态效益显著。

2、保护自然湿地,努力构建人工湿地

水体热容量大,水分蒸发多,增温降温缓和,城市内水面的存在,可在一定程度上缓解城市热岛现象。城市化导致大量的城市农田、水塘、湖泊、内河、沼泽等湿地减少或消失,不透水混凝土建筑、道路和广场,使大量的降水直接通过排水网流失。湿地的减少或消失,天然降水的白白流失,致使城市失去了通过蒸发带走城市热量,降低热岛效应的机会以及水通过促进林木生长,间接降低热岛效应的可能性。要在大力保护原有湿地的基础上(包括城郊湿地的保护),在城市进行人工湿地的构建,这是降低热岛效应的有效方法。此外,积极改善不透水下垫面层,利用透水性材料(透水砖等),有资料表明透水性水泥混凝土路面可降低路面温度约5℃,所以,城区中透水性铺装与城市水体蒸发及绿化体系的蒸腾作用一样,对改善城市市区热环境及形成局地风都有明显作用。

3、构建合理的城市规划结构

注重城市建设的合理布局,在城市规划方面实施可持续发展战略。

城市热岛效应与城市规模有一定的相关性。有学者认为城市扩展是城市热岛效应形成的主要原因。人口高密度区同时也是建筑物高密度区和能量高消耗区,不可避免地形成高气温区。据研究, 10万人口的城市热岛效应可达℃,100万人口的城市热岛效应可达℃。因此,必须对城市规模进行规划,将城市的人口数量控制在一定范围之内。同时,要控制市区人口密度和建筑密度和高度,选择通气流畅的地形进行城市建设,因地制宜,对城市的各个功能区进行合理布局,加大空气流动空间,尽量使主干道与夏季盛行风的方向一致。

4、降低设备能耗,合理规划城市能源

通过改进能源消耗设备构件,更新能源使用方法,提高能源使用效率,减少能源损耗。将城区分散的、低效率的小热源控制起来,大力推广集中供热,以提高能源利用率;尽可能考虑集中空调方式, 以减少建筑物HVAC 系统向空气的排热。可以通过改进建筑空调技术、积极探索和推广新能源利于技术(如地源热泵技术)、大力开展建筑节能,还应制定相应的政策法规,推动节能措施的落实。

在经济合理、技术可行的情况下,可以适当利用绿色能源,如风能、太阳能、生物能、地热等。不仅节约能源,将一部分太阳能转换为其他形式能源,减少了辐射能中直接转换为热能的能量,即减少了太阳辐射对城市热岛现象的影响。

5、发展“生态隔热”建筑表皮

建筑节能技术通常使用白色或浅色处理建筑表面的“反射隔热”、增大建筑围护结构的热阻的“热阻隔热”、采用人工材料构造的遮阳设施遮挡太阳辐射的“遮阳隔热”等,都是将太阳辐射热直接转移到室外,在满足建筑室内热舒适与建筑节能的同时,却带来了城市热岛强度的增加。所以,目前我们应弱化热岛控制中推行反射饰面材料等常规手段,采用绿色植被、水体介质等具有生态要素的复合体,将其置于建筑表面构成生态建筑表皮,将吸收的太阳辐射热经过物理、生化反应之后,通过蒸腾作用以水分蒸发方式散热。这样,就可以降低建筑表皮对周围环境的太阳辐射反射和热量转移,从根本上改善了建筑外部的热环境,减弱了城市的热岛效应。

6、规范城市交通系统

提倡公共交通,控制私人小汽车数量,逐步用清洁液化气取代石油作为城市公交车和出租车的主燃料。目前,国外已研制出以电力作为机动车动力的新技术,这将对城市热岛及城市气候环境产生积极的影响。同时,对城市大量交通进行有层次的划分,对车辆进行分流,促进城市大量集聚的热量、温室气体以及悬浮颗粒物分散,减少尘罩作用,降低热岛效应。

四、研究现状与建议

1.热岛效应的研究现状

多年来,众多学者对城市热岛现象做了大量的研究工作。国内外不少学者根据观测资料分析指出了城市温度场及城市热岛强度的影响因素,并提出了城市热岛强度与某些因子的相关模式。论文参考网。不少学者对城市能量平衡中的一些物理过程进行了广泛的探讨,取得一些有益的成果。近几年来我国研究人员从城市的人口密度、绿地数量和分布、建成区面积、人为热、大气污染、地形等方面研究了城市热岛的范围、强度与这些因素之间的关系,也针对城市热场分布与土地利用、覆被之间关系进行了研究。

常规的城市热岛研究以监测为主,根据监测结果分析影响城市温度场及城市热岛强度的因素。常规监测方法采用线路观测和定点观测相结合,由于观测不可能同步进行,观测点位的密度不高,这种方法不能全面、同步地反映地面热辐射状况。而卫星热红外遥感技术能有效、全面地探测到下垫面的温度特征,周期性、动态地监测城市热环境变化趋势,是研究城市热岛效应的有效手段。常用的热红外遥感技术有气象卫星NOAA AVHRR、陆地卫星(Landsat)TM等。相比气象卫星NOAA AVHRR 地面分辨率(1 km ×1 km),陆地卫星(Landsat) TM6 具有120 m ×120 m 的地面分辨率,对于要求精确分析的区域,TM6 是较好的选择。此外,日本九州大学城市与建筑环境实验室开发的城市热岛模拟软件——AU SSSM TOOL , 可对典型区域的热环境进行模拟,对城市的合理规划提供参考。论文参考网。

2.几点建议

首先,热岛效应的研究应从基础资料的调研、收集入手,实地监测城市不同地区热流方向及大小,对建筑气候小区进行划分。其次,在城市不同地区、不同建筑条件下,尤其是热岛现象显著地区建立监测站,进行测量,获得城市重点地区热岛现象的变化模式。这些实地监测数据对当地城市和建筑气候小区的数学模型的建立和修订是非常重要的。最后,根据实测数值,可以建立当地建筑和城市环境的能量平衡模型,包括建立模拟当地的城市气候小区、城市下垫面层、人工排热与热岛效应之间的有机联系模型。

五、结语

21世纪环境和能源问题影响着城市形态和人们的社会生活,热岛效应对城市热环境的影响亟待解决。通过对热岛效应的研究,把握城市热效应分布与城市发展的关系,对促进城市规划和生态环境建设,推进城市可持续发展,提高人居环境质量具有重要的意义。

小区停电一般不会影响供暖,因为供暖系统不是按小区设置的,一个供热站或换热站要供好几个小区,一两个小区停电系统不受影响。再说了,一般供热站或换热站都设有双电源,保证不间断供暖,所以不要担心停电影响供暖

如果停电,换热站的循环泵、补水泵将会自动停止运转,供暖系统中的热水将停止循环,滞留在暖气里的热水不再被加热,温度就会逐渐下降,所以停电会影响供热。1、如果短时间的停电,供热管道及换热站水箱中储存的水基本可以维持供热系统正常运行,对用户家里的供暖影响不大。但如果是长时间停电或者虽是短时间停电但用户在家中通过各种形私放供暖热水,水损过大,就会影响到整个供热系统的压力和流量,会导致供热系统亏水或气塞,所以会影响供热。2、因此,水和电是保证用户家庭集中供热正常运行的基础条件,水电联动才能保证设备正常运转。在此公司也强烈要求停水区域的热用户严禁在家中通过各种形式私房供暖热水,避免水损过大,造成机组停运断暖影响正常生活,同时我公司也会做好换热站储水工作,以避免因短时间的停水引发的站房停运。

通常温控器自带电池,可以支撑好几年的使用。其次温控器主要是控制户井里面的阀门开合,如果断电前,阀门没有关闭,在通电前,阀门会一直打开,因此不会对供暖完成影响。

  • 索引序列
  • 供热研究论文
  • 计量供热研究分析论文
  • 冷热电三联供应用研究论文
  • 住宅楼供热计量方法研究论文
  • 断电对市政供热的影响研究论文
  • 返回顶部