首页 > 学术论文知识库 > 心脏衰老的基因调控机制研究论文

心脏衰老的基因调控机制研究论文

发布时间:

心脏衰老的基因调控机制研究论文

北京大学生化与分子生物学系童坦君、张宗玉教授领导的课题组,在人类细胞衰老的主导基因P16作用机理及其调控研究方面取得重大突破,初步阐明P16基因是细胞衰老遗传控制程序中的重要环节,可影响细胞寿命与端粒(人类细胞的生物钟)长度。有关研究的论文于2001年12月在美国《生物化学杂志》上连续发表,受到国际医学界的关注。 虽然端粒酶可以合成端粒,但他们证明P16基因并没有影响端粒酶,而是影响了一种称为Rb的蛋白质分子而起作用的。P16基因在衰老细胞中功能十分亢进,科学上称为过度表达。它在衰老细胞中的表达比年轻细胞高10~20倍,这种现象是怎样造成的并不清楚。他们证明: P16基因的遏制机制随着细胞衰老越来越弱,是出现上述现象的一个重要原因。 研究人员发现P16基因存在一个他们命名为"ITSE"的负调控元件(不让P16基因转录的元件),相当于P16基因的刹车装置,掌管这一刹车装置的是分子量约为万道尔顿的蛋白质分子,年轻细胞的此蛋白质分子可与"ITSE"结合,使P16基因低表达,而衰老的细胞缺乏此因子,所以P16基因高表达。 据专家介绍,P16基因(细胞周期蛋白激酶抑制物基因)是一种抑癌基因,近年发现它也是人类细胞衰老的主导基因。但它的作用机理及调控尚不清楚。研究人员构建了可以抑制P16表达和增强P16表达的基因重组体,分别导入人类成纤维细胞,观察其可传代数以及衰老进程。实验表明:抑制P16基因表达,不仅细胞衰老速度减慢,寿命延长,而且端粒长度缩短也减慢;反之,增加P16基因表达,不仅细胞衰老速度加快,寿命缩短,而且端粒长度缩短也加快。因此,专家认为,人类某些细胞的寿命是可以用基因重组技术来进行调节的。

人类细胞衰老之谜初揭人类细胞衰老之谜初揭大众网-生活日报 2002-01-31 07:51:20 shrb20020131 新华社北京1月30日电 (记者 李京华) 北京大学医学部教授童坦君、张宗玉领导的研究组经过多年研究,目前已初步阐明人类细胞衰老的主导基因P16是人类细胞衰老遗传控制程序中的主要环节,揭示了P16基因在衰老过程中高表达的原因,从而初步揭开了人类细胞衰老之谜。 这一衰老分子生物学研究室负责人童坦君和张宗玉在接受记者采访时说:“此研究项目采用国际公认的人类细胞衰老模型,通过对人类细胞衰老的主导基因P16作用机理及其调控的研究,初步阐明了P16基因不仅是细胞衰老遗传控制程序中的主要环节,还可影响细胞寿命与端粒(细胞的生物钟)长度,它通过调节Rb蛋白的活性,而非激活端粒酶起作用。同时发现负调控机制减弱是细胞复制性衰老时P16基因高表达的重要原因。” 童坦君表示,细胞衰老是生物衰老的基本单位,也是人类老年病发病的共同基础。“一切生物学关键问题必须在细胞中寻找”已是当前生物学家的共识。通过“衰老细胞与分子机理研究”的课题研究,我们至少可以说,人类某些细胞的寿命,是可以利用基因重组技术来进行调节的。 编辑圈点 “生老病死”是人类社会的自然规律。不过,“生”多久,并没有一个定数,人的生命或许可以通过某种科学的手段进行适当的调节。科学家已经找到了控制人类细胞衰老的P16,不过,从单纯的科学研究到实际应用还有一段漫长的路要走,至于何时能利用到现实生活中,让我们耐心地等待 2002-01-31 07:51:20 shrb20020131 新华社北京1月30日电 (记者 李京华) 北京大学医学部教授童坦君、张宗玉领导的研究组经过多年研究,目前已初步阐明人类细胞衰老的主导基因P16是人类细胞衰老遗传控制程序中的主要环节,揭示了P16基因在衰老过程中高表达的原因,从而初步揭开了人类细胞衰老之谜。 这一衰老分子生物学研究室负责人童坦君和张宗玉在接受记者采访时说:“此研究项目采用国际公认的人类细胞衰老模型,通过对人类细胞衰老的主导基因P16作用机理及其调控的研究,初步阐明了P16基因不仅是细胞衰老遗传控制程序中的主要环节,还可影响细胞寿命与端粒(细胞的生物钟)长度,它通过调节Rb蛋白的活性,而非激活端粒酶起作用。同时发现负调控机制减弱是细胞复制性衰老时P16基因高表达的重要原因。” 童坦君表示,细胞衰老是生物衰老的基本单位,也是人类老年病发病的共同基础。“一切生物学关键问题必须在细胞中寻找”已是当前生物学家的共识。通过“衰老细胞与分子机理研究”的课题研究,我们至少可以说,人类某些细胞的寿命,是可以利用基因重组技术来进行调节的。 编辑圈点 “生老病死”是人类社会的自然规律。不过,“生”多久,并没有一个定数,人的生命或许可以通过某种科学的手段进行适当的调节。科学家已经找到了控制人类细胞衰老的P16,不过,从单纯的科学研究到实际应用还有一段漫长的路要走,至于何时能利用到现实生活中,让我们耐心地等待

衰老与多种生理过程的衰退有关,同时伴随着老年人罹患癌症、心血管疾病、老年痴呆症和II型糖尿病等严重疾病的风险增加。过去多年的研究表明,表观遗传机制(独立于DNA序列调控基因表达的所有机制)如DNA甲基化,与多种衰老相关疾病的基因表达失调有关,并受到生理和病理刺激、饮食、压力、体力活动、工作习惯等因素影响。

全球高发疾病——心血管疾病的主要危险因素就是年龄,包括动脉粥样氧化、中风、心肌梗塞。与所有衰老病理生理学一样,老年人群中心血管疾病与炎症、氧化应激、活性氧的产生、细胞凋亡有关。由于氧化应激和活性氧的增加,导致钙信号受损,影响肌肉收缩,使老年人心脏功能深受其害,同时,脂质氧化也加速了动脉粥样硬化的发展。

表观遗传失调是心血管疾病和心血管衰老不可忽视的致病因素。 DNA甲基化在心脏稳态所需基因的遗传调控中起着关键作用,调节正常心脏功能所需的各种细胞过程,但DNA甲基化已被证明会在衰老过程中发生变化,并导致多种心血管疾病发生。动脉粥样硬化进展的一个重要机制是平滑肌细胞增殖与迁移,而这种失调与甲基化异常有关。

总之,许多研究已揭示了调节心脏稳态的表观遗传机制。随着年龄的增长,DNA甲基化会发生与环境相关的改变。值得庆幸的是,表观遗传变化是可逆的,如今已有许多药物可靶向表观遗传酶,从而逆转作为衰老标志的表观遗传畸变。

【参考文献】

1. Pagiatakis C, Musolino E, Gornati R, et al. Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res. 2021;33(4):737-745.

2. Papait R, Cattaneo P, Kunderfranco P, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20164-9.

3. Carew TE. Role of biologically modified low-density lipoprotein in atherosclerosis. Am J Cardiol. 1989 Oct 3;64(13):18G-22G.

4. Curtis AB, Karki R, Hattoum A, et al. Arrhythmias in Patients 80 Years of Age: Pathophysiology, Management, and Outcomes. J Am Coll Cardiol. 2018 May 8;71(18):2041-2057.

5. Altucci L, Rots MG. Epigenetic drugs: from chemistry via biology to medicine and back. Clin Epigenetics. 2016 May 23;8:56.

解开人类衰老之谜 2004-7-24 9:58:00 来源:中国福利网 点击:23 【字体:大 中 小】 【打印本稿】 【读后感言】 【进入论坛】 【推荐 】 【关闭】 人类为什么会衰老?我国医学专家童坦君、张宗玉两位教授经过10多年的研究,破解了人类衰老之谜,得出人类衰老细胞基因调控能力减退与特异转录因子相关的结论。 据童坦君介绍,人类衰老的机理极其复杂,其学说不下几十种,如免疫学说、神经内分泌学说、自由基因学说、蛋白质合成差错累积学说等。近年,从分子与基因水平上提出的基因调控学说、DNA损伤修复学说、线粒体损伤学说以及端区假说已成为国际研究热点,这也是他们在人类衰老机理方面的研究方向。童坦君首先介绍了一个专业名词——端粒(又称端区),它是细胞染色体末端的一种用显微镜可以见到的呈条状的物质。端粒有长短,随年龄增加而越来越短,端粒的消失,会使染色体发生畸变,从而使人类细胞丧失复制能力,最终导致细胞衰老。器官“衰老”有序可循 北京大学衰老研究中心主任童坦君说,衰老是一切生物个体伴随着时间的推移所发生的必然过程,它表现为各组织器官的衰老及其功能的减退,人体器官衰老是有一定程序的。他介绍了人体几个主要器官的衰老变化。 心脏与血管:心脏潜力在成年时最强,之后每过1年减少1个百分点,70岁时为40岁时的50%;老人的血管因弹力纤维逐渐收缩、断裂、消失而导致弹力减退,血管内膜出现动脉粥样硬化斑块,血管变硬,冠状动脉因粥样硬化而口径变小。 呼吸系统:老年人鼻黏膜及咽腔淋巴组织亦趋向萎缩;肺组织萎缩,肺泡变大,弹性减退,胸廓前后径扩大,形成老年性肺气肿。25岁青年每分钟可向组织输氧4升,而70岁老人只能输氧2升,肺功能明显减退。 消化系统:老年人牙周组织发生退行性变,出现牙周炎。75岁老人与儿童比较,味觉感受器丧失80%,因而食不甘味。老人各种消化腺萎缩,胃酸分泌减少,唾液淀粉酶、胃蛋白酶等分泌下降,故消化功能减退;老人的胆囊及胆管变厚,胆汁变浓,并含大量胆固醇,故易于发生胆石症。泌尿生殖系统:老年人肾小球滤过率下降,肾血流量减少,葡萄糖再吸收能力下降。更年期之后,女性卵巢萎缩并硬化,雌激素分泌骤减,同时乳房萎缩,外生殖器变小,宫颈萎缩。男性睾丸也渐趋萎缩并纤维化,阳痿率慢慢增加。 运动系统:人进入中年后,由于久坐不动,每过10年,肌肉会递减5—10个百分点;75岁时的握力只相当于35岁时的75%,肌腱韧带萎缩并变僵硬,故老人腿脚不便,行动迟缓。骨骼大量脱钙,皮质变薄,髓质网眼扩大,形成骨质疏松症、骨质变脆,容易发生骨折;关节软骨发生退行性变,出现纤维化、骨化,形成骨赘,造成骨质增生,70岁老人的骨质增生发生率几乎达百分之百。 神经系统:老年人大脑细胞逐渐减少,老人神经传导速度减慢,一般从40岁时开始,到80岁时减慢15—30个百分点,神经反应时间延长,动作远不如年轻人敏捷;老人体温调节较差,手足发凉,冬季易发生老年性低体温症。 童坦君说,上述各种变化是逐步进行的,随着年龄增长愈来愈明显,且有很大的个体差异。早衰者,虽然只有50多岁,可是组织器官的衰老已达70岁的水平;而老当益壮者,虽然年届70,衰老的程度也不过相当于50岁。由此可见,衰老的进程虽不可抗拒,但我们可以延缓它的进程,减慢各组织器官的老化速度。人体衰老进程受内外环境影响 北京大学衰老研究中心常务副主任张宗玉说,人体衰老进程除遗传因素的影响外,还受包括体液、激素、免疫体系共同形成的内环境以及人类生存的外部环境的影响。她用通俗的语言详细介绍了内环境因素影响人体衰老进程的情形。她说,人们一日三餐中的糖、脂类与蛋白质,在细胞线粒体内经生物氧化产生能量(ATP)供机体一切生理与生化活动的能量需要。糖、脂类、蛋白质代谢物在细胞内被氧化的过程中不断消耗从空气中吸收的氧,进入细胞内的氧90%在线粒体中用于生物氧化,但仍有1%到4%的氧同时被转化为氧自身基,这种东西最易损伤线粒体DNA,从而产生线粒体DNA片段的缺失,影响线粒体的功能,无法对人体供应能量。DNA损伤是影响衰老进程的重要因素。像老年糖尿病、老年痴呆症、帕金森氏病、心脑血管病等,都是因为线粒体DNA均有不同程度片段缺失所致。 张宗玉介绍说,相当一部分人都知道适度节食可以延长寿命,但道理何在,很少有人知道。她说,人吃得多,线粒体负荷就多,氧自由基就会大量产生,对线粒体功能影响就大。氧自由基也会攻击细胞核,使之损伤,攻击蛋白质,使之变性,攻击脂肪,使之氧化,影响细胞功能,加速细胞衰老。如果限食,人体的氧负荷降低,可减少氧自由基的产生,使氧损伤减轻,就可延缓衰老进程,延长寿命。

衰老基因研究论文

这还需要很长时间

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

21世纪初的2000年9月,美国哈佛大学博士后吴柏林精心撰写的《人体革 命》发表。这本书的封面上除了赫然的“人体革 命”四字,还有一行显眼的大字“基因科学能使您活到150岁”。那时候,不少人都觉得吴柏林是在危言耸听博人眼球。如今20多年过去,回顾《人体革 命》一书,只觉当真如此。

如果将人类的寿命比作天上的太阳,那追逐“长生不老”的科学家们就好比地上追着太阳的夸父。千百年来,人们一直在探索着获取更长的生命周期,但最终的结果都不尽人意。而这一结果在进入21世纪后有了明显变化。

(图:Nature Communications刊登SIRT6基因论文)

近 日,一则来自Nature子刊(Nature Communications)的研究论文,引起了世界各地生命学家和普通民众的热议。

这个来自以色列巴伊兰大学由Haim Cohen领导的研究团队,在烟酰胺腺嘌呤二核苷酸(NAD+)的衰老研究领域已研究多年。

Haim Cohen研究团队表明,提高SIRT6基因表达,就能够有效延长小鼠模型30%寿命。SIRT6基因能够通过增加肝脏糖异生相关基因表达,增加NAD+的从头合成,促进脂肪组织释放甘油,从而维持老年时的能量稳态,促进减抗衰老,延长健康寿命。

表达SIRT6基因的小鼠除了出现上述机制以外,还表现出克服癌症、血液疾病,以及各种与年龄相关疾病的显著改善。

SIRT6基因作用的烟酰胺腺嘌呤二核苷酸(NAD+)是人体重要辅酶。其在人体的总含量会随着时间的推移,通过sirtuins(打开长寿基因)、PARPs(DNA修复)、CD38(钙信号传导)等三大主要途径被消耗掉。当NAD+消耗到一定程度时,各种老化现象和老化相关病症将会大量出现。

由于NAD+在人体衰老过程中扮演着极其重要的角色,除了Haim Cohen的研究团队,致力于研究NAD+的科研团队还有很多,并且还有成功的先例。

在2013年的时候,哈佛大学医学院的David Sinclair教授就通过研究NAD+,发现了能够延缓衰老的 β- 烟酰胺单核苷酸(NMN)。

在其进行的实验中,他通过外源性补充的方式给小鼠补充了NAD+,一周的时间内,两岁小鼠的身体状态就恢复到了六个月大的状态。根据年龄对照组,这相当于在短短一周内将60岁的男人恢复到了20岁青年期的身体机能。而 β- 烟酰胺是NAD+的前体物质,通过外源性补充 β- 烟酰胺,人们就能维持或提升体内的NAD+水平。

(图:NMN的NAD+生物合成)

由于β- 烟酰胺能够生产合成NAD+的作用机制发现得比较早,在哈佛大学、华盛顿大学、日本应庆大学的长期研究下,这种小分子对人体的作用机制已经得到了临床验证。由于该物质的抗老机制较为突出和稳定,Nature在创刊150周年的时候,还将其列入了延长生命周期的7大发现,与其一同列入名录的物质还有锂元素、派洛维分子。

有β- 烟酰胺成功研制的先例在前,人们对SIRT6基因的研制也同样看好。如果SIRT6基因研制成功,其将会成为继β- 烟酰胺后的又一抗老补剂。

“通过一系列的研究发现相结合,我们已经能够表明SIRT6基因控制健康衰老的速度。”Haim Cohen如此说道。下一步, Haim Cohen还将继续针对这项发现来研究在人类体内激活SIRT6基因的方法,研究其是否能够显著延长人类寿命。

(图:Haim Cohen)

因为这个难题是科学家一直探索的问题,他的发现对以后的研究有很大的帮助。

衰老机制的研究进展论文

这还需要很长时间

研究如下:1、衰老是指生物体发育成熟后随年龄增长机体发生的功能性和器质性衰退老化的渐进过程。2、抗衰老机制古老而又崭新,近代又产生了自由基学说等。

《北京参考》:与衰老关系密切的因素有哪些? 童坦君:环境与遗传因素影响着衰老进程。其中遗传控制起着关键作用。衰老并非单一基因决定,而是一连串"衰老基因"、"长寿基因"激活和阻滞以及通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那么稳定,包括基因在内的遗传控制体系可受内外环境,特别是氧自由基等损伤因素的影响,会加速衰老过程。在环境还没尽善尽美的条件下,环境是影响衰老的重要因素。譬如我国解放前平均寿命只有35岁,而现在北京市民平均寿命约76岁。还有我国的长寿地方如新疆的和田、江苏的南通、广西的巴马,说明了环境很重要。老百姓延缓衰老能做到的也只有尽量改善环境。但是,同一个长寿村,为什么不是每个人都长寿呢?同时说明遗传起着关键作用。在普通地域,常常有长寿家族,说明长寿基因可以通过遗传来表达。 世界卫生组织将60岁定为老年期的开始。人的衰老犹如春夏秋冬、花开花谢一样,是自然界的美丽现象,人虽然做不到永生,但是我们能追求健康长寿。探讨长寿的奥秘,是医学界的艰巨使命。如果做到80岁、90岁甚至100岁以前不显老,或者做到无病无痛而衰老呢?为此,笔者特意走访了我国初步解开衰老之谜的中国科学院院士、北京大学衰老研究中心主任、北京大学医学部童坦君教授。 人的自然寿命约120岁 《北京参考》人的寿命究竟有多长? 童坦君:法国著名的生物学家巴丰(Buffon)指出:哺乳动物的寿命约为生长期的5-7倍,通常称之为巴丰寿命系数。人的生长期约为20-25年,一次预计人的自然寿命为100-175年。海佛里克证明人类从胚胎到成人、死亡,其纤维母细胞可进行50次左右的有丝分裂,每次细胞周期约为年,推算人类的自然寿命,应为120岁左右。虽然不同学者解答的方式各不相同,但是结论基本一致,目前一般认为人的自然寿命为120岁左右。 《北京参考》:100年以后人的寿命还是120岁吗? 童坦君:平均寿命受环境影响很大,但是各种动物的最高寿限都相当稳定。鼠类最高寿限约为3年,猴约为28年,犬约为34年、大象约为62年,而人类约为120岁。100年以后,老鼠的最高寿命还是3年。但是100年以后人的平均寿命势必会提高。譬如我国解放前后,平均寿命就提高了一大截。要提高人类最高寿命困难重重,需要进行基因改造,虽然目前科学家在果蝇、蠕虫中试验成功,对其进行某些基因导入或使一些基因突变(改造)则可达到延长其最高寿命的作用。 《北京参考》:作为个体,人的寿命能否预测? 童坦君:预测寿命有多长?是很多人都希望知道的。为迎合这种心理,国内外一些非正式医学书刊登了寿命预测法。预测的主要依据,是将影响健康的一些列因素罗列起来,对健康有利的,根据性质或程度,分别加寿一至数年,对健康不利因素,根据危害性质或程度,分别减寿一至若干年。最后,将全部数据加起来得到总和,再与固定寿命指数或寿命基数相加减便可得出预测到的寿命年龄。但是在现实生活中,基因在人体不同的发育阶段是怎样控制衰老演变的?不前还不清楚。因此,目前世界上还没有公认能正确预测人类寿命的方法。 肺最容易衰老 《北京参考》:人什么时候开始衰老?人体器官有衰老次序吗? 童坦君:衰老分生理成分分生理衰老与病理衰老。同一物种不同个体,即使同一个体不同的组织或器官其衰老速度也不相同。从出生到16岁前各组织器官功能增长快,从16--20岁左右开始到平稳期直到30---35岁,从35岁开始有的器官和组织功能开始减退,其衰老速度随增龄而增加。如果以30岁人的各组织器官功能为100的话,则每增一岁其功能下降为:(休息状态下)神经传导速度以 o.4%下降,心输出量以0.8%下降,肾过滤速率以1.0%下降,最大呼吸能力以1.1%下降。可以理解为肺最容易衰老。其次为肾脏的肾小球,再是心脏,而神经、脑组织衰老速度相对慢一些。各组织器官功能随增龄呈线形进行性下降,因此老年人容易患病,这是一般规律。但在现实生活中有的人衰老速度衰老的生物学指标 《北京参考》:那么,什么情况提示人衰老了? 童坦君:制约哺乳动物衰老研究的一个重要因素就是缺少可靠、易测的评估生物学年龄的标志。我们在细胞水平、分子水平发现了一些指标,可作为衰老生物学标志,但是还只是在实验室阶段,离应用到生活中去还有很长的一段路要走。以下5个指标都和衰老有关,但单独使用都有欠缺与不足的地方: 一、成纤维细胞的体外增殖能力。根据细胞的衰老假说,成纤维细胞体外增殖能力是可靠的估算供者衰老程度的指标。 二、DNA损伤修复能力。多种 DNA损伤,如:染色体移位、DNA单双链断裂、片段缺失都随年龄积累。这一现象除与衰老过程中自由基生成率升高及抗氧化剂水平降低有关外,与DNA修复能力降低密切相关。作为估算DNA修复能力的指标包括非程序DNA合成、DNA聚合酶B及内切脱氧核糖核酸酶UV2DNase和AP2DNase。另外,检测各种DNA损伤的方法亦可用于检测该种DNA损伤的修复能力。 三、线粒体DNA片段缺失。线粒体 DNA片段缺失的检测可以毛发为材料,应用甚为便利,是一项很好的衰老生物学标志。 四、DNA甲基化水平。DNA甲基化是真核生物基因表达渐成性调节的重要机制,通过改变染色体的结构,影响DNA与蛋白质的相互作用,抑制基因表达。 五、端粒的长度。对人体不同的组织进行端粒长度检测,发现端粒长度与细胞的寿限相关,精子、胚胎的端粒最长,而小肠粘膜细胞的端粒最短。 Zglinicki等报道,氧化压力造成的单链断裂是端粒缩短的主要原因,过氧化氢诱导细胞出现衰老表型的同时,也加快端粒的缩短。因此,端粒长度不单是细胞分裂次数的"计数器",而是一项细胞衰老的标志。改善环境改变衰老 《北京参考》:与衰老关系密切的因素有哪些? 童坦君:环境与遗传因素影响着衰老进程。其中遗传控制起着关键作用。衰老并非单一基因决定,而是一连串"衰老基因"、"长寿基因"激活和阻滞以及通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那么稳定,包括基因在内的遗传控制体系可受内外环境,特别是氧自由基等损伤因素的影响,会加速衰老过程。在环境还没尽善尽美的条件下,环境是影响衰老的重要因素。譬如我国解放前平均寿命只有35岁,而现在北京市民平均寿命约76岁。还有我国的长寿地方如新疆的和田、江苏的南通、广西的巴马,说明了环境很重要。老百姓延缓衰老能做到的也只有尽量改善环境。但是,同一个长寿村,为什么不是每个人都长寿呢?同时说明遗传起着关键作用。在普通地域,常常有长寿家族,说明长寿基因可以通过遗传来表达。 端区长度随增龄缩短 女性比男性长寿 《北京参考》:人的衰老有性别差异吗? 童坦君:流行病学调查表明,人类女性比男性长寿。从分子水平如何解释女性寿命比男性长这一普遍的生命现象呢?这得从衰老机理说起,比较公认的如氧自由基学说,还有现代的DNA损伤修复学说、线粒体损伤学说以及端区假说等。下面将目前国际上衰老研究的热点结合我们自身的研究工作介绍如下,人类除干细胞外,大多数体细胞端区长度随年龄增加而缩短,而体外培养的细胞端区长度随传代而缩短;端区缩短到一定程度,细胞不再分裂,即不能传代,最终衰老直至死亡。端区是指染色体末端的特殊结构,此结构可防止两条染色体末端的DNA链(又名脱氧核糖核酸,它是蕴含遗传信息的遗传物质)因互相交联而造成染色体的畸变。研究中发现,相同年龄组的成年男性的端区长度长于女性,但随增龄端区长度缩短速率却比女性快,每年差3bp。 《北京参考》:人能够改变衰老吗? 童坦君:运动医学专家研究表明,心肺功能、骨质疏松情况、肌肉力量、身体的耐久力、胆固醇水平、血压等,通过长年锻炼或参加体力劳动、保健是可以改善的。难以改善的指标,只有头发的变白与皮肤弹性减退及萎缩变薄两项。从分子水平讲,我们在细胞衰老相关基因及信号传递通路的先后研究中发现抑癌基因p16通过调节1Kb蛋白活性,不通过端粒酶,就可影响端粒长度、 DNA修复能力与细胞寿命,初步阐明 p16是人类细胞衰老遗传控制程序中的主要环节。这是我国在人类细胞衰老机理研究上取得的突破,还发现衰老相关基因p2 1可保护衰老细胞免于凋亡。至于还有哪些基因管着衰老、怎么管着衰老的速度,都是人类将要继续研究的课题。 《北京参考》:老百姓目前如何做到延缓衰老? 童坦君:改善内外环境--遵循平衡饮食、适当运动、心理平衡原则。对于好的环境因素,我们充分利用它;对于不好的因素,要了解它、调控它。平平常常普普通通轻轻松松《北京参考》:童老您今年多大年纪?您看上去很精神,请介绍一下您的养生之道。 童坦君:我71岁。老年人要平平常常过日子,不要有压力。 我觉得健康老人最重要的是双腿灵、手脚要利落,不要老是坐着不动或躺着。如能胜任长途步行,则反映心脏功能良好。值得一提的是,老年人不要一看电视就好几个小时。对于饮食要普普通通,不要太挑剔,也不忌口,譬如说肥肉,我也吃它一口,但总量不要太多。在心理方面,平时要做高兴的事,以求轻轻松松。譬如爬山时,你可以什么事情都不想。老年人退休后的生活也可以出彩儿,但不要太累;帮着带带孙子,其实是最幸福的事情。 以崇尚科学为荣以愚昧无知为耻 《北京参考》:您当初从事衰老研究工作是怎么想的? 童坦君:据统计,一个人一生的医药费用有三分之二花在老年阶段,随着老年人的增多,其医疗费用将成为家庭和社会的沉重负担,因此老年医学越来越重要。对衰老的研究目的就是要提高老年人的生命质量,延长老年人的健康期、缩短带病期而不仅仅是多活几年。衰老研究是一个年轻的学科,过去的研究方向是整体器官研究,现在是在细胞水平方面研究,以后还要做模式动物研究,但是又不能把动物研究的直接结果用在人的身上,因此,衰老研究还要多样化,不仅要在细胞水平做,还要在器官水平、整体水平做,这样衰老机理研究才能跟上国际与时代。老年医学基础研究对老年临床医学有着重要的作用。我国老年医学基础研究还比较薄弱,如掉队就很难赶上,我们应以崇尚科学为荣,以愚昧无知为耻,我国虽然是人口大国,但是衰老研究工作并不矛盾,在国际上应该处于先进行列。美科学家衰老新解 人类寿命是可以改变的2005年02月07日 09:12 新华网 美国《新闻周刊》1月17日一期刊登一篇题为《岁月的皱纹》的文章,介绍五位科学家对衰老的生物化学过程提出的新解释;他们有一个共同的认识,即人类的寿命并不是固定不变的。文章摘要如下: 虽然死亡与纳税一样不可避免,但是未来人们的衰老过程会变慢,寿命也会明显延长。五位科学家对衰老的生物化学过程提出了新的解释,为益寿延年药物的问世敞开了大门。虽然他们的研究方法不尽相同,但都有一个共同的认识,即人类的寿命并不是固定不变的。增强:目标基因在抗衰老方面更加活跃,几年前,分子遗传学家辛西娅·凯尼恩的学生拿着一盘蚯蚓问过往行人他们认为这些蚯蚓有多大。多数人说,它们只有5天那么大。他们并不知道凯尼恩已经修补了这些蚯蚓的基因。这些蠕动的生物的健康状况完全像刚出生5天的样子,但实际上它们已经出生144天了 — 这是它们正常寿命的6倍。 十年来,凯尼恩坚持不懈的研究已经表明:通过改变激素水平增强约100种基因的功能,“就可以轻而易举地使寿命大为改变”,至少蚯蚓是这样。这些基因有的能够产生抗氧化剂;有的能够制造天然的杀菌剂;有的则参与将脂肪运送到整个身体;还有一些被称作是监护人,据凯尼恩说,它们“能够使细胞成分保持良好的工作状态”。一般来说,这些基因越活跃生物的寿命就可能越长。 1993年,凯尼恩关于蚯蚓基因的研究成果首次发表,持怀疑态度者预言这项成果在人类身上行不通。科学家们仍不了解人类和蚯蚓寿命长短如此悬殊的确切原因,更不知道改变蚯蚓寿命长短对人类来说可能意味着什么。不过,蚯蚓的细胞构成很大程度上与高等哺乳动物十分相似。这项发现为生产保健营养品的长生公司打开了大门,该公司正在尝试开发一种药物,这种药物能够产生与凯尼恩的基因修改相同的效果。凯尼恩说:“我并不是说改变一些基因,人类就能够长生不死,但是这可以使80岁的老人看上去像40岁的样子。”对此,谁会反对呢? 压力:长期紧张使细胞衰老得更快 如果你抱怨压力使你又增添了新的皱纹或白发,很有可能你是对的。 《国家科学院学报》去年秋季发表的一项研究报告为你的这种看法提供了科学依据。参与这项研究的加州大学精神病学助理教授埃莉莎·埃佩尔和她的同事们发现,长期处于紧张状态,或仅仅是感到了紧张,就能明显缩短端粒的长度。端粒就是细胞内染色体端位上的着丝点,可用来衡量细胞衰老过程。端粒越短,细胞的寿命就越短,人体衰老的速度就越快。 埃佩尔对39名年纪在20岁—50岁之间的女性进行了研究,她们的孩子有的患严重的慢性病,比如大脑性麻痹。埃佩尔将她们与同一年龄组但孩子都很健康的另外19名母亲进行了比较。母亲照顾患病小孩的时间越长,她的端粒就越短,而且她所面临的氧化压力(释放损害DNA的自由基的过程)就越大。与感觉压力最小的妇女相比,两组女性中自称压力最大的人,其端粒与年长她们10岁的人相当。 虽然埃佩尔承认要想证实她的发现还需要进行更多的研究,但是她认为这个结果可能有积极意义。她说:“既然我们认为我们能够看到压力会造成细胞内的损伤,人们可能会更加重视精神健康。”她补充说,DNA受损可逆转是“绝对”有希望的,“改变生活方式,学会化解压力,就有可能改进你的生活质量、情绪和延长寿命”。 限制:严格控制卡路里摄取可能减缓衰老速度 1986年,当伦纳德·瓜伦特第一个提出通过限制卡路里的摄取来研究生物学的衰老时,这个主意听上去荒唐可笑。然而在过去十年中,研究人员主要了解为什么突然降低卡路里的摄取能激发一种名为SIR2的基因的活性并能延长简单生物体的寿命,而且取得了很大进展。 瓜伦特和一位名叫戴维·辛克莱的哈佛大学研究者都是这方面的顶尖专家,他们主要研究名为“sirtuins”的抗衰老酶,这是SIR2或哺乳动物身上的与SIR2类似的SIRT1所产生的蛋白家族。瓜伦特的实验已经搞清楚了SIR2背后的很多基本分子过程。例如一种名为NADH的天然化学物质可以抑制“sirtuins”发挥作用;他们已经确认NADH含量较低的酵母存活的时间更长。辛克莱发现白藜芦醇与限制卡路里摄取有关联。研究表明,酵母在大剂量白藜芦醇的作用下能延长寿命70%。 因为很少有人愿意大幅度限制卡路里的摄取,瓜伦特就开始寻找一种有相同功效的药剂。长生公司也开始利用瓜伦特的研究成果,这意味着有朝一日不用再提节食这个字眼,人类或许照样能从限制卡路里摄取中获得好处。 补给:两种化学物质使老鼠变年轻 据《国家科学院学报》2002年发表的研究报告说,加州奥克兰研究所儿童医学专家布鲁斯·埃姆斯和他的同事把两种在体细胞中发现的化学物质 — 乙酰基L肉碱和α硫辛酸 — 给老鼠吃。这不仅使老鼠在解决问题和记忆测试中表现更佳,而且行动起来也更加轻松和充满活力。 研究人员确认,不同化学物质混合起来能够改善线粒体和细胞器的功能,而细胞器是细胞主要的能量来源。埃姆斯在一项研究中发现,当加入过氧化铁或过氧化氢的时候,硫辛酸能保护细胞不被氧化。衰老:透过现象看本质一、前言当前,生命科学有关衰老机制的研究,正处于百花齐放、硕果累累的时期(Comfort, 1979; Medvedev, 1990; Hayflick, 1998; Kirkwood, 1999; Warner, 2005; Yin & Chen, 2005),然而,由于衰老过程极其复杂,影响因素千变万化,又由于各个领域研究工作者的知识局限和专业偏见,我们实际面临的是一个鱼龙混杂,莫衷一是的混乱局面(Medvedev, 1990; Olshansky et al. 2002; de Grey et al., 2002; de Magalhaes, 2005)。在这篇论文中,我们将首先简明地回顾有关衰老机理研究的重要进展,探讨在衰老过程中,遗传基因调控与不可避免的环境因子损伤的相互作用。接着,我们强调指出,为了研究真正意义上的衰老过程,应该将注意力集中在健康状态下的种种生理性老化改变,而不是病理性变化。例如,生物体内蛋白质的增龄性损变是一个最为普遍存在的老化现象。在详细阐述自由基氧化和非酶糖基化生化过程,以及熵增性老年色素形成生化机理后,重点探讨了羰基毒化(应激)在衰老过程中的特殊重要意义(Yin & Brunk,1995)。最后,透过现象看本质,提出生化副反应损变失修性累积是生理性衰老过程的生化本质。二、衰老理论概述和对衰老机理研究的总体评论大量的生命现象和实验事实提示,尽管少数低等动物的死亡显示出有一些神秘的“生命开关”在起作用,但衰老过程,尤其是高等动物在成年后的衰老过程已被清楚地认识到是一个受环境因素影响的缓慢渐进的损伤和防御相拮抗的过程。大量现行的重要的衰老研究成果都无可争辩地显示了这一点(Comfort, 1979; Medvedev, 1990; Hayflick, 1998; Yin, 2002)。为了便于分析和讨论,我们首先列出数十种迄今最为重要的衰老学说:整体水平的衰老学说主要有:磨损衰老学说(Sacher 1966)、差误成灾衰老学说(Orgel 1963)、代谢速率衰老学说、自体中毒衰老学说(Metchnikoff 1904)、自然演进衰老学说(程控学说)、剩余信息学说(程控学说)、交联衰老学说; 器官水平的衰老学说有:大脑衰退学说、缺血损伤衰老学说、内分泌减低衰老学说(Korencheysky, 1961)、免疫下降衰老学说(Walford 1969);细胞水平的衰老学说有:细胞膜衰老学说(, 1978)、体细胞突变衰老学说(Szilard, 1959)、线粒体损伤衰老学说(Miquel et al., 1980)、溶酶体(脂褐素)衰老学说(Brunk et al., 2002)、细胞分裂极限学说(程控学说);分子水平的衰老学说有:端粒缩短学说(程控学说)、基因修饰衰老学说、DNA修复缺陷衰老学说(Vilenchik, 1970)、自由基衰老学说(Harman, 1956, 2003)、氧化衰老学说(Sohal & Allen, 1990; Yu & Yang, 1996)、非酶糖基化衰老学说(Cerami, 1985)、羰基毒化衰老学说(Yin & Brunk, 1995)和微量元素衰老学说(Eichhorn, 1979)等等。其它重要的衰老学说还有熵增衰老学说(Sacher 1967, Bortz, 1986)、数理衰老学说和各种各样的综合衰老学说(Sohal, 1990; , 1991; Kowald & Kirkwood, 1994)。从上述26种主要的衰老学说可以初略的看出绝大多数衰老学说(22种)认为,衰老是因生命过程中多种多样的外加损伤造成的后果。简言之,是一个被动的损伤积累的过程。应该说明的是在4种归类为“程控学说”的衰老理论中,细胞分裂极限学说和端粒缩短学说所观察研究的所谓“细胞衰老”与动物整体的衰老有着很大的差别。就“细胞不分裂”这个概念本身而言,并不是“细胞衰老”的同义词。解释很简单,终末分化的神经细胞和绝大多数肌肉细胞在生命的早期(胎儿或婴儿)时期完成了分化以后,便不再分裂,却仍然健康的在动物体内延用终身(Sohal, 1981; Porta, 1990)。近来Lanza等甚至用体外培养接近倍增极限的胎牛二倍体成纤维细胞作为供核细胞成功地培育出了6只克隆牛(Lanza et al., 2000),所述的6只克隆牛的端粒比同龄有性生殖牛还长。其实,从衰老过程的常识(或定义:衰老是生物体各种功能的普遍衰弱以及抵抗环境伤害和恢复体内平衡能力逐渐降低的过程)的角度来讲:端粒缩短与细胞和整体动物的增龄性功能下降基本无关。因篇幅所限,本文不作详谈(Wakayama et al. 2000; Cristofalo et al., 2004)。生命科学对于遗传因子与环境损伤各自如何影响衰老进程的认识经历了漫长的“各自为证”的阶段。经过遗传生命科学家几十年的辛勤探索,现已实验确定的与衰老和长寿有关的基因已达几十种(Finch & Tanzi 1997; Warner, 2005;),例如:age-1, Chico, clk-1, daf-2, daf-16, daf-23, eat-2, gro-1, hsf-1, hsp-16, hsp-70, Igflr+/-, indy, inR, isp-1, KLOTHO, lag-1, lac-1, MsrA, mth, αMUPA, old-1, p66sh, Pcmt, Pit-1, Prop-1, ras2p, spe-26, sag, sir2, SIRT1, sod1 基因等等(Hamet & Tremblay, 2003; Warner, 2005)。这些寿命相关基因可被大致分为四类:1)抗应激类基因(如,抗热休克,抗氧应激类);2)能量代谢相关基因(如,胰岛素/胰岛素因子信号途径,限食或线粒体相关基因);3)抗损伤和突变类基因(如,蛋白质和遗传因子的修复更新等);4)稳定神经内分泌与哺乳动物精子产生的相关基因等。好些“寿命基因”的生物学功能目前还不是很清楚。另外,研究发现的与细胞分裂和衰老相关的细胞周期调控因子有CDK1、PI3K、MAPK、IGF-1和 P16等等(Wang et al., 2001; de Magalhaes, 2005)。因此,生命科学家已经清醒地认识到确有与衰老和长寿相关的基因,但掌管寿命长短的遗传因子不是一个或几个,也不是一组或几组,而是数以百计的遗传因子共同作用的结果(Holliday, 2000; Warner, 2005)。衰老过程是与生理病理相关的,在调控、防御、修复、代谢诸多系统中的多个基因网络共同协调,抵御种种环境损伤的总结果。总之,衰老是先天(遗传)因素和后天(环境)因素共同作用的结果,已逐渐成为衰老生物学研究领域公认的科学事实。认清了动物衰老的上述特征,关于衰老机制的研究便可理性地聚焦在(分子层面上的)损伤积累和防御修复的范围之内。三、衰老的生理性特征和潜藏的分子杀手为了讨论真正意义上的衰老机制,有必要对衰老和老年疾病作较为明晰的界定。一般来讲,学术界普遍认同:衰老不是一种疾病。衰老机制主要研究的是生物体健康状态下的生理性老化改变。考虑到衰老过程是一个普遍存在的、渐进性的、累积性的和不可逆的生理过程,因此造成生理性衰老的原因应该是有共性的损伤因素(Strehler, 1977)。这些因素造成的积累性的,不可逆的改变才是代表着实际意义的衰老改变。其实无论是整体水平、器官水平还是细胞水平的衰老改变归根结底还是分子水平的改变,是分子水平的改变分别在不同层次上的不同的表现形式而已。许多非疾病性衰老改变,例如增龄性血管硬化造成的血压增高,又例如胶原交联造成的肺纤维弹性降低和肺活量下降,还有皮肤松弛,视力退化,关节僵硬等等都隐含着生物大分子的内在改变(Bailey, 2001)。这些改变从整体和组织器官的角度来讲不算生病,但分子结构已经“病变”了。例如,蛋白质的交联硬化就是一个最为常见的不断绞杀生命活力的生化“枷锁”,即使是无疾而终的老人,体内蛋白质的基本结构与年轻人的相比也早已面目全非了。生物体内蛋白质的增龄性损变和修饰是一个普遍存在的老化现象。衰老的身体,从里到外、从上到下都可观察到增龄性的蛋白质损变。当然,许多学者会毫不犹豫地赞同,基因受损应该是导致衰老的重要原因之一。然而,‘衰老过程为体细胞突变积累’的假说却遭到了严谨的科学实验无情地反驳,例如,辐射损伤造成遗传因子突变在单倍体和二倍体黄蜂(wasp)身上应该造成明显的寿差,但研究结果表明,DNA结构遭受加倍辐射损伤的二倍体黄蜂的寿命与单倍体黄蜂相比没有出现显著性的寿命差别,否定了上述推测 (Clark & Rubin, 1961; Lamb, 1965)。另外,大量的生物医学研究表明,衰老过程中DNA损伤和突变的增加主要导致病理性改变(Bohr, 2002; Warner, 2005),比如,造成各种各样的线粒体DNA的疾病(Holliday, 2000; Wallace, 2003)以及癌变的产生等。考虑到衰老过程明显的生理特征,蛋白质的增龄性损伤和改变则显然比遗传物质的损伤、变构对“真正衰老”做出了更多“实际的贡献”(Kirkwood,1999; Ryazanov & Nefsky,2002; Yin & Chen, 2005)。 另外,Orgel (1963) 提出的“差误成灾衰老学说”认为:衰老是生物体对‘蛋白质合成的正确维护的逐渐退化’也遇到了科学实验的强烈挑战而基本被否定(Gallant & Palmer 1979; Harley CB et al., 1980)。Harley等人(1980)的研究表明:‘体外培养的人体成纤维细胞在衰老过程中蛋白质的合成错误没有增加’(注意,对于蛋白质来说,氧化应激几乎为无孔不入和无时不在的生命杀手)。进而,该领域的科学家们越来越清楚地认识到,蛋白质的表达后损变才是生命活动和衰老的最主要的表现。因为与衰老相关的蛋白质变构在衰老身体的各个部位比比皆是(如身体各器官组织的增龄性纤维化和被种种疾病所加速的纤维化),而且组织内蛋白质的衰老损变是最终的也是最普遍的衰老现象。事实上,老化蛋白质损伤几乎在每个衰老假说中都有所涉及。因此,本论文的分析和讨论的重点将聚焦在蛋白质的损伤和修复与衰老的相关性等范畴。总的来说,蛋白质的合成、损变与更新贯穿于整个生命过程中。在生命成熟以后,蛋白质的合成与降解(速度)处于动态平衡中。随着年龄增长,这个平衡逐渐出现倾斜(Bailey, 2001; Terman, 2001)。衰老的生物体细胞内无论是结构蛋白还是功能性蛋白质的损伤和改变的报道比比皆是(Stadtman, 1992, 2003; Rattan, 1996; Ryazanov & Nef

凋亡是细胞程序性死亡,是细胞按照机体的指令在一定时间,不论是由于外因还是内因,自动死亡的过程,凋亡是个体的生命活动,是机体生命活动正常进行的一种机制,衰老是整体的概念,=如器官衰老,

研究诺基亚手机衰落原因的论文

你好朋友,诺基亚衰败的原因,主观上没有科技的创新业绩压力机制是比较不错的,但它机制比较套餐需要科技创新才有发展的前途。

诺基亚衰败的六个原因:

嗯诺基亚衰败的原因是因为它这个没有什么创新还在原来的基础上发展的话肯定啊会被淘汰的会衰败的这就是他的原因嗯诺基亚衰败的原因是因为它这个没有什么创新还在原来的基础上发展的话肯定啊会被淘汰的会衰败的这就是他的原因

问题一:诺基亚为什么会衰落 诺基亚为何输?不是输在系统上,而是输在触屏上!由于塞班系统的原因,诺基亚一直做按键手机,直到苹果4电容屏手机发布,诺基亚还在出电阻屏手机,恰恰在这半年里,诺基亚给人的印象就是跟不上节奏,从而失去民心。而直到半年后,诺基亚才更新塞班3系统发布第一款N8,而这时是明显“生不逢时”,直到一年后,才发布N9。 成也塞班,败也塞班!诺基亚不努力吗?答案是否定的? 第一:当时塞班系统是世界上用户量最大的系统,如果仅仅因为苹果4一发布就放弃,难道不遭全世界人反对吗?这样诺基亚会倒得更快! 第二:塞班系统代码复杂,接近于winXP很多开发者宁愿开发安卓,也不愿意开发塞班,因为安卓简单,塞班实在太难了! 第三:地理位置-诺基亚来自欧洲芬兰!欧洲人给人一种务实的精神,看看他们的硬件产品,哪一样不是精益求精?比如:奔驰,宝马,奥迪,兰博基尼。看看诺基亚手机,摔了又摔。然而安卓太开放了,这点不符合他们的思想,而苹果又加入不了,于是只好加入Meego,WP,而这两个系统介于开放与封闭之间,恰恰符合他们。 第四:谷歌不同意!虽然谷歌邀请诺基亚加入安卓,但是诺基亚也有条件,就是必须享有诺基亚地图导航,音乐等特殊待遇。而谷歌说:一切手机厂商同样待遇,不会单独照顾你!于是诺基亚拒绝了! 哎!时也,命也 其实,人心是最大的问题! 如果诺基亚是汽车,难道不会畅销吗 问题二:诺基亚为什么会衰落 和摩托莫拉一样 前期路线发展都不错 后期没有把握机会 失去机会却被对方抢了先手 而你还在原地踏步 所以 自然规则 摩托罗拉牛逼了一阵 诺基亚发展手机智能所以基本取代摩托 牛逼了一阵 但是没有向更牛逼的网络方面发展 苹果抢了先手 率先进入网络时代 所以取代了诺基亚 哪天你能把手机搞成全功能的玩意 你也就能取代苹果 问题三:诺基亚为啥衰落了 从哪一年开始走向衰落的呢 具体原因是啥? 诺机亚不缺比安卓差的机、诺记的系统是目前唯一做到真正深度优化的系统。说白了,诺记6ooMHZ的CPU性他要强于安卓1024MHZ的机。诺机的软件占的内存极小,登一个Q只用8M就能完美运行,安卓则须3oM,拨打电话时小于1M,安卓则须2ooM之多!同款游戏、诺记只耗15M左右的它的侠盗飞车,安卓至少也得15oM!再说运行越大、废电越大~你比较下谁好?诺记的机一直都为消费者考虑,它花了巨额用了十年时间深度优化了、为消费者节省了内存和电量,但因它把百姓都想象的太明智了,但却事与愿为。九成人不懂什么叫深度优化~ 问题四:是什么让诺基亚导致衰落的 诺基亚衰落的原因是多方面的首先,随着时代的发展,诺基亚手机的设计理念逐渐落后于时代潮流,在我们的印象中,诺基亚手机是长时间呆板无变化的,而消费者的需求是多样的。 诺基亚顽固坚持其手机系统,Android系统早在2008年就已发布,而诺基亚手机在2011年之前还一直顽固坚持其塞班系统,毫无危机意识;第三,诺基亚团队科技成果转化能力不强。 现今手机制造行业,可以说,Android手机独霸天下,2009年,Android手机仅有的市场份额,而到2013年底,市场份额约为80%,增长速度惊人。和定位于高端市场的iPhone相比,高中低所有市场全面覆盖是Android智能手机抢占手机市场的杀手锏,而诺基亚手机的衰落也昭示着漠视消费者需求的严重后果。 问题五:诺基亚为什么衰败了 它说明了公司只要跟不上时代的步伐,被取代的速度超出想象。 苹果应畅是非常多的 诺基亚则无 问题六:说说诺基亚衰败原因 被苹果坑的。。。呵呵 iphone一出 全变成触屏的了 不过只说国内市场 诺基亚的份额还是很大的 中低端市场很大 要说是诺基亚在中国衰败 还不如是说被人口水淹的 不管怎么样 都是苹果好 不管怎么样都是安卓好 但不动脑想想 一两千 你能买苹果?安卓没个2000 能买什么好机器? 只有诺基亚 给你配了 智能系统 高像素摄像头 还那么便宜 问题七:用市场营销知识说明诺基亚没落的原因 诺基亚的没落仅限于它的手机事业部,对于世界通讯业的巨头诺基亚来说曾是欧洲人的骄傲。在中国也有海量的忠实消费群,但是从营销学的角度来说,任何一个品牌都有四个时期。这个生命周期就象动植物一样,经历一个出生、成长、成熟和衰退的过程。在营销界称为品牌的生命周期,它包括孕育期、幼稚期、成长期、成熟期、衰退期等五个阶段。产品经过研究开发、试销,然后进入市场,逐渐形成一定影响力,产生了品牌。然后,在此基础上一步步成长,直至最后产品在市场上失宠,品牌不再具有影响力。诺基亚这家拥有140多年历史的芬兰公司,甚至在很多市场上曾经成为“手机”的代名词。不过在达到顶峰后,诺基亚开始慢慢走向衰落。 虽然世界上很多的机构和个人都发表过若基亚衰弱的原因,从不同的角度和层面有过很多观点,但是从市场营销学的角度来说主要归类为以下几大原因: 1、战略失误:未能及时调整智能手机; 诺基亚管理层陶醉于一时的辉煌,缺乏前瞻性战略眼光,未能制定出远大的发展机计划,以至于在竞争对手发起攻击时,未能迅速作出决策。诺基亚管理层太过于专注现有产品的“渐进式创新”,而忽略了“破坏性创新”。战略规划更是糟糕,其主要操作系统是Sy *** ian,但又同时研发Maemo/MeeGo系统,诺基亚并不清楚哪个平台能在未来取得成功,它希望同时兼顾两个平台的发展,但这意味着该公司并不清楚生态系统对手机制造商的重要性。从市场角度看,当Android和iOS作为后起之秀在市场上攻城掠地之时,诺基亚未能果断放弃Sy *** ian系统,转向新一代MeeGo平台是致命的失误。放弃自主研发的Sy *** ian和MeeGo,而投当时尚未成熟的Win Phone系统再错一步。 2、内部原因:公司管理层执行不力; 为了扭转不得局面2010年诺基亚聘用微软前高管斯蒂芬・埃洛普(Stephen Elop)出任诺基亚CEO,想借此扭转颓势。埃洛普上台后进行了大量的裁员,截至2010年第三季度末,该公司手机与地图部门的员工总数仅为44630人,远低于去年同期的60995人。诺基亚研发部门是该公司成功的关键,但诺基亚的企业文化却限制了该部门的发展。由于诺基亚管理层缺乏远见和执行力,研发部门提出的一些好想法最后都被束之高阁。诺基亚其实能够根据市场变化迅速做出反应,但他们却同时遭遇当今世界两个更具创新能力的对手,Google和苹果。 3、方向错误:未能选择Android系统。 根据市场调查机构C *** ys提供的数据显示,2010年底,Android系统的市场份额正式超越诺基亚Sy *** ian,成为智能手机领域使用率最高的操作系统。而据IDC发布的数据显示,2012年第三季度,Android系统在全球智能手机领域占有75%的份额。IDC在另外一份报告中称,诺基亚在2012年10月份跌出全球五大智能手机厂商行列。为了挽回颓势,诺基亚在2012年2月采用了新的战略,决定放弃经营多年的Sy *** ian系统,却错投了微软的Windows Phone生态系统,在错误的道路上越平越远,最终积重难返! 问题八:诺基亚为什么会衰落用经济学的观点解释 诺基亚衰落的原因如下: 1、诺基亚曾经辉煌,除了它本身机子硬件好以外,还得意塞班系统的辉煌。 2、曾经的塞班系统是如此风光无限,现在,随着开源的的安卓和苹果系统的出现和不断成熟,诺基亚的塞班系统慢慢被手机商和开发商抛弃,新一代的手机操作系统更加时尚。 3、符合保留,更加满足用户需求,越来越多的厂商和开发商疯狂的加入安卓这样的系统平台上来。 4、所以安卓打败了塞班,为了和安卓竞争,必须创新出更加先进的系统出来。 5、诺基亚也不是衰落,只是原来的手机技术被时代慢慢抛弃了,现在诺基亚搭载的新的手机系统window phone 正在慢慢拯救诺基亚。 问题九:从各个方面分析诺基亚手机市场衰败的原因 其实洛基亚很实在,有了智能机,虽然好,可给人们带来了很多经济损失。 问题十:诺基亚从辉煌到没落的原因,要详细点,谢谢。 我纯原创,简单的说: 1.太守旧,不愿创新、尝试。例子是:还在主推塞班系统。却坚持不用安卓 2.机子外形变化小,小变小革,换汤不换药。 3.没有冲出手机的思想来看手机。还是为了做手机而做手机,显然不能满足当今消费者。 4.抚端机以没性价比可言,低端机性价比更不能跟山寨机竞争。 5.本质是北欧人的思维和处事方式,太安逸! 结论:诺基亚不久肯定会成为第二个摩托罗拉。将来手机也巨头将是三星!与其有竞争的力的是HTC。苹果的长久之路也不看好,何况乔布斯走了。

真核生物基因表达调控研究论文

一.转录起始的选择在真核生物中同一个基因由于转录起始的不同可以产生不同类型的酶。例如酵母蔗糖酶基因以一种分散的多基因家族存在,有6个基因(Suc1~5,7)位于不同的染色体上。每一个基因都可以转录合成蔗糖酶,但有胞内酶和胞外酶两种不同形式。前者的合成不受葡萄糖存在的影响,但含量低;后者的合成受到葡萄糖的抑制。葡萄糖的存在与否使其活力相差100~1000倍,两种酶的结构相似,胞外酶仅多了信号序列,经切除后胞外酶比胞内酶在N-端仅多了一个Ser经分析发现Suc-2 基因有3个TATA框,但尚不清楚和2种酶的关系,也没有确定是否存在cAMP-CAP位点。小鼠的唾腺、肝脏和胰脏都能合成α-淀粉酶,但在3个组织中α-淀粉酶的浓度不同。小鼠的第3号染色体上有两个连锁的α-淀粉酶基因amy-1和amy-2,amy-1在唾腺和肝中表达,amy-2却在胰脏中表达。在唾腺中产物的浓度是肝中的100掊。这是由于在不同的组织中使用了amy基因 5′端的2个不同启动子。在唾腺中使用的启动子PS较强,转录活性比PL高30多倍,但唾腺细胞中amy的mRNA浓度要比肝脏中的高100倍,表明可能还受到其它调控因素的影响. 二.选择性加工即使是同一个基因,相同的初始mRNA,但由于5′端,内含子及3′末端等选择的不同,使成熟的mRNA也不同,结果编码了功能不同的蛋白。(一)不同5′端的选择前面所举的小鼠淀粉酶的例子实际上也是属于5′端的不同选择。这是由于一个基因具有两个启动子区,每一区都有它自己的组织调控元件,那么两个长度不同的转录本将会产生组织特异性mRNA。例如鸡的肌球蛋白(myosin)轻链基因在心脏和砂囊中转录后产生的成熟mRNA就不同,前者为LC1(light chain),后者为LC3,它们具有相同的3′编码区,但5′编码区都不同,在大鼠中也发现编码的肝球蛋白链的单个基因在不同组织中同样通过不同的转录后加工来调节表达。(二)选择不同的3′端同样的一个基因在不同组织中由于3′端加尾位点的选择不同也可产生不同的mRNA,而形成不同的产物。如大鼠甲状腺中合成的降钙素(calcitonin)和脑下垂体合成的神经肽(neuropeptide),都是由同一个基因编码的,由于3′端加尾位点的选择不同,使其mRNA的3′端的编码区不同,导致最终合成的产物也完全不同。(三)选择不同外显子例如大鼠的肌钙蛋白(torponin T)基因在不同的发育阶段以及不同横纺肌种类中由于不同的选择性剪接内含子,结果产生了不同的肌钙蛋白T

从DNA到蛋白质的过程叫基因表达(geneexpression),对这个过程的调节即为基因表达调控(regulationofgeneexpressionorgenecontrol)。基因调控是现代分子生物学研究的中心课题之一。因为要了解动植物生长发育规律。形态结构特征及生物学功能,就必须搞清楚基因表达调控的时间和空间概念,掌握了基因调控机制,就等于掌握了一把揭示生物学奥秘的钥匙。基因表达调控主要表现在以下几个方面:①转录水平上的调控;②mRNA加工、成熟水平上的调控;③翻译水平上的调控;基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。原核生物和真核生物之间存在着相当大差异。原核生物中,营养状况、环境因素对基因表达起着十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、发育阶段等是基因表达调控的主要手段,营养和环境因素的影响则为次要因素。

  • 索引序列
  • 心脏衰老的基因调控机制研究论文
  • 衰老基因研究论文
  • 衰老机制的研究进展论文
  • 研究诺基亚手机衰落原因的论文
  • 真核生物基因表达调控研究论文
  • 返回顶部