首页 > 学术论文知识库 > 学位论文检测机器人密码

学位论文检测机器人密码

发布时间:

学位论文检测机器人密码

机器人学习平板的安卓密码测试密码一般是123456。

12345。发那科机器人默认密码是“12345”,上海发那科机器人有限公司,注册资本1200万美元,地址位于上海市宝山区富联路,经营范围:生产组装,维修机器人等。

免费的查重有PaperPass注册可以免费3000字,PaperFree首次免费检测。但是高校一般都是以知网为准的,知网免费账号一般看学校有没有提供。其他论文查重软件都是供参考用。知网一般都是收费的,但是你可以到:学术不端网、PaperEasy等知网自助查重网站,投稿一篇或者分享查重网站都可能获得免费知网查重的机会。希望可以帮到你!

这个就不要等了,不可能会有人发给你的。知网账号检测学位论文的都是知网分配给各个大学的账号,只针对合作的大学使用的,淘宝上的都是那些负责管学校检测账号的人私下赚钱的,单位的张哥好不会给你的。在pass上查的56%,够高的了,好好修改吧,多修改几次,最后一次再去找知网检测系统检测,就是太贵了。

论文检测报告密码

毕业论文(设计)管理系统的密码忘记了,只能找自己的导师在系统进行密码重置。

毕业季来临,很多同学在上传论文的时候,在登录系统时发现自己的密码忘记了,其实论文系统的最初密码一般为123456或者000000,如果没有更改过的话,可以试一下这两个密码,如果更改了密码并且忘记了,只能找自己的导师在系统进行重置。

毕业论文注意事项:

1,论文题目选定后,基本上不能有太大变动,但可以进行细节上的修改;

2,提交大纲时,不只是每章一两句话,弄个四五行交过来完事。而是整篇论文的大致结构和框架要说清楚:研究目的和意义;分为几个部分说明;每个部分的大概内容是什么,都要交代清楚;【还有不明白者,就照着1500字的字数写一篇微型论文交过来。

3,论文写作一开始就必须严格按照教务处论文的模板来,从封面、摘要、正文一直到参考文献,以及页脚注释的所有格式,都必须一模一样,注意,是一模一样!否则到了后面再修改会有很多格式问题发现不了。以前有很多同学到了毕业答辩的当天还有许多格式上的问题,对不起,这种低级错误绝不放水!

4,如果有人很傻很天真地问,老师,论文应该怎么写啊?这种问题我一概不回答。如果真有此疑问者,请直接登陆学校图书馆网站的期刊网去观摩几篇,体会一下正规论文的写法;

5,论文写作不同于一般的散文、杂文、小说等写作,请不要把你的“博客体”、“微博体”、“散文体”搬到论文中来。

另外,虽然做人要实在,但是论文的写作语言不要太实在,别整出一些“这个问题我们该怎么办呢?”“我是这样认为的”之类的似哲学非哲学、似呓语非呓语的大白话,要注意学术性、科学性、专业性、规范性;

6,一些概念和定义,不要在脚注中写来自“百度百科”,即便你就是在百度当中查的,也要找到这句话的源材料,一般百度的下方都会有源链接,要写出这个概念具体出自哪本书或者哪篇期刊文章。保证学术性。这一条大家一定要注意!

7,论文整体以三章为普通,第一章提出问题,第二章分析问题,第三章解决问题。也可以有四章或者是五章,但是如果再多的话就说不过去了,你一共一万字的论文,大卸八块能好看么?当然两章式的论文也不行!

论文后面怎么附查重报告?相关内容如下:

第一步:登录中国知网CNKI学术检测系统的正规入口,一般是用学生学号以及身份证后六位作为默认密码登录。

第二步:在提交论文的页面点击查看报告就能看到自己的论文的标题、状态查重率和提交时间等许多相关信息。

第三步:点击下载论文的查重报告,这一步需要注意的是下载最后修改完成定稿的查重报告不要下错了。

第四步:下载完成后会发现查重报告是以一个压缩文件形式的,这时候需要下载好相应的解压软件去解压。第五步:打开解压好的文件夹就能看见以PDF为格式的查重报告,然后根据学校要求打印或提交查重报告就可以了。

在下载查重报告的时候可能会遇到一些问题,比如:有下载不了的报告的情况出现,这时候很大概率可能是浏览器的兼容问题,可以先换个浏览器试一试;还有许多同学打不开最后一步里PDF文件格式的查重报告,这时候只要下载一个格式转化器把PDF文件转化成word格式,或者是下载一个PDF阅读器就能够打开了。

PaperPass论文检测系统为了防止某些用户进行恶意修改检测结果的作弊行为,PaperPass不支持简明版报告的修改和转换格式等操作,也因此对简明版报告设置了转换格式的密码。 转换密码是系统生成报告时自动设置的任何人都不知道,如果要修改论文您可以前往详细版检测报告使用临时修改功能。

毕业设计(论文)管理系统密码修改过后就进不去了。怎么办

机器人视觉检测论文

机器人是由计算机控制的通过编程具有可以变更的多功能的自动机械,下面是我整理的机器人技术论文,希望你能从中得到感悟!

刍议智能机器人及其关键技术

【摘 要】文章介绍了机器人的定义,阐述了智能机器人研究领域的关键技术,最后展望了智能机器人今后的发展趋势。

【关键词】智能机器人;信息融合;智能控制

一、机器人的定义

自机器人问世以来,人们就很难对机器人下一个准确的定义,欧美国家认为机器人应该是“由计算机控制的通过编程具有可以变更的多功能的自动机械”;日本学者认为“机器人就是任何高级的自动机械”,我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”目前国际上对机器人的概念已经渐趋一致,联合国标准化组织采纳了美国机器人协会(RIA:Robot Institute of America)于1979 年给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”概括说来,机器人是靠自身动和控制能力来实现各种功能的一种机器。

二、智能机器人关键技术

随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。智能机器人所处的环境往往是未知的、难以预测的,在研究这类机器人的过程中,主要涉及到以下关键技术:

(1)多传感器信息融合。多传感器信息融合技术是近年来十分热门的研究课题,它与控制理论、信号处理、人工智能、概率和统计相结合,为机器人在各种复杂、动态、不确定和未知的环境中执行任务提供了一种技术解决途径。机器人所用的传感器有很多种,根据不同用途分为内部测量传感器和外部测量传感器两大类。内部测量传感器用来检测机器人组成部件的内部状态,包括:特定位置、角度传感器;任意位置、角度传感器;速度、角度传感器;加速度传感器;倾斜角传感器;方位角传感器等。外部传感器包括:视觉(测量、认识传感器)、触觉(接触、压觉、滑动觉传感器)、力觉(力、力矩传感器)、接近觉(接近觉、距离传感器)以及角度传感器(倾斜、方向、姿式传感器)。多传感器信息融合就是指综合来自多个传感器的感知数据,以产生更可靠、更准确或更全面的信息。经过融合的多传感器系统能够更加完善、精确地反映检测对象的特性,消除信息的不确定性,提高信息的可靠性。融合后的多传感器信息具有以下特性:冗余性、互补性、实时性和低成本性。目前多传感器信息融合方法主要有贝叶斯估计、卡尔曼滤波、神经网络、小波变换等。

(2)导航与定位。在机器人系统中,自主导航是一项核心技术,是机器人研究领域的重点和难点问题。导航的基本任务有3点:一是基于环境理解的全局定位:通过环境中景物的理解,识别人为路标或具体的实物,以完成对机器人的定位,为路径规划提供素材;二是目标识别和障碍物检测:实时对障碍物或特定目标进行检测和识别,提高控制系统的稳定性;三是安全保护:能对机器人工作环境中出现的障碍和移动物体作出分析并避免对机器人造成的损伤。机器人有多种导航方式,根据环境信息的完整程度、导航指示信号类型等因素的不同,可以分为基于地图的导航、基于创建地图的导航和无地图的导航3类。根据导航采用的硬件的不同,可将导航系统分为视觉导航和非视觉传感器组合导航。视觉导航是利用摄像头进行环境探测和辨识,以获取场景中绝大部分信息。目前视觉导航信息处理的内容主要包括:视觉信息的压缩和滤波、路面检测和障碍物检测、环境特定标志的识别、三维信息感知与处理。非视觉传感器导航是指采用多种传感器共同工作,如探针式、电容式、电感式、力学传感器、雷达传感器、光电传感器等,用来探测环境,对机器人的位置、姿态、速度和系统内部状态等进行监控,感知机器人所处工作环境的静态和动态信息,使得机器人相应的工作顺序和操作内容能自然地适应工作环境的变化,有效地获取内外部信息。

(3)路径规划。路径规划技术是机器人研究领域的一个重要分支。最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在机器人工作空间中找到一条从起始状态到目标状态、可以避开障碍物的最优路径。路径规划方法大致可以分为传统方法和智能方法两种。传统路径规划方法主要有以下几种:自由空间法、图搜索法、栅格解耦法、人工势场法。大部分机器人路径规划中的全局规划都是基于上述几种方法进行的,但这些方法在路径搜索效率及路径优化方面有待于进一步改善。人工势场法是传统算法中较成熟且高效的规划方法,它通过环境势场模型进行路径规划,但是没有考察路径是否最优。智能路径规划方法是将遗传算法、模糊逻辑以及神经网络等人工智能方法应用到路径规划中,来提高机器人路径规划的避障精度,加快规划速度,满足实际应用的需要。其中应用较多的算法主要有模糊方法、神经网络、遗传算法、Q学习及混合算法等,这些方法在障碍物环境已知或未知情况下均已取得一定的研究成果。

(4)机器人视觉。视觉系统是自主机器人的重要组成部分,一般由摄像机、图像采集卡和计算机组成。机器人视觉系统的工作包括图像的获取、图像的处理和分析、输出和显示,核心任务是特征提取、图像分割和图像辨识。而如何精确高效的处理视觉信息是视觉系统的关键问题。目前视觉信息处理逐步细化,包括视觉信息的压缩和滤波、环境和障碍物检测、特定环境标志的识别、三维信息感知与处理等。其中环境和障碍物检测是视觉信息处理中最重要、也是最困难的过程。机器人视觉是其智能化最重要的标志之一,对机器人智能及控制都具有非常重要的意义。目前国内外都在大力研究,并且已经有一些系统投入使用。

(5)智能控制。随着机器人技术的发展,对于无法精确解析建模的物理对象以及信息不足的病态过程,传统控制理论暴露出缺点,近年来许多学者提出了各种不同的机器人智能控制系统。机器人的智能控制方法有模糊控制、神经网络控制、智能控制技术的融合(模糊控制和变结构控制的融合;神经网络和变结构控制的融合;模糊控制和神经网络控制的融合;智能融合技术还包括基于遗传算法的模糊控制方法)等。近几年,机器人智能控制在理论和应用方面都有较大的进展。在模糊控制方面,等人论证了模糊系统的逼近特性,首次将模糊理论用于一台实际机器人。模糊系统在机器人的建模控制、对柔性臂的控制、模糊补偿控制以及移动机器人路径规划等各个领域都得到了广泛的应用。在机器人神经网络控制方面,CMCA(Cere-bella Model Controller Articulation)应用较早的一种控制方法,其最大特点是实时性强,尤其适用于多自由度操作臂的控制。

(6)人机接口技术。智能机器人的研究目标并不是完全取代人,复杂的智能机器人系统仅仅依靠计算机来控制目前是有一定困难的,即使可以做到,也由于缺乏对环境的适应能力而并不实用。智能机器人系统还不能完全排斥人的作用,而是需要借助人机协调来实现系统控制。因此,设计良好的人机接口就成为智能机器人研究的重点问题之一。人机接口技术是研究如何使人方便自然地与计算机交流。为了实现这一目标,除了最基本的要求机器人控制器有1个友好的、灵活方便的人机界面之外,还要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,研究人机接口技术既有巨大的应用价值,又有基础理论意义。目前,人机接口技术已经取得了显著成果,文字识别、语音合成与识别、图像识别与处理、机器翻译等技术已经开始实用化。另外,人机接口装置和交互技术、监控技术、远程操作技术、通讯技术等也是人机接口技术的重要组成部分,其中远程操作技术是一个重要的研究方向。

三、总结与展望

机器人是自动化领域的主题之一,人们几十年来对机器人的开发和研究,使机器人技术取得了巨大的进步。随着人工智能、智能控制和计算机技术的发展,机器人的应用领域必将不断扩大,性能不断提高,在未来的生产、生活、科研当中会发挥更重要的作用。

参 考 文 献

[1]孙华,陈俊风,吴林.多传感器信息融合技术及其在机器人中的应用[J].传感器技术.2003,22(9):1~4

[2]王灏,毛宗源.机器人的智能控制方法[M].北京:国防工业出版社,2002

[3]金周英.关于我国智能机器人发展的几点思考[J].机器人技术与应用.2001(4):5~7

点击下页还有更多>>>机器人技术论文

机器人控制技术论文篇二 智能控制在机器人技术中的应用 摘要:机器人的智能从无到有、从低级到高级,随着科学技术的进步而不断深人发展。计算机技术、 网络技术 、人工智能、新材料和MEMS技术的发展,智能化、网络化、微型化发展趋势凸显出来。本文主要探讨智能控制在机器人技术中的应用。 关键词:智能控制 机器人 技术 1、引言 工业机器人是一个复杂的非线性、强耦合、多变量的动态系统,运行时常具有不确定性,而用现有的机器人动力学模型的先验知识常常难以建立其精确的数学模型,即使建立某种模型,也很复杂、计算量大,不能满足机器人实时控制的要求。智能控制的出现为解决机器人控制中存在的一些问题提供了新的途径。由于智能控制具有整体优化,不依赖对象模型,自学习和自适应等特性,用它解决机器人等复杂控制问题,可以取得良好效果。 2、智能机器人的概述 提起智能机器人,很容易让人联想到人工智能。人工智能有生物学模拟学派、心理学派和行为主义学派三种不同的学派。在20世纪50年代中期,行为主义学派一直占统治地位。行为主义学派的学者们认为人类的大部分知识是不能用数学方法精确描述的,提出了用符号在计算机上表达知识的符号推理系统,即专家系统。专家系统用规则或语义网来表示知识规则。但人类的某些知识并不能用显式规则来描述,因此,专家系统曾一度陷人困境。近年来神经网络技术取得一定突破,使生物模拟学派活跃起来。智能机器人是人工智能研究的载体,但两者之间存在很大的差异。例如,对于智能装配机器人而言,要求它通过视觉系统获取图纸上的装配信息,通过分析,发现并找到所需工件,按正确的装配顺序把工件一一装配上。因此,智能机器人需要具备知识的表达与获取技术,要为装配做出规划。同时,在发现和寻找工件时需要利用模式识别技术,找到图样上的工件。装配是一个复杂的工艺,它可能要采用力与位置的混合控制技术,还可能为机器人的本体装上柔性手腕,才能完成任务,这又是机构学问题。智能机器人涉及的面广,技术要求高,是高新技术的综合体。那么,到底什么是智能机器人呢?到目前为止,国际上对智能机器人仍没有统一的定义。一般认为,智能机器人是具有感知、思维和动作的机器。所谓感知,即指发现、认识和描述外部环境和自身状态的能力。如装配作业,它要能找到和识别所要的工件,需要利用视觉传感器来感知工件。同时,为了接近工件,智能机器人需要在非结构化的环境中,认识瘴碍物并实现避障移动。这些都依赖于智能机器人的感觉系统,即各种各样的传感器。所谓思维,是指机器人自身具有解决问题的能力。比如,装配机器人可以根据设计要求,为一个复杂机器找到零件的装配办法及顺序,指挥执行机构,即动作部分去装配完成这个机器,动作是指机器人具有可以完成作业的机构和驱动装置。因此,智能机器人是一个复杂的软件、硬件的综合体。虽然对智能机器人没有统一的定义,但通过对具体智能机器人的考察,还是有一个感性认识的。 3、智能机器人的体系结构 智能机器人的体系结构主要包括硬件系统和软件系统两 个方面。由于智能机器人的使用目的不同,硬件系统的构成也不尽相同。结构是以人为原型设计的。系统主要包括视觉系统、行走机构、机械手、控制系统和人机接口。如图1所示: 视觉系统 智能机器人利用人工视觉系统来模拟人的眼睛。视觉系统可分为图像获取、图像处理、图像理解3个部分。视觉传感器是将景物的光信号转换成电信号的器件。早期智能机器人使用光导摄像机作为机器人的视觉传感器。近年来,固态视觉传感器,如电荷耦合器件CCD、金属氧化物半导体CMOS器件。同电视摄像机相比,固体视觉传感器体积小、质量轻,因此得到广泛的应用。视觉传感器得到的电信号经过A/D转换成数字信号,即数字图像。单个视觉传感器只能获取平面图像,无法获取深度或距离信息。目前正在研究用双目立体视觉或距离传感.器来获取三维立体视觉信息。但至今还没有一种简单实用的装置。数字图像经过处理,提取特征,然后由图像理解部分识别外界的景物。 行走机构 智能机器人的行走机构有轮式、履带式或爬行式以及类人型的两足式。目前大多数智能机器人.采用轮式、履带式或爬行式行走机构,实现起来简单方便。1987年开始出现两足机器人,随后相继研制了四足、六足机器人。让机器人像人类一样行走,是科学家一直追求的梦想。 机械手 智能机器人可以借用工业机器人的机械手结构。但手的自由度需要增加,而且还要配备触觉、压觉、力觉和滑觉等传感器以便产生柔软、.灵活、可靠的动作,完成复杂作业。 控制系统 智能机器人多传感器信息的融合、运动规划、环境建模、智能推理等需要大量的内存和高速、实时处理能力。现在的冯?诺曼结构作为智能机器人的控制器仍然力不从心。随着光子计算机和并行处理结构的出现,智能机器人的处理能力会更高。机器人会出现更高的钾能。 人机接口 智能机器人的人机接口包括机器人会说、会听以及网络接日、话筒、扬声器、语音合成和识别系统,使机器人能够听懂人类的指令,能与人以自然语言进行交流。机器人还需要具有网络接n,人可以通过网络和通讯技术对机器.人进行控制和操作。 随着智能机器人研究的不断深入、越来越多的各种各样的传感器被使用,信息融合、规划,问题求解,运动学与动力学计算等单元技术不断提高,使智能机器人整体智能能力不断增强,同时也使其系统结构变得复杂。智能机器人是一个多CPU的复杂系统,它必然是分成若干模块或分层递阶结构。在这个结构中,功能如何分解、时间关系如何确定、空间资源如何分配等问题,都是直接影响整个系统智能能力的关键问题。同时为了保证智能系统的扩展,便于技术的更新,要求系统的结构具有一定开放性,从而保证智能能力不断增强,新的或更多传感器可以进入,各种算法可以组合使用口这便使体系结构本身变成了一个要研究解决的复杂问题。智能机器人的体系结构是定义一个智能机器人系统各部分之间相互关系和功能分配,确定一个智能机器人或多个智能机器人系统的信息流通关系和逻辑上的计算结构。对于一个具体的机器人而言,可以说就是这个机器人信息处理和控制系统的总体结构,它不包括这个机器人的机械结构内容。事实上,任何一个机器人都有自己的体系结构。目前,大多数工业机器人的控制系统为两层结构,上层负责运动学计算和人机交互,下层负责对各个关节进行伺服控制。 参考文献: [1]左敏,曾广平. 基于平行进化的机器人智能控制研究[J]. 计算机仿真,2011,08:15-16. [2]陈赜,司匡书. 全自主类人机器人的智能控制系统设计[J]. 伺服控制,2009,02:76-78. [3]康雅微. 移动机器人马达的智能控制[J]. 装备制造技术,:102-103. 看了“机器人控制技术论文”的人还看: 1. 搬运机器人技术论文 2. 机电控制技术论文 3. 关于机器人的科技论文 4. 工业机器人技术论文范文(2) 5. 机器人科技论文

我的论文,基于STM32的多关节机器人设计,图文详细,绝对满足你的需求

网页链接

学校论文检测忘记密码

去教务处找老师恢复到初始密码忘记密码去教务处查询,修改即可。成都理工大学从2012年开始采用“学位论文学术不端行为检测系统”对研究生学位论文进行学术不端行为检测。

毕业论文知字网登录密码忘记了,那你使用注册手机号码进行找回,或者使用绑定的QQ或者微信进行找回

登录网站的时候,密码旁边有一个,叫忘记密码了。把它点击开,然后按着它的提示操作就可以了。

毕业论文知网登陆密码忘了可以先登录官网,找到忘记密码的提示,点开按照网页的步骤操作就好了。

机器人视觉检测论文范文

我的论文,基于STM32的多关节机器人设计,图文详细,绝对满足你的需求

网页链接

机器人控制技术论文篇二 智能控制在机器人技术中的应用 摘要:机器人的智能从无到有、从低级到高级,随着科学技术的进步而不断深人发展。计算机技术、 网络技术 、人工智能、新材料和MEMS技术的发展,智能化、网络化、微型化发展趋势凸显出来。本文主要探讨智能控制在机器人技术中的应用。 关键词:智能控制 机器人 技术 1、引言 工业机器人是一个复杂的非线性、强耦合、多变量的动态系统,运行时常具有不确定性,而用现有的机器人动力学模型的先验知识常常难以建立其精确的数学模型,即使建立某种模型,也很复杂、计算量大,不能满足机器人实时控制的要求。智能控制的出现为解决机器人控制中存在的一些问题提供了新的途径。由于智能控制具有整体优化,不依赖对象模型,自学习和自适应等特性,用它解决机器人等复杂控制问题,可以取得良好效果。 2、智能机器人的概述 提起智能机器人,很容易让人联想到人工智能。人工智能有生物学模拟学派、心理学派和行为主义学派三种不同的学派。在20世纪50年代中期,行为主义学派一直占统治地位。行为主义学派的学者们认为人类的大部分知识是不能用数学方法精确描述的,提出了用符号在计算机上表达知识的符号推理系统,即专家系统。专家系统用规则或语义网来表示知识规则。但人类的某些知识并不能用显式规则来描述,因此,专家系统曾一度陷人困境。近年来神经网络技术取得一定突破,使生物模拟学派活跃起来。智能机器人是人工智能研究的载体,但两者之间存在很大的差异。例如,对于智能装配机器人而言,要求它通过视觉系统获取图纸上的装配信息,通过分析,发现并找到所需工件,按正确的装配顺序把工件一一装配上。因此,智能机器人需要具备知识的表达与获取技术,要为装配做出规划。同时,在发现和寻找工件时需要利用模式识别技术,找到图样上的工件。装配是一个复杂的工艺,它可能要采用力与位置的混合控制技术,还可能为机器人的本体装上柔性手腕,才能完成任务,这又是机构学问题。智能机器人涉及的面广,技术要求高,是高新技术的综合体。那么,到底什么是智能机器人呢?到目前为止,国际上对智能机器人仍没有统一的定义。一般认为,智能机器人是具有感知、思维和动作的机器。所谓感知,即指发现、认识和描述外部环境和自身状态的能力。如装配作业,它要能找到和识别所要的工件,需要利用视觉传感器来感知工件。同时,为了接近工件,智能机器人需要在非结构化的环境中,认识瘴碍物并实现避障移动。这些都依赖于智能机器人的感觉系统,即各种各样的传感器。所谓思维,是指机器人自身具有解决问题的能力。比如,装配机器人可以根据设计要求,为一个复杂机器找到零件的装配办法及顺序,指挥执行机构,即动作部分去装配完成这个机器,动作是指机器人具有可以完成作业的机构和驱动装置。因此,智能机器人是一个复杂的软件、硬件的综合体。虽然对智能机器人没有统一的定义,但通过对具体智能机器人的考察,还是有一个感性认识的。 3、智能机器人的体系结构 智能机器人的体系结构主要包括硬件系统和软件系统两 个方面。由于智能机器人的使用目的不同,硬件系统的构成也不尽相同。结构是以人为原型设计的。系统主要包括视觉系统、行走机构、机械手、控制系统和人机接口。如图1所示: 视觉系统 智能机器人利用人工视觉系统来模拟人的眼睛。视觉系统可分为图像获取、图像处理、图像理解3个部分。视觉传感器是将景物的光信号转换成电信号的器件。早期智能机器人使用光导摄像机作为机器人的视觉传感器。近年来,固态视觉传感器,如电荷耦合器件CCD、金属氧化物半导体CMOS器件。同电视摄像机相比,固体视觉传感器体积小、质量轻,因此得到广泛的应用。视觉传感器得到的电信号经过A/D转换成数字信号,即数字图像。单个视觉传感器只能获取平面图像,无法获取深度或距离信息。目前正在研究用双目立体视觉或距离传感.器来获取三维立体视觉信息。但至今还没有一种简单实用的装置。数字图像经过处理,提取特征,然后由图像理解部分识别外界的景物。 行走机构 智能机器人的行走机构有轮式、履带式或爬行式以及类人型的两足式。目前大多数智能机器人.采用轮式、履带式或爬行式行走机构,实现起来简单方便。1987年开始出现两足机器人,随后相继研制了四足、六足机器人。让机器人像人类一样行走,是科学家一直追求的梦想。 机械手 智能机器人可以借用工业机器人的机械手结构。但手的自由度需要增加,而且还要配备触觉、压觉、力觉和滑觉等传感器以便产生柔软、.灵活、可靠的动作,完成复杂作业。 控制系统 智能机器人多传感器信息的融合、运动规划、环境建模、智能推理等需要大量的内存和高速、实时处理能力。现在的冯?诺曼结构作为智能机器人的控制器仍然力不从心。随着光子计算机和并行处理结构的出现,智能机器人的处理能力会更高。机器人会出现更高的钾能。 人机接口 智能机器人的人机接口包括机器人会说、会听以及网络接日、话筒、扬声器、语音合成和识别系统,使机器人能够听懂人类的指令,能与人以自然语言进行交流。机器人还需要具有网络接n,人可以通过网络和通讯技术对机器.人进行控制和操作。 随着智能机器人研究的不断深入、越来越多的各种各样的传感器被使用,信息融合、规划,问题求解,运动学与动力学计算等单元技术不断提高,使智能机器人整体智能能力不断增强,同时也使其系统结构变得复杂。智能机器人是一个多CPU的复杂系统,它必然是分成若干模块或分层递阶结构。在这个结构中,功能如何分解、时间关系如何确定、空间资源如何分配等问题,都是直接影响整个系统智能能力的关键问题。同时为了保证智能系统的扩展,便于技术的更新,要求系统的结构具有一定开放性,从而保证智能能力不断增强,新的或更多传感器可以进入,各种算法可以组合使用口这便使体系结构本身变成了一个要研究解决的复杂问题。智能机器人的体系结构是定义一个智能机器人系统各部分之间相互关系和功能分配,确定一个智能机器人或多个智能机器人系统的信息流通关系和逻辑上的计算结构。对于一个具体的机器人而言,可以说就是这个机器人信息处理和控制系统的总体结构,它不包括这个机器人的机械结构内容。事实上,任何一个机器人都有自己的体系结构。目前,大多数工业机器人的控制系统为两层结构,上层负责运动学计算和人机交互,下层负责对各个关节进行伺服控制。 参考文献: [1]左敏,曾广平. 基于平行进化的机器人智能控制研究[J]. 计算机仿真,2011,08:15-16. [2]陈赜,司匡书. 全自主类人机器人的智能控制系统设计[J]. 伺服控制,2009,02:76-78. [3]康雅微. 移动机器人马达的智能控制[J]. 装备制造技术,:102-103. 看了“机器人控制技术论文”的人还看: 1. 搬运机器人技术论文 2. 机电控制技术论文 3. 关于机器人的科技论文 4. 工业机器人技术论文范文(2) 5. 机器人科技论文

人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!

摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。

关键词:人工智能;计算机科学;发展方向

中图分类号:TP18

文献标识码:A

文章编号:1672-8198(2009)13-0248-02

1人工智能的定义

人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

2人工智能的应用领域

人工智能在管理及教学系统中的应用

人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。

人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。

人工智能专家系统在工程领域的应用

人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。

人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。

人工智能在技术研究中的应用

人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。

人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。

3人工智能的发展方向

人工智能的发展现状

国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。

我国人工智能的研究现状。很长一段时间以来,机械

和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。

人工智能发展方向

在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。

基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。

人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。

4结语

由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。

下一页分享更优秀的<<<人工智能的毕业论文范文

  • 索引序列
  • 学位论文检测机器人密码
  • 论文检测报告密码
  • 机器人视觉检测论文
  • 学校论文检测忘记密码
  • 机器人视觉检测论文范文
  • 返回顶部