首页 > 学术论文知识库 > 关于基因工程方面的论文题目

关于基因工程方面的论文题目

发布时间:

关于基因工程方面的论文题目

基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文

参考(生物医学)里的文章

基因工程的利弊基因工程的利与弊说【摘要与前言】基因工程技术,在医药及农业上应用广泛。这项尖端科技加上最近突破性的生殖科技,却引发人们极大的隐忧及争论。生物学家在一百多年前就知道,生物的表征遗传自其亲代。生物细胞的细胞核,含有染色体,组成分为DNA。DNA含有四种碱基(简称A、T、C、G)。这些碱基在DNA中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。每三个碱基代表一种胺基酸的密码。基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。每个基因含有启动控制区,以调控基因的表达。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。但它亦引起很大的忧虑与关切。当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡?【正文】观点:辨证的看待基因工程的利与弊一.基因工程可用来筛检及治疗遗传疾病。遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。但是广泛的基因筛检将会引起一连串的社会问题。如果有人接受基因筛检,发现在某个年龄将因某种病死亡,势必将会极度改变他的人生观。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。譬如人寿保险公司将会要求客户提供家族健康数据,如心脏病、糖尿病、乳癌等,而针对高危险群家族成员设定较高的保费。保险公司可由基因筛检资料预知客户的预估寿命。这些人可能因而得不到保险的照顾,也可能使这些人被公司老板提早解聘。二.基因工程配合生殖科技——全人类的震撼基因筛检并不改变人的遗传组成,但基因治疗则会。科学家正努力改变遗传病人的错误基因,把好的基因送入其中以纠正错误。因为这是在操作生命的基本问题,必须格外小心。首先须划分医疗及非医疗的行为。医疗行为目的在治病,非医疗者如想提高孩子的身高、智慧等。选择胎儿性别也是非医疗行为,不能被接受,但是遇到某些性连遗传的疾病,选择胎儿的性别就是可被接受的医疗行为。另一项须区分的,就是体细胞(somatic cell)或生殖细胞(germ-line cell)的基因操作。体细胞的基因操作只影响身体的体细胞,不影响后代。但卵子、精子等生殖细胞之基因操作,会直接影响后代,目前基因工程禁止直接用在生殖细胞上。三.基因治疗法——遗传病人的福音目前医学界正在临床试验多种遗传病的基因治疗法。最早采用基因治疗的是一种先天免疫缺乏症,又称气泡男孩症(bubble-boy disease),患病婴幼童因为腺脱胺(adenosine deaminase)基因有缺陷,骨髓不能制造正常白血球发挥免疫功能,必须生活在与外界完全隔离的空气罩内。最新的治疗法是由病人骨髓分离出白血球的干细胞,把正常的酵素基因接在经过改造不具毒性的反录病毒(retrovirus),藉此病毒送入白血球干细胞,再将干细胞送回病人体内,则病人可产生健康的白血球获得免疫功能。这项临床试验,在美国的女病童证明很成功。另一种较便捷的治疗法亦在实验中,纤维性囊肿(cystic fibrosis)在英国平均每两千人中就有一人罹患此症。病人无法制造形成细胞膜氯离子通道的蛋白。此蛋白分布于分泌性细胞的胞膜上,控制氯离子的运输,使黏液畅通。病人体内因缺乏此蛋白,体内浓黏液堆积阻塞肺部通道,甚至发炎死亡。为了治疗此病,目前正在发展新方法,将正常基因加入雾状喷剂中,病人可借着吸入喷剂,使基因进入肺细胞产生蛋白,达到治疗目的。四.农林渔牧的应用——生态环保的顾虑目前全世界正重视发展永续性农业(sustainable agriculture),希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。英国爱丁堡科学家已经可以使绵羊分泌含有人类抗胰蛋白(α-1-antitryspin)的羊奶。抗胰蛋白可以治疗遗传性肺气肿,价格很昂贵。若以后能由羊奶大量制造,将变得很便宜。但是目前以基因工程开发培育基因转殖绵羊的过程,仍是很费时费钱的。基因转殖的细菌用处也很大,如改造细菌可以消化垃圾废纸,而这些细菌又可成为一种蛋白质的营养来源。基因转殖的细菌可带有人类基因,以生产医疗用的胰岛素及生长激素等。其实基因工程在农业上的应用,在某些方面而言并不稀奇。自古以来,人们即努力而有计划地进行育种,譬如一个新种小麦,乃是经过上千代重复杂交育成的。目前的小麦含有许多源自野生黑麦的基因。农人早在基因工程技术发明以前,就知道将基因由一种生物转移至另一生物。传统的育种也可大量提高产量。但是传统的育种过程缓慢,结果常常难以预料。基因工程可选择特定基因送入生物体内,大大提高育种效率,更可把基因送入分类上相差很远的生物,这是传统的育种做不到的。不久,在美国即将有基因工程培育出来的西红柿要上市了。这种西红柿含有反意基因(antisense gene),能使西红柿成熟时不会变软易烂。基因工程也生产抗病抗虫作物,使作物本身制造出“杀虫剂”。如此农夫就不需费力喷洒农药,使我们有健康的生活环境。也可培育出抗旱耐盐作物以适合生长在恶劣的环境下,如此可克服第三世界的粮食短缺问题。但是,会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。在高盐的沼泽地种植基因工程育成的作物,可能会干扰了生态系统。假如热带作物改造得可以于温带地区生长,可能会严重伤害开发中国家的经济,因为农作物水果的输出是他们的主要收入。最近更逐渐发现危害作物的害虫,已经慢慢地演化,以抵抗基因转殖作物所产生的「杀虫剂」了。基因工程培育的鱼,也引起一连串的问题。目前已送两个基因到鲤鱼中,一是生长激素,一是抗冻蛋白(antifreeze protein)。若有人不小心或刻意地把这些鱼放入自然环境的河、湖中,将会严重影响自然界的鱼群生态。五.基因转殖动物——爱护动物人士的关切基因转殖动物对于生物医学研究,真是一大恩赐。科学家现在可将基因送入实验室的老鼠,以研究基因的表达调控功能。也可以把实验动物的某个基因刻意破坏,培育出患有类似人类遗传疾病的动物,以利治疗方法的探讨。美国一家公司已经培育出一种基因转殖老鼠,它在数个月大时会长出癌瘤,此项发明正在申请专利。但是爱护动物人士已表示严重关切,他们认为应该限制基因工程技术如此折磨虐待实验动物。(注:基因工程的应用并不只有以上部分,我只对以上部分发表个人观点。)【结语】不久的将来,基因工程技术仍只限于转殖少数的基因,如此培育出来的生物仍将是我们熟悉的生物。但是有很多疾病及生物特征是由多数基因决定的,而且基因常常不是独立行使功能,它们会受环境的影响。譬如一组基因会造成某人罹患气喘,但症状受生活的环境影响很大。一个人罹患糖尿病的机率,也与环境因子(饮食条件)息息相关。一个天才钢琴家的音乐天赋包括听力及灵敏的双手巧妙地配合,这跟他的遗传基因、童年音乐的启发、生活环境等都有关连。所以我们在还未了解基因与环境因子的互动关系前,还不能奢望创造出具有超高智商的人,或是利用基因筛检法筛选出具有特殊天赋的孩子。21世纪是基因工程技术蓬勃发展的时代,基因工程的兴起是生物革命的必然结果,尽管基因工程的隐忧及争论众说纷纭,但其给人带来的好处是显而易见的。希望随着生物界的不断发展,使基因工程的安全性得到保证,让人们在生活的各个方面都能感受基因工程给人类带来的利益。

关于工程造价方面的论文题目

推荐工程造价毕业论文题目:1·国内外工程造价构成研究2.浅谈定额计价与清单计价的异同3.探讨低价中标在建筑工程中的合理应用4.如何编制一份高质量的工程量清单5.项目决策阶段影响工程造价的主要因素研究6.建设项目投资估算方法研究7.建设项目设计阶段工程造价的计价与控制研究8.浅谈建设项目施工招投标9.工程进度款的支付研究10.建筑工程项目的施工质量管理研究 11.建设工程索赔研究 12.建设工程项目施工成本控制研究13.建设工程项目进度控制研究14.浅谈建设工程合同与合同管理15.建设工程项目信息管理研究16.浅谈工程项目风险管理17.项目资金筹措的渠道与方式研究18.项目融资的主要方式研究19.工程量清单计价下施工过程中风险分担研究20.论防水材料的选用21.浅谈工程地质队工程造价的影响22.浅谈地下连续墙施工技术23.水泥的主要特性及适用范围分析24.桩基础施工方法及适用范围分析25.钢筋焊接连接方法及适用范围分析26.施工组织设计技术经济分析27.浅谈建筑工程合同价款的确定与调整28.浅谈用价值工程原理控制工程成本29.建设工程纠纷的处理研究30.建设工程违约责任分析31.实行工程量清单计价办法后如何进行工程报价32.工程量清单计价与传统报价模式比较研究33.浅谈投标报价策略及报价技巧34建筑施工企业如何加强工程造价管理35.工程设计对工程造价的影响36.注重工程结算提高索赔意识37.经评审的最低价中标制度的认识38.编制预结算过程中几个疑难问题之我见39运用预算电算化软件的一些体会40.工程量清单与无标底招标的一些思考

学术堂觉得工程技术研究类、工程设计类、理论研究类这三个方面都比较好写,下面整理了一些题目,供大家参考:1、招标控制价模式下建设工程投标报价规律研究2、建设工程招投标过程中围标现象探讨3、地方政府对公共建设工程监督过程现状及问题研究4、基于并行工程的建设工程项目管理模式研究5、建设工程施工合同纠纷案件审判实务研究6、建设工程价款优先受偿权问题研究7、实验室建设工程项目进度管理研究8、建设工程项目设计信息安全风险管理和对策研究9、场地建设工程地质灾害危险性评估研究10、建设工程价款优先受偿权问题研究11、建设工程造价信息管理系统集成研究12、建设工程施工进度BIM预测方法研究13、建设工程质量政府监督管理研究14、建设工程项目承包商索赔研究15、建设工程招投标社会成本研究

建筑工程管理毕业论文参考题目1. XX工程项目筹资与投资管理的研究2. 混凝土项目工程造价管理的研究3. 建设工程造价控制问题与对策4. XX项目房地产市场营销策划编制5. 论“定额计价模式”向“工程量清单模式”的转换6. 论工程索赔和控制及其费用的确定7. 论优化设计与工程建设投资控制8. 论工程合同在工程建设中的作用9. XX建设项目投资控制实证分析10. 工程造价咨询机构实施项目管理探讨11. 论工程变更对造价管理的影响12. 工程建设投资、质量和进度三大目标的新内涵13. 基于保险公司的建筑工程一切险的理赔14. 论房地产开发企业的多项目管理15. 论价值工程与低碳建筑的结合16. 浅谈BOT项目融资方式的适用范围与特点17. 论建筑企业人力资源管理面临的挑战与机遇18. 论建筑工程管理的全寿命周期管理19. 对我国推行工程总承包模式的探讨与思考20. 论建筑市场信用体系的构建与维护21. 施工阶段全过程造价控制的范围及实施22. 论建筑工程竣工结算的审计23. 论公共工程建设的社会责任和企业目标的结合24. XX建设项目管理信息系统25. XX房地产项目的银行贷款可行分析

建筑工程毕业论文,我写的《 居住建筑节能评价与建筑能效标识研究》,还是五老师给弄的

还有些资料

基因方面的论文

基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文

基因支持着生命的基本构造和性能。下面是我为大家精心推荐的关于基因的生物科技论文 范文 ,希望能够对您有所帮助。

基因研究

引起人们大惊小怪的,就是让父母能够有意识选择孩子遗传特性的技术。在可预见的未来,除了用基因方式医治少数遗传疾病,如囊肿性纤维化外,改变基因的成人还不可能出现。改变成人的基因还不是人们敢于轻易尝试的技术,要恢复或加强成人的功能,还有许多更简单、更安全、也更有效的 方法 。

胚胎选择技术是指父母在怀孕时影响孩子基因组合的一系列技术的总称。最简单的干预方法就是修改基因。这不是一种大刀阔斧的变更,因为它要获得的效果就像筛选各种胚胎、选择具有所需基因的胚胎的效果一样。事实上,这种胚胎筛选程序已经在胚胎植入前的基因诊断中 应用了。这种技术已经用了十几年,但还在试验,在未来5到10年将臻于成熟。随着这些技术的成熟,可供父母选择的方案会大大增多。

再进一步将出现对生殖系统的干预――即选择卵子、精子、或更可能的是选择胚胎的第一细胞。这些程序已经在动物身上应用,不过使用的方式对于人类还缺乏安全性和可靠性。

对人类比较可靠的一种方法也许是使用人造染色体。这项技术听起来像是不可置信的科幻电影,但已经用在动物身上了。人造染色体植入老鼠身上,连续几代被传了下去。人造染色体也用在人体细胞培养中,在数百次细胞分裂中都能保持稳定。因此,它们可以充当插入基因模块的稳定“平台”。这些被插入的基因模块包括在适当时候让基因兴奋或休息的必要控制机制,就像在我们46个染色体中的正常基因的激活或休息,取决于它们所处的生理 组织类型,或取决于它们遇到的 环境状况一样。

当然,为安全起见,需要早期介入才能使焦点集中。你不能去修改一个在胎儿发育过程中生理组织不断变化时被激活的基因,因为我们对这一过程所知甚少,有可能发生不想要的或灾难性的副作用。所以,在人体内使用人造染色体的首次尝试,多半要让被植入的基因处在“休息”状态,到成人阶段才在适当的生理组织中被“激活”。

执行这种控制的机制已经用在动物实验中,实验的目的是观察特定基因在发育成熟的有机体中的作用。当然,在体内存在着始终控制基因的机制。不同类的基因在不同的生理组织内的不同地点和时间被激活或休息,这对未来的基因工程师来说是幸运的,因为与我们现有的基因相 联系的已证实的调节结构可以复制下来,用以执行对植入基因的控制。胚胎选择的目标

预防疾病可能是胚胎选择的最初目标。这类可能性也许不久就会远远超出纠正异常基因的范围。例如,最近的研究显示,患有唐氏综合症的孩子,癌症的发病率降低了近90%。很可能是三体性21(即染色体21的第三个复制品,具有增强基因表达水平的作用,导致智力迟钝和其他唐氏综合症的症状)对癌症有预防作用。假如我们能鉴别出染色体上的哪些基因对癌症有预防作用,会怎么样呢?基因学家也许会把这类基因放在人造染色体上,然后植入胚胎,使癌症发病率降低到唐氏综合症患者的水平,又可以避免复制染色体21上其他基因所引起的所有问题。许多其他类似的可能性无疑都会出现,有些可能性几乎肯定是有好处的。

人造染色体的使用可能会进行得很顺利,尤其因为染色体本身在用于人体前可在实验室环境中进行试验。它们可以在动物身上试验,成功后在基本相同的条件下用于人体。如今,每一种基因疗法都是重新开始的,所以不可能获得绝对的可靠性。

如果有明确的基因修改案例显示这样做是有意义的,似乎是安全的,不可能更简便更安全了,那么人们就会对它们表示欢迎。尽管如此,目前还没有足够的证据说明值得这样做。未来基因治疗专家会产生各种各样的想法,他们会进行试验,观察这种疗法是否可行。如果可行的话,我们就不应该拒绝。例如,降低癌症和心脏病的发病率,延缓衰老,是每个人都非常需要的增进健康的手段。

用基因延长寿命

防止衰老是个非常有意义的科研领域,因为这件事似乎很有可能做到,而且是绝大多数人所强烈需要的。如果能通过揭开衰老过程的基本程序,发现某种手段能使我们开发药物或其他对成人有效的干预手段,那么人人都会需要。

胚胎工程可能比对成人的基因疗法更简单,更有成效。因为胚胎中的基因会被复制进身体的每一个细胞,能获得具体组织的控制机制。所以很可能对胚胎的干预 措施 对成人是行不通的。这样一来,父母很可能把怀孕看作赋予孩子健康条件的机会――一次不可错失的机会。

如对衰老生物学的研究投入资金,会极大地加速“衰老治疗”。如今,这个领域资金非常缺乏。许多资金都用于研究治疗老年病的方法上,没有用来搞清楚衰老的基本过程,而许多老年性疾病(如癌症、心脏病、早老性痴呆症、关节炎和糖尿病)都是由这一过程引起的。能加速衰老防止研究进程的另一件事,就是提高这个领域的形象。这个 工作已经开始了,但非常缓慢。吸引年轻的科研人员和严肃的科学家进入这个领域是至关重要的。抗衰老(即延长孩子的寿命)可能将是生殖干预的重要目标,但不是唯一的目标。为孩子谋最大福利是人类的天职。事实上,全球民意测验已经显示,在被测的每一个

国家都有可观的人数对增强孩子的身体和脑力健康感兴趣。他们考虑的不是如何避免某些疾病,而是用干预手段改善孩子的容貌、智力、力量、助人为乐精神和其他品质的状况。一旦技术达到可靠程度,许多人都需要这类干预手段。甚至那些没有这方面压力的人也会这么做,目的是不让孩子处于劣势。当然,人们会很小心,因为他们并不想伤害孩子。总之,如果干预手段失败,他们就得忍受其结果,承受犯罪的感觉。是一个不受欢迎的选择吗?

社会也许并不欢迎某些父母的选择。在美国性别选择是合法的,但在英国和其他许多国家就是非法的。不少人认为,尽管西方国家并没有出现严重的性别失衡,很难说父母的选择伤害了谁,但这个程序在美国也应该是非法的。另一个即将来临的决定是父母是否因为大量基因疾病而进行筛选。父母们不久就能够选择孩子的身高和智商,或选择性情气质的其他特点――容易患病的机制也许不久就会在基因解读中表现得清清楚楚。

胚胎选择技术的第一批希望所在是基因测试和筛选,即选择某种胚胎而不是另一种。一开始,让许多人接受这个技术是困难的,但要控制它几乎是不可能的,因为这种胚胎本来就可能是完全自然形成的。这样选择也许是令人苦恼的,但不会发生危险,我猜想它们给我们带来的好处比问题多。有些人担心这样一来会失去多样性,但我认为更大的问题在于父母所选择的胚胎可能会产生一个有严重健康问题的婴儿。那么是否应该允许父母做这样的选择呢?例如,失聪群体掀起了一个极力反对耳蜗移植的运动,因为耳蜗移植伤害了聋哑 文化 ,把聋哑视作残疾。大多数非聋哑人正是这样看待他们的。有的聋哑父母表示,他们要使用胚胎选择技术来确保他们的孩子继续聋哑。这并不是说他们拿出一个胚胎来毁坏它,而是选择一个能造成一个聋哑婴儿的胚胎。

这造成了真正的社会问题,因为社会必须承担这类健康问题所需的医疗费用。如果认为父母的确有权作这样的选择,我们根本没有理由去重视健康儿的出生而轻视有严重疾患的婴儿,那么我们将无法控制这类选择。但如果我们认为存在问题,并极力想与之进行斗争的话,我们会发现这种斗争是很有前途的。

放开手脚,取消禁令

关于由人体克隆产生的第一例怀孕事件见报后不久,美国总统乔治?W?布什就表示支持参议院的一份提案,该提案宣布所有形式的人体克隆皆为非法,包括旨在创造移植时不会被排斥的胚胎干细胞,即治疗性克隆。我认为这种禁令下得为时过早,也不会有效果,而且会产生严重的误导。就是说,这个禁令无疑是错误的。它根本无法实质性推延再生性克隆的问世,我认为这种类型的克隆将在10年内出现。这个禁令把 政治、宗教和 哲学因素注入了基础研究,这将是个危险的案例。这个禁令的立法理念把更多的关注赋予了微乎其微的小小细胞,而对那些身患疾病、惨遭折磨的人却视而不顾。这个禁令用严厉的刑事惩罚(10年监禁)来威胁胚胎科研人员,这在一个妇女在妊娠头三个月不管什么理由都有权堕胎的国家里,简直是不可思议的。

美国对胚胎研究的限制,已经对旨在创建再生 医学的生物技术的 发展产生了影响。这些限制延缓了美国在这个领域的前进步伐,而美国在生物医学的科研力量是全球首屈一指的。如今这类科研已转移到英国和其他国家去了,例如新加坡,正在为一项研究胚胎干细胞的庞大 计划提供资金。这种延误之所以非常不幸,是因为本应发生的好事如今却没有发生。对多数人来说,10年或20年的延误不是个大问题,但对于演员迈克尔?J?福克斯(Michael )以及其他帕金森氏病和早老性痴呆症患者来说,却是生与死的问题。

对各种再生可能性的无知,往往会引起人们的恐惧。但这种无知却不能成为公众政策的基础,因为公众的态度会迅速改变。25年前,体外受精着实让人们猛吃一惊,体外受精的孩子被称作试管婴儿。现在我们看到这些孩子与他小孩没什么区别,这个方法也已成为许多没有孩子的父母的明确选择。

不管是出于意识形态还是宗教原因,把新技术加以神秘化,把它当作某种象征来加以反对,都不会有效推迟即使是最有争议的 应用。这种反对态度只会扼杀本可以转化为人人支持的生物医学新成果的主流科研。

人类克隆会在某个国家实现:很可能是以暧昧隐秘的方式实现,而且甚至在确认安全之前就实现。抗议和禁止也许会稍稍推迟第一个克隆人的诞生,但这是否值得花费严肃的人类立法成本呢?

不管我们多么为之担心,人类胚胎选择是无法避免的。胚胎选择已经存在,克隆也正在进行,甚至直接的人类生殖工程也将出现。这样的技术是阻挡不了的,因为许多人认为它能造福于人类,因为它将在全球数以千计的实验室里切实进行,最重要的是,因为它只是解除生物学的主流生物医学科研的一个副产品。

对于迅速发展的技术,我们要做的重要的事,不是预先为它设立条条框框。务必要牢记,同原子武器相比,这样的技术是没有危险性的。在原子武器中,稍有不慎,众多的无辜旁观者即刻就会灰心烟灭。这些技术仅对那些决定挺身而出使用

他们的人才具有危险性。如果我们把关于这些技术的现在的希望和恐惧带进将来,并以此为基础进行预先控制,从而扼杀它们的潜力的话,我们就只能制定出非常拙劣的法律。今天,我们并没有足够的知识来预测这些技术未来会出现什么问题。

比较明智的方法是让这项技术进入早期 应用,并从中学些东西。性别选择就是现实世界的 经验 能告诉我们一些事情的极好例子。许多人想要控制性别选择,但与不发达国家不同,在发达国家,自由选择性别并没有导致性别的巨大不平衡。在美国,父母的选择基本上男女平衡的,女孩占微弱优势。以前有人认为,如果给了父母这种选择权,会出现严重问题,因为男孩会过剩。但事实并非如此。这种危险是我们想象出来的。有些人认为,父母不应该对孩子拥有这种权力,但他们究竟担心什么,往往非常模糊。在我看来,如果父母由于某种原因的的确确需要一个女孩或男孩,让他们了却心愿怎么会伤害孩子呢?相反的情况倒的确值得担心的:如果父母极想要一个男孩,结果却生了个女孩,这个“性别错误”的孩子可能就不会过上好日子。我相信,让父母拥有这种选择权,只有好处没有坏处。

我们还可以想象出有关性别选择的各种麻烦事件,编出一系列可能发生的危险 故事 。但如果将来事情发生了变化,性别不平衡现象真的出现了,我们再制定政策处理这类特殊问题也不迟。这要比现在就对模糊的恐惧感和认为是在戏弄上帝的思想观念作出反应,无疑要明智得多。这是民主化的技术吗?

阻止再生技术的行为使这些技术造成 社会的极端分裂,因为阻止行为仅仅使这些技术为那些富裕的人所用,他们可以非常容易地绕过种种限制,或者到国外去,或者花大钱寻求黑市服务。

其核心是胚胎选择技术,如果处理恰当,它可以成为非常民主化的技术,因为早期采取的各项治疗措施可以面向各种残缺者。把智商在70到100(群体平均数值)的人向上提高,要比把智商从150(群体百分比最高值)提高到160容易得多。要让本已才智卓绝的人再上一层楼,那非常困难,因为这必须改善无数微小因素的复杂的混合配备状况,正是这些因素合在一起,才能创造出一个超人来。而改善退化的功能则要容易得多。我们并无超人的案例,但我们却有无数普通人为佐证,他们可以充当范例,引导我们如何去修改一个系统,使之至少达到正常的功能。

我觉得,人们以为我们是平等的创造物,在法律面前人人平等,于是就认为我们大家都是一样的。其实不然。基因抽奖可能是非常非常残酷的。你去问问行动迟钝的人,或问问有这样那样基因疾病的人,他们是不会相信什么基因抽奖是多么美妙公平这种抽象言论的。他们就希望自己能更健康些,或者获得某些方面的能力。这些技术的广泛应用,就在许多方面创造了一个平等的竞技场,因为那些本来由于基因原因处于劣势的人也有了竞争的机会。

另一个问题是,这些技术就像其他技术一样, 发展很快。在同代人之间,富人和穷人的应用差距不会很大,而在两代人之间的应用差距却会很大。如今,甚至比尔?盖茨也无法为他的孩子获得某种在25年后中产阶级也认为是很原始的基因增强技术。

所谓明智的一个重要因素,就是要懂得什么我们有权控制,什么无权控制。我们务必不要自欺欺人,以为我们有权对是否让这些技术进入我们的生活进行选择。它肯定会进入我们的生活。形势的发展必然要求我们去使用这些技术。

但在我们如何应用它们、它们会如何分裂我们的社会,以及它们对我们的价值观会产生什么影响等问题上,我们的确有某种选择余地。这些问题我们应该讨论。我本人对这些技术是满怀希望的。它们可能产生的好处会大大超过可能出现的问题,我想,未来的人类在回顾这些技术时,会觉得奇怪:我们在这么原始的时代是如何生活的,我们只活到75就死了,这么年轻,而且死得这么痛苦难过。

政府和决策者不应该对这些研究领域横加阻挠,因为由于误用或意外所造成的伤害,并不是仅有的风险。能够挽救许多人的技术因为延误而使他们继续遭受痛苦,也是一种风险。

当务之急是倾全力获得足够的安全性,防止意外的发生,而要做到这点,协调者看来要牺牲许多间受影响的人的安全。疫苗的例子就是这样。疫苗有许多年没有进展,因为引起诉讼的可能性很大。如果那个孩子受了伤害,会产生巨大的后果。然而很明显,对接受疫苗接种的全体人而言,是非常安全的。

我认为人们对于克隆也是同样的问题。它在近期可能会影响最多一小部份人。在我看来,拒绝会改变数以百万患者命运的非常有可能的 医学进步,振振有词地宣称这是对人类生命的尊重,这是一种奇怪的逻辑。

失去人性还是控制人性?

另一种祁人之忧,认为任意篡改生物机制有可能使我们失去人性。但是,“人性”究竟是与某些非常狭隘的生物结构有关,还是与我们接触世界的整个过程、与我们之间的相互作用有关呢?例如,假如我们的寿命增加一倍,会不会使我们在某种意义上“失去人性”呢?寿命延长必然会改变我们的生活轨迹,改变我们的互动方式,改变我们的 组织制度、家庭观和对 教育 的态度。但我们还是人类,我敢断言我们会迅速适应这些变化,并会对以往没有这些变化的生活觉得不解。

如果原始的狩猎者想象自己生活在纽约城,他们会说在那样的地方他们可能不再是人了,他们认为那不是人的生活方式。可是今天我们大多数人不仅把纽约的生活看作是人的生活,而且是大大优于狩猎生活。我想,我们改变生物机制所发生的变化也是如此。

目前人类还处在进化的早期阶段,至多是青少年期。几千年后,未来的人类来看我们这个时代,会认为是原始的、艰难的同时充满希望的时代。他们也会把我们这个时代看作是人类发展的特殊的光荣的时刻,因为我们为他们的生活打下了基础。我们很难想象即使一千年后的生活会是什么样子,但我猜想我们现在的生物重组会大大影响未来的人类。

点击下页还有更多>>>关于基因的生物科技论文范文

基因工程相关论文主题

以下的话请认真阅读。。。比较一下,答案就在其中~呵呵~基因工程(DNA重组技术)都有那些应用呢?一:在生产领域,人们可以利用基因技术,生产转基因食品.例如,科学家可以把某种肉猪体内控制肉的生长的基因植入鸡体内,从而让鸡也获得快速增肥的能力.但是,转基因因为有高科技含量, 怕吃了转基因食品中的外源基因后会改变人的遗传性状,比如吃了转基因猪肉会变得好动,喝了转基因牛奶后易患恋乳症等等。华中农业大学的张启发院士认为:“转基因技术为作物改良提供了新手段,同时也带来了潜在的风险。基因技术本身能够进行精确的分析和评估,从而有效地规避风险。对转基因技术的风险评估应以传统技术为参照。科学规范的管理可为转基因技术的利用提供安全保障。生命科学基础知识的科普和公众教育十分重要。”二:军事上的应用.生物武器已经使用了很长的时间.细菌,毒气都令人为之色变.但是,现在传说中的基因武器却更加令人胆寒。三: 环境保护上,也可以应用基因武器.我们可以针对一些破坏生态平衡的动植物,研制出专门的基因药物,既能高效的杀死它们,又不会对其他生物造成影响.还能节省成本.例如一直危害我国淡水区域的水葫芦,如果有一种基因产品能够高校杀灭的话,那每年就可以节省几十亿了.科学是一把双刃剑.基因工程也不例外.我们要发挥基因工程中能造福人类的部分,抑止它的害处.四,医疗方面随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基因诊断、修复、治疗和预防,这是生物技术发展的前沿。这项成果将给人类的健康和生活带来不可估量的利益。所谓基因治疗是指用基因工程的技术方法,将正常的基因转如病患者的细胞中,以取代病变基因,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途径,达到治疗某些遗传病的目的。目前,已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种。因此,遗传病是基因治疗的主要对象。 第一例基因治疗是美国在1990年进行的。当时,两个4岁和9岁的小女孩由于体内腺苷脱氨酶缺乏而患了严重的联合免疫缺陷症。科学家对她们进行了基因治疗并取得了成功。这一开创性的工作标志着基因治疗已经从实验研究过渡到临床实验。1991年,我国首例B型血友病的基因治疗临床实验也获得了成功。基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉、肝脏、脾、肠道和皮肤获得成功的表达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗,并用基因枪技术来治疗遗传病。目前,科学家们正在研究的是胎儿基因疗法。如果现在的实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿,从而从根本上提高后代的健康水平。五,基因工程药物研究基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。在这方面的研究具有十分诱人的前景。基因工程药物研究的开发重点是从蛋白质类药物,如胰岛素、人生长激素、促红细胞生成素等的分子蛋白质,转移到寻找较小分子蛋白质药物。这是因为蛋白质的分子一般都比较大,不容易穿过细胞膜,因而影响其药理作用的发挥,而小分子药物在这方面就具有明显的优越性。另一方面对疾病的治疗思路也开阔了,从单纯的用药发展到用基因工程技术或基因本身作为治疗手段。现在,还有一个需要引起大家注意的问题,就是许多过去被征服的传染病,由于细菌产生了耐药性,又卷土重来。其中最值得引起注意的是结核病。据世界卫生组织报道,现已出现全球肺结核病危机。本来即将被消灭的结核病又死灰复燃,而且出现了多种耐药结核病。据统计,全世界现有亿人感染了结核病菌,每年有900万新结核病人,约300万人死于结核病,相当于每10秒钟就有一人死于结核病。科学家还指出,在今后的一段时间里,会有数以百计的感染细菌性疾病的人将无药可治,同时病毒性疾病日益曾多,防不胜防。不过与此同时,科学家们也探索了对付的办法,他们在人体、昆虫和植物种子中找到一些小分子的抗微生物多肽,它们的分子量小于4000,仅有30多个氨基酸,具有强烈的广普杀伤病原微生物的活力,对细菌、病菌、真菌等病原微生物能产生较强的杀伤作用,有可能成为新一代的“超级抗生素”。除了用它来开发新的抗生素外,这类小分子多肽还可以在农业上用于培育抗病作物的新品种。六,加快农作物新品种的培育科学家们在利用基因工程技术改良农作物方面已取得重大进展,一场新的绿色革命近在眼前。这场新的绿色革命的一个显著特点就是生物技术、农业、食品和医药行业将融合到一起。本世纪五、六十年代,由于杂交品种推广、化肥使用量增加以及灌溉面积的扩大,农作物产量成倍提高,这就是大家所说的“绿色革命”。但一些研究人员认为,这些方法目前已很难再使农作物产量有进一步的大幅度提高。基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。 基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。虽然第一批基因工程农作物品种5年前才开始上市,但今年美国种植的玉米、大豆和棉花中的一半将使用利用基因工程培育的种子。据估计,今后5年内,美国基因工程农产品和食品的市场规模将从今年的40亿美元扩大到200亿美元,20年后达到750亿美元。有的专家预计,“到下世纪初,很可能美国的每一种食品中都含有一点基因工程的成分。”尽管还有不少人、特别是欧洲国家消费者对转基因农产品心存疑虑,但是专家们指出,利用基因工程改良农作物已势在必行。这首先是由于全球人口的压力不断增加。专家们估计,今后40年内,全球的人口将比目前增加一半,为此,粮食产量需增加75%。另外,人口的老龄化对医疗系统的压力不断增加,开发可以增强人体健康的食品十分必要。加快农作物新品种的培育也是第三世界发展中国家发展生物技术的一个共同目标,我国的农业生物技术的研究与应用已经广泛开展,并已取得显著效益。七,分子进化工程的研究分子进化工程是继蛋白质工程之后的第三代基因工程。它通过在试管里对以核酸为主的多分子体系施以选择的压力,模拟自然中生物进化历程,以达到创造新基因、新蛋白质的目的。这需要三个步骤,即扩增、突变、和选择。扩增是使所提取的遗传信息DNA片段分子获得大量的拷贝;突变是在基因水平上施加压力,使DNA片段上的碱基发生变异,这种变异为选择和进化提供原料;选择是在表型水平上通过适者生存,不适者淘汰的方式固定变异。这三个过程紧密相连缺一不可。现在,科学家已应用此方法,通过试管里的定向进化,获得了能抑制凝血酶活性的DNA分子,这类DNA具有抗凝血作用,它有可能代替溶解血栓的蛋白质药物,来治疗心肌梗塞、脑血栓等疾病。我国基因研究的成果以破译人类基因组全部遗传信息为目的的科学研究,是当前国际生物医学界攻克的前沿课题之一。据介绍,这项研究中最受关注的是对人类疾病相关基因和具有重要生物学功能基因的克隆分离和鉴定,以此获得对相关疾病进行基因治疗的可能性和生产生物制品的权利。人类基因项目是国家“863”高科技计划的重要组成部分。在医学上,人类基因与人类的疾病有相关性,一旦弄清某基因与某疾病的具体关系,人们就可以制造出该疾病的基因药物,对人类健康长寿产生巨大影响。据介绍,人类基因样本总数约10万条,现已找到并完成测序的约有8000条。近些年我国对人类基因组研究十分关注,在国家自然科学基金、“863计划”以及地方政府等多渠道的经费资助下,已在北京、上海两地建立了具备先进科研条件的国家级基因研究中心。同时,科技人员紧跟世界新技术的发展,在基因工程研究的关键技术和成果产业化方面均有突破性的进展。我国人类基因组研究已走在世界先进行列,某些基因工程药物也开始进入应用阶段。目前,我国在蛋白基因的突变研究、血液病的基因治疗、食管癌研究、分子进化理论、白血病相关基因的结构研究等项目的基础性研究上,有的成果已处于国际领先水平,有的已形成了自己的技术体系。而乙肝疫苗、重组α型干扰素、重组人红细胞生成素,以及转基因动物的药物生产器等十多个基因工程药物,均已进入了产业化阶段。基因技术:进退两难的境地和两面性的特征,基因作物在舆论界引发争议不足为怪。但在同属发达世界的大西洋两岸,转基因技术的待遇迥然不同却是一种耐人寻味的现象。当美国40%的农田种植了经过基因改良的作物、消费者大都泰然自若地购买转基因食品时,此类食品在欧洲何以遭遇一浪高过一浪的喊打之声?从直接社会背景看,目前欧洲流行“转基因恐惧症”情有可原。从1986年英国发现疯牛病,到今年比利时污染鸡查出致癌的二恶英和可口可乐在法国导致儿童溶血症,欧洲人对食品安全颇有些风声鹤唳,关于转基因食品可能危害人类健康的假设如条件反射一般让他们闻而生畏。同时,欧洲较之美国在环境和生态保护问题上一贯采取更为敏感乃至激进的态度,这是转基因食品在欧美处境殊异的另一缘故。一方面,欧洲各国媒介的环保意识日益强烈,往往对可能危害环境和生态的问题穷追不舍甚至进行夸张的报道,这在很大程度上左右着公众对诸如转基因问题的态度。另一方面,以“绿党”为代表的“环保主义势力”近年来在欧洲政坛崛起,在政府和议会中的势力不断扩大,对决策过程施加着越来越大的影响。但是,欧洲人对转基因技术之所以采取如此排斥的态度,似乎还有一个较为隐蔽却很重要的深层原因。实际上,在转基因问题上欧美之间既有价值观念之差,更是经济利益之争。与一般商品不同,转基因技术具有一种独特的垄断性。在技术上,美国的“生命科学”公司一般都通过生物工程使其产品具有自我保护功能。其中最突出的是“终止基因”,它可以使种子自我毁灭而不能象传统作物种子那样被再种植。另一种技术是使种子必须经过只为种子公司所掌握的某种“化学催化”方能发育和生长。在法律上,转基因作物种子一般是通过一种特殊的租赁制度提供的,消费者不得自行保留和再种植。美国是耗资巨大的基因工程研究最大的投资者,而从事转基因技术开发的美国公司都熟谙利用知识产权和专利保护法寻求巨额回报之道。美国目前被认为已控制了相当大份额的转基因产品市场,进而可以操纵市场价格。因此,抵制转基因技术实际上也就是抵制美国在这一领域的垄断。生物技术在许多领域正在发挥越来越重要的作用:遗传工程产品在农业领域无孔不入,遗传工程作物开始在美国农业中占有重要位置;生物技术在医学领域取得显著进展,已有一些遗传工程药物取代了常规药物,医学界在几方面从基因研究中获利;克隆技术的进展为拯救濒危物种及探索多种人类疾病的治疗方法提供了前所未有的机会。目前研究人员正准备将生物技术推进到更富挑战性的领域。但近来警惕遗传学家的行为的声音越来越受到重视。今天,人们借助于所谓的DNA切片已能同时研究上百个遗传基质。基因的研究达到了这样一个发展高度,几年后,随着对人类遗传物质分析的结束,人们开始集中所有的手段对人的其他部分遗传物质的优缺点进行有系统地研究。但是,生物学的发展也有其消极的一面:它容易为种族主义提供新的遗传学方面的依据对新的遗传学持批评态度的人总喜欢描绘出一幅可怕的景象:没完没了的测试、操纵和克隆、毫无感情的士兵、基因很完美的工厂工人……遗传密码使基因研究人员能深入到人们的内心深处,并给他们提供了操纵生命的工具。然而他们是否能使遗传学朝好的研究方向发展还完全不能预料。

每到学年结束的时候,老师就会要求学生对所学科目进行系统的总结。论文对于大一新生来说,一般都很生疏,特别是在格式方面存在很多问题。今天就为大家介绍基本的学年论文写法。题目:写论文首先就是写论文的题目,有的时候,老师会将论文题目发到每个学生手里;有时需要自己来写,自己来写就要注意论文题目要明确简洁有概括性,并能准确的反映本论文的研究内容。(字数不要太长,20字左右即可。)摘要和关键词:论文题目拟好后就需要写摘要和关键词(有时不需要写)。摘要是论文内容的简要陈述。关键词是主题词条,应采用能覆盖论文主要内容的词条。关键词一般写3—5个。正文 :正文包括绪论、正文主体与结论等部分。 绪论应包括论文的目的与意义;对问题的认识及主要研究内容。论文主体是论文的主要部分,要层次清楚,结构合理,文字简练通顺。结论是对整个论文主要的成果的总结。在结论中应明确指出研究内容的成果,见解和观点。致谢:一般是对指导教师个人和同学们的帮助表示感谢。内容要实事求是, 简洁明了。参考文献:所引用的文献必须是本人真正阅读过的与论文直接有关的文献。(学年论文一般不需要写参考文献)附录 :是对于一些不宜放在正文中,但又直接反映完成工作的成果内容。如图片﹑实验数据﹑计算机程序等。

基因工程技术的现状和前景发展 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术;前景;现状一、基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。二、基因工程应用于医药方面目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。三、基因工程应用于环保方面工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。四、前景展望由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。【参考文献】[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26. 这还有一篇

基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文

关于软件工程方面的毕业论文题目

学术堂整理了十五个好写的计算机科学与技术专业毕业论文题目供大家进行参考:1、多媒体课件开发工具对比研究2、信息技术教学方法研究3、中小学信息技术课程标准研究4、网络环境下教学评价系统研究5、利用网络技术支持课堂教学改革6、网络环境下教与学的研究与实现7、小学信息技术课程教学内容与方法探讨8、基于FLASH的多媒体课件设计与开发9、中学信息技术教育对学生文化素养的影响现状与对策10、新课程改革下中学信息技术课改情况调查分析11、信息技术环境下的教师素质和能力、角色与地位12、信息技术与课程整合的研究13、中学新课程对信息技术教师的素质要求研究14、多媒体课件或网络课件制作15、多媒体教学软件的设计与制作

我写的《城市地下管线探测与地下管线信息系统设计》,结合南充市地下管线探测工程,讲述了地下管线探测的原理和方法。以测量给水管线为背景,论述了管线测量的理论方法,控制网的布设,管线点测量的内容及管线数据质量检查方法。这个专业一定要有创新点的,不然很难过关。之前也是没时间,还好学长给的莫文'网,很快就帮忙搞定了,牛人啊

楼上那位 强悍!你文章需要多少字数。具体的还有什么要求吗?

专科还是本科

  • 索引序列
  • 关于基因工程方面的论文题目
  • 关于工程造价方面的论文题目
  • 基因方面的论文
  • 基因工程相关论文主题
  • 关于软件工程方面的毕业论文题目
  • 返回顶部