The function minimum problem and applies to be first simple the introduction next circular function the extreme value existence condition, next mainly in the function of many variables extreme value's related theory's foundation, using the quadratic form positive definiteness and the negative definiteness discussion function of many variables's extreme value distinguished that the law as well as asks the function of many variables with the lagrange multiplicator law the condition extreme value, finally expounds one Yuan separately through the model illustration topic, function of many variables extreme value application in reality.
函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,ymin=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
我尽力了,很少翻译数学专业词汇。The function extreme problem and its application A brief introduction to the one-variable function of the extreme conditions for the existence of, followed by multi-variable function mainly in the theory of extreme value on the basis of the second type are the qualitative and multi-variable function negative qualitative discussion of extreme discrimination law and use the multiplier lagrange For multi-variable function of the extreme conditions, respectively, by the end of a typical example of that set out a dollar, multi-variable function extreme in practice the application. Key words: multi-variable function; extreme; quadratic; definite matrix; negative top matrix; extreme conditions
一定要有题目,作者名字,通讯地址,邮编,摘要关键词,正文,参考文献,最好还要有英文的Keyword与 Abstract ,范文随便上网找,结尾要有参考文献。关于条件极值的探讨(图片打不上,呵呵)俊聪 (应用数学学院,应用数学专业,08级)摘要 本文主要类比了无条件极值的判别法,讨论了条件极值是否拥有与无条件极值类似的判别法。通过利用黑赛矩阵与二阶微分,得出了怎样求条件极值和极值点的有效方法,并且得出了无条件极值所满足的判别法不是都适应条件极值的。关键词 条件极植一熟悉的条件极值判别法在研究数学问题时,有时会遇到与极值有关的问题,而我们常见的有无条件极值与条件极值。对于无条件极值,我们都有非常熟悉的判别法:若二元函数f在点的某个邻域U()内具有二阶连续偏导数,且是f的稳定点,则有:(1) 当>0,>0时,黑赛矩阵是正定的,f在点取得极小值;(2) 当<0, >0时,黑赛矩阵是负定的,f在点取得极大值;(3) 当<0时,黑赛矩阵是不定的,f在点不能取得极值;(4) 当=0时,黑赛矩阵是半定的,不能肯定f在点是否取得极值。因此,我们可以类比无条件极值,探讨条件极值,看它是否也满足上面的四条判别法。二 有关条件极值的一个定理为了研究上面的问题,我们首先给出一个常用定理:首先,这个定理需要条件:在的限制下,要求目标函数的极值。则有定理:设在满足上面的限制下,求函数的极值问题,其中与在区域D内有连续的一阶的偏导数。若D的内点是上述问题的极值点,且雅可比矩阵的秩为m,则存在m个常数,使得为拉格朗日函数的稳定点,即为下述n+m个方程的解。三 分析讨论以上问题通过引入上面的定理,我们可以得到它的稳定点,而我们接下来考虑的是条件极值能否在稳定点处取得极值,且如果取得极值,它取得的是极大值还是极小值。我们在这里还需用到黑赛矩阵。设是F的稳定点。令,并且使固定,考虑在点的黑赛矩阵此时,分类讨论:1当是正定的或负定的。这是是的极值点。而我们限制了。因此也是的相应的条件极值点。2当是不定的或半正定的或半负定的。这是可能不是的极值点,但也有可能是的极值点。我们可以通过,。求出,,…,,,…,之间的关系,得到,…,的二次型如果此时其系数矩阵是正定的,则是的极小值点;如果是负定的,则是的极大值点。通过以上分析,我们就可以得出一个重要的结论:条件极值类比与无条件极值第一,二条是成立的,对于第四条是不适应的,对于第三条虽然开始也无法判断,但可以找到其他途径,求出是否有极值。四 实例分析我们首先举出一个例子:已知f(x,y,z)=x+y+z,求它在限制条件xyz=下的极值点。解:根据题意,我们首先设F(x,y,z,)=f(x,y,z)+ (xyz-)接着,我们算dF(x,y,z,)=0,从而解得x=y=z=c, =如果c=0,则可得f(x,y,z)在xyz=下无极值点当c0时,则在=,=(c,c,c)处,有=此时此矩阵不是正定的,也不是负定的。再对xyz-=0求微分,在=(c,c,c)处,解得dz=-dx-dy,代入得=(dxdy+dydz+dzdx)=(——dxdy—)=当c>0时,正定,(c,c,c)为极小值点,当c<0, 负定,(c,c,c)为极大值点。因此,通过这个例子,我们在不能判断黑赛矩阵是正定还是负定的情况下,可以通过适当的转化使极值点求出来。其实,我们也可以通过其他类似的方法来求有关条件极值的有关问题。例如,我们可以用二阶微分的方法来求条件极值。对于二阶微分,有公式:我们通过举个例子来加以说明。已知f=xyz,求它在限制条件下的极值。解:令F(x,y,z,)= xyz+ ()求dF=0,则=yz+2x=0 =xz+2y=0 =xy+2z=0 =0则可以解得八个稳定点当=—时,有稳定点(1,1,1),(1,—1,—1), (—1,—1,1), (—1,1,—1)当 =时,有稳定点 (1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)则dF=(yz+2x)dx+(xz+2y)dy+(xy+2z)dz=我们首先来判断点 (1,1,1)是否为极值点,求出稳定点 的微分dz=—dx—dy,且(,)=—+=——+2(dx+dy)dz,把dz=—dx—dy带进去,得(,)=———2<0,则可得(1,1,1)是极大值点,同理可得(1,—1,—1), (—1,—1,1), (—1,1,—1)是极大值点,而(1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)都是极小值点,进而我们可求出此时极大值点所对应的极值都为1,极小值点所对应的极值都为—1,从而得解。[参考文献][1] 华东师范大学数学系 数学分析下册 第三版[M]高等教育出版社 2001[2]孙振绮 丁效华 工科数学分析例题与习题下册[M]机械工业出版社 2008
模式识别§2-1模式识别及识别的直接方法在日常生活中生活中,经常需要进行各种判断、预测。如图象文字识别、故障(疾病)的诊断、矿藏情况的判断等,其特点就是在已知各种标准类型前提下,判断识别对象属于哪个类型的问题。这样的问题就是模式识别。一、模糊模式识别的一般步骤 模式识别的问题,在模糊数学形成之前就已经存在,传统的作法主要用统计方法或语言的方法进行识别。但在多数情况下,标准类型常可用模糊集表示,用模糊数学的方法进行识别是更为合理可行的,以模糊数学为基础的模式识别方法称为模糊模式识别。 模式识别主要包括三个步骤: 第一步:提取特征,首先需要从识别对象中提取与识别有关的特征,并度量这些特征,设 分别为每个特征的度量值,于是每个识别对象 就对应一个向量 ,这一步是识别的关键,特征提取不合理,会影响识别效果。 第二步:建立标准类型的隶属函数,标准类型通常是论域 的模糊集, 是识别对象的第 个特征。 第三步:建立识别判决准则,确定某些归属原则,以判定识别对象属于哪一个标准类型。常用的判决准则有最大隶属度原则(直接法)和择近原则(间接法)两种。 二、最大的隶属度原则 若标准类型是一些表示模糊概念的模糊集,待识别对象是论域中的某一元素(个体)时,往往由于识别对象不绝对地属于某类标准类型,因而隶属度不为1,这类问题人们常常是采用称为“最大隶属度原则”的方法加以识别,这种方法(以及下面的“阈值原则”)是处理个体识别问题的,称为直接法。 最大隶属度原则:设 是 个标准类型, ,若 则认为 相对隶属于 所代表的类型。例1 通货膨胀识别问题通货膨胀状态可分成五个类型:通货稳定;轻度通货膨胀;中度通货膨胀;重度通货膨胀;恶性通货膨胀.以上五个类型依次用 (非负实数域,下同)上的模糊集 表示,其隶属函数分别为:其中对 ,表示物价上涨 。问 时,分别相对隶属于哪种类型?解 , , , , 由最大隶属原则, 应相对隶属于 ,即当物价上涨 时,应视为轻度通货膨胀; ,应相对隶属于 ,即当物价上涨 时,应视为恶性通货膨胀。三、阈值原则 在使用最大隶属度原则进行识别中,还会出现以下两种情况,其一是有时待识别对象 关于模糊集 中每一个隶属程度都相对较低,这时说明模糊集合 对元素 不能识别;其二是有时待识别对象 关于模糊集 中若干个的隶属程度都相对较高,这时还可以缩小 的识别范围,关于这两种情况有如下阈值原则。阈值原则: 是 个标准类型, 为一阈值(置信水平)令 若 则不能识别,应查找原因另作分析。若d且有 , … 则判决 相对地属于 例2 三角形识别问题我们把三角形分成等腰三角形 ,直角三角形 , 正三角形 ,非典型三角形 ,这四个标准类型,取定论域 这里 是三角形三个内角的度数,通过分析建立这四类三角形的隶属函数为:现给定, , 对上述四个标准类型的隶属度为: 由于 关于 , 的隶属程度都相对高,故采用阈值原则,取 ,因 , ,按阈值原则, 相对属于 ∩ ,即 可识别为等腰直角三角形。例3 癌细胞识别在癌细胞识别问题中细胞分成四个标准类型,即:癌细胞 ,重度核异质细胞 ,轻度核异质细胞 ,正常细胞 选取表征细胞状况的七个特征: 根据病理知识,反映细胞是否癌变的主要指标有以下六个,它们都是 上的模糊集: 上述 是适当选取的常数细胞识别中的几个标准类型分别定义为: 上述定义中的模糊集 的隶属函数为 。另两个模糊集 、 的隶属函数类似定义。给定待识别细胞 ,设 的核面积等七个特征值为 据此可算出 、 、 、 ,最后按最大隶属度原则识别。例4 冬季降雪量预报内蒙古丰镇地区流行三条谚语:(1)夏热冬雪大,(2)秋霜晚冬雪大,(3)秋分刮西北风冬雪大,现在根据三条谚语来预报丰镇地区冬季降雪量。为描述“夏热” 、秋霜晚 、秋分刮西北风 等概念,在气象现象中提取以下特征: :当年6~7月平均气温 :当年秋季初霜日期 :当年秋分日的风向与正西方向的夹角。于是模糊集 (夏热), (秋霜晚)、 (秋分刮西北风)的隶属函数可分别定义为: 其中 是丰镇地区若干年6、7月份气温的平均值, 为方差,实际预报时取 = = 其中 是若干年秋季初霜日的平均值, 是经验参数,实际预报时取 =17(即9月17日), =10(即9月10日)。取论域 ,“冬雪大”可以表示为论域 上的模糊集 ,其隶属函数为: ∧ ∨ 采用阈值原则,取阈值 ,测定当年气候因子 。计算 ,若 则预报当年冬季“多雪”,否则预报“少雪”。用这一方法对丰镇1959~1970年间隔12年作了预报,除1965年以外均报对,历史拟合率为11/12。§2-2 贴近度与模式识别的间接方法 一、贴近度 表示两个模糊集接近程度的数量指标,称为贴近度,其严格的数学定义如下: 定义1 设映射 : 满足下列条件:(1) , (2) , (3) 若 满足 有 则称映射 为 上的贴近度,称 为 与 的贴近度。贴近度的具体形式较多,以下介绍几种常见的贴近度公式 (1) Hamming 贴近度 或 (2)Euclid贴近度 或 (3)格贴近度定义7 映射 ⊙ ,(或= ⊙ )称为格贴近度,称 为 与 格贴近度。其中, (称为 与 的内积) ⊙ (称为 与 的外积)若 ,则 ⊙ 值得注意的是,这里的格贴近度是通过定义来规定的,事实上,格贴近度不满足定义1中(1),即 ,但是,当 时,格贴近度满足定义1的(1)-(3)。另外格贴近度的计算很方便,且用于表示相同类型模糊度的贴近度比较有效,所以在实际应用中也常选用格贴近度来反映模糊集接近程度。还有许多贴近度,这里不在一一介绍。贴近度主要用于模糊识别等具体问题,以上介绍的贴近度表示式各有优劣,具体应用时,应根据问题的实际情况,选用合适的贴近度。 二、模式识别的间接方法——择近原则在模式识别问题中,各标准类型(模式)一般是某个论域 上的模糊集,用模式识别的直接方法(最大隶属度原则、阈值原则)解决问题时,其识别对象是论域 中的元素。另有一类识别问题,其识别对象也是 上的模糊集,这类问题可以用下面的择近原则来识别判决。择近原则:已知 个标准类型 、 、…、 , 为待识别的对象, 上的贴近度,若 则认为 与 最贴近,判定 属于 一类。例5 岩石类型识别岩石按抗压强度可以分成五个标准类型:很差( )、差( )、较好( )、好( )、很好( )。它们都是 上的模糊集,其隶属函数如下(图2-1)0 200 400 600 900 1100 1800 2000图 2-1今有某种岩体,经实测得出其抗压强度为 上的模糊集 ,隶属函数为(图2-3)。 图 2-3 试问岩体 应属于哪一类。计算 与 的格贴近度,得: 按择近原则, 应属于 类,即 属于“较好”类( 类)的岩石。例6 小麦亲本识别在小麦杂交育种过程中,亲本选择是关键。现有五种类型的小麦亲本,它们是: :早熟型, :矮杆型, :大粒型, :高肥丰产型, :中肥丰产型。判断小麦亲本类型的主要依据是以下五种性状特征: :抽穗期, :株高, :有效穗数, :主穗粒数, :百粒重。第 种类型亲本的第 个特征,是模糊集 ,这些模糊集除 (早熟型的抽穗期)与 (矮杆型的株高)外,其余都是中间型的正态分布模糊集。为简单计,将正态分布函数展开,取前两项作它的近似值,则有 于是 的隶属函数可表示为: 而 , 的隶属函数取为偏小值型: 为确定隶属函数中的参数值,在熟知的标准类型中,每类型选出 个新本为样本,分别计算各样本的第 个特征的均值 及方差 ,取 以上参数值见表(2-1)表 2-1亲本参数性状 早熟 矮杆 大粒 高肥丰产 中肥丰产抽穗期 - 株高 - 有效穗数 主穗粒数 百粒重 现有一待识对象 ,它的第 个特征 是中间型正态分布模糊集,隶属函数可近似表示为: 。式中参数值见表(2-2)表 2-2特性参数 抽穗期 株高 有效穗数 主穗粒数 百粒重 4 70 计算识别对象 的第 个特征与第 种标准类型对应特征 的格贴近度 并定义第 种标准类型 与识别对象 的贴近度为: 计算结果列于表(2-3)表 2-3 早熟( )矮杆( )大粒( )高肥( )中肥( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 表(2-3)的最后一行为 与各标准类型的贴近度。由于 与 的贴近度最高(),故判定识别对象 为 代表的类型,即 为中肥丰产类型的亲本。例7 遥感土地复盖类型分类遥感是根据不同的地物对电磁波谱有不同的响应这一原理,来识别土地复盖的类型。空间遥感的一个象元相当于地面公倾地物的综合。遥感图象识别分类中,要涉及不少模糊概念,例如,“以红松为主的针叶林”就是一个没有明确界线的模糊概念。这是遥感本身的特性决定的。因此用模糊数学的方法对遥感图象进行识别分类应该是行之有效的方法。美国爱达荷大学 教授指出,国际上当以水体、沙地、森林、城镇、作物、干草作为分类单位(即标准类型)时,空间遥感的分类精度可达甚至更高。但当分类单位深入到更小的土地复盖单元时,精度就不理想了。现在将分类单位细分阶段为以下五种标准类型: :公路, :村庄农田, :红松为主的针叶林, :阔、针混交林, :白桦林。对于多波段遥感技术,假设采用 个波段,则每一地物对应一个 维数据向量 。1975年1月22日美国发射LandSat-2,提供了MSS-4,5,6,7这四个波段的数据,故有 。取论域 其中 分别为象元对应于MSS-4,5,6,7各波段的光谱强度。于是五种标准类型 可表为 上的模糊集。由于各波段光谱强度是正态分布模糊集,故第 个标准类型的( +3)波段光谱强度的隶属函数为: 定义第 种标准类型 为: 因而 其中 为若干个第 种类型第( +3)个波段光谱强度的均值, 为方差,东北凉水林场的这些参数值见表(2-4)表 2-4标准类型 MSS-4 MSS-5 MSS-6 17 45 设 为识别对象,定义 与 的贴近度为: (1)其中 = ⊙ (2)表 2-5类型N识别对象 max 判别 结果 效果 正确 正确 正确 正确 正确按 及 ⊙ (3-26)(这里 与 是 的均值与方差)。现有东北凉水林场空间遥感象元(待识别对象)五个,按(1)与(2)计算它们与五个标准类型的贴近度,计算结果在表(2-5)按择近原则进行识别判决,准确率100%。例8 雷达识别现有 个雷达类,每个雷达类可用发射频率、脉冲重复频率、脉冲宽度等特征来刻画,假设共有 个特征,第 类雷达的第 个特征可以取 个值。由于保密的需要及信号环境的日益复杂,这些特征及其取值都带有一定的模糊性。设第 类 雷达的 个特征为 类雷达的第 个特征 取值为 ,其隶属函数为中间型柯西分布,即 设 为待识别对象,它的 个特征为 的第 个特征 的隶属函数也取中间型柯西分布: 采用格贴近度,令 则 为识别对象 的第 个特征与 类雷达第 个特征贴近程度的度量。一般情况可令 ( 是各 的加权平均值,权系数 表示 个特征的重要性程度) 可作为识别对象 与第 类雷达总贴近的度量。根据 的大小可判定 属于何类雷达,但是,由于权系数 的确定有一定的模糊性, 及 的隶属函数的确定带有一定的主观性,从而导致贴近度 有一定的模糊性。因此对 及 进行模糊化处理,设 这里 , 都是 模糊数(见第五章),取 。令 的隶属函数为 则 为识别对象 与第 类雷达的贴近程度的模糊测度。为得到 所属雷达类别的确切判决,类似于阈值法则,给定水平值 ,令 若 且 唯一,则判定 为 类雷达;若 且 ,则判定 为 类雷达。用上述方法(将权系数及贴近度模糊化),经上千次仿真试验,比传统的贴近度及线性加弘平均法,误判率有所下降。第三章 模糊规划§3-1 模糊极值一、有界函数的模糊极值设 ( 为实数集) 是有界函数,求函数 的普通极值问题是求 使 满足上式的 为 在 上的最大值点, 为最大值,最大值点不一定唯一. 设 的一切最大值点的集合为 称 为 的优越集.当 时,函数在 处取到最大值 , 使 达到最优.当 时, 虽不是最大值,但对不同的 , 与最大值的差异有所不同,也就是说,对于不属于 的 ,它们的“优越性”程度有所不同,为了反映 中各点不同的优越程度,将优越集 模糊化,并利用它将极值模糊化.定义1设 是有界函数,定义 的隶属函数为 ( ) 称 为 的无条件模糊优越集称 的 的无条件模糊极大值.这里 ,它的求属函数按扩张原理为 (约定 )注 (1)当 为 的极大点,即 时 ,当 为 的极小点,即 时 , 充分必要条件是 (2)当 时, 当 时, 当 时, 因此, 反映了在模糊意义下, 对 的模糊数大值的求属程度.例1 设 , ,定义 , , , ,则 , 并且 于是 又 故 的无条件模糊极小集 定义为 的无条件极大集,显然有 且有, ,所有极小集 是极大集 的余集.二、模糊约束下有界函数的模糊极值设: 是有界函数, ,考虑 在 约束下的最大值问题,这是一个模糊规划问题,求解这个问题意味着既要最大限度地满足约束,又要最大限度地达到理想目标,为此定义如下:定义2 设目标函数 是有界函数, 是模糊约束,令 这里的 是定义1中 的无条件模糊优越集,称 为 在 约束下的条件模糊优越集,称 为 在 约束下的条件模糊极大值.它们的求属函数分别为:求解目标函数 在模糊约束 下的条件极大值有如下三个步骤: (1)求无条件模糊优越集 (2)求条件模糊优越集 (3)求条件最佳决策,即选择 ,使 就是所求的条件极大点, 就是在模糊约束 下的条件极大值.例2采区巷道布置是矿井开拓中的重要内容,其目的就是建立完善的矿井生产系统,实现采区合理集中生产,改善技术经济指标.因此,合理地选择最优巷道布置方案,对于矿井生产具有十分重要的意义.根据煤矿开采的特点和采区在矿井生产的作用,在选择最优巷道布置方案时,要求达到下列标准:(1)生产集中程度高; (2)采煤机械化程度高;(3)采区生产系统十分完善; (4)安全生产可靠性好;(5)煤炭损失率低; (6)巷道掘进费用尽可能低.上述问题,实际上就是一个模糊约束下的条件极值问题,我们可以把(1)~(5)作为模糊约束,而把(6)作为目标函数.设某矿井的采区巷道布置有六种方案可供选择,即 ={ (方案Ⅰ), (方案Ⅱ), (方案Ⅲ), (方案Ⅳ), (方案Ⅴ), (方案Ⅵ)}.经过对六种方案进行审议,评价后,将其结果列于表1方案评价项目 :生产集中程度高较低 高 较高 很高 较高 较高 :采煤机械化程度高高 较高 较高 高 很高 高 :采区生产系统完善一级 较低 较低 很高 高 较高 :安全生产可靠度高较低 一般 较低 高 一般 高 :煤炭损失率低高 较高 一般 一般 一般 很低 : 巷道掘进费用(万元) 将表1中的语言真值(评价结果)转化为各模糊约束集 , 的隶属度转化的对应关系如下:对 , , , 而言,对应关系为:很 低 较 低 一 般 较 高 高 很 高 对 而言,对应关系为很 低 较 低 一 般 较 高 高 很 高 将表1中的巷道掘进费用目标函数 用公式 计算出,因此得表2 其值语言与隶属函数转换表2方案 0 1 计算模糊判决集 为 (按列求最小) 由 根据最大求属度原则,方案四最优例3 在某种食品中投放某种调味剂,每公斤食品中的含量设为 克,对顾客爱好作调查统计,得爱好函数为 对于使爱好函数值越大的 值,所制产品越畅销,因而收益越大,但是由于成本核算等等原因,对 值需要进行限制,这种限制集合的边界是模糊的,即 的约束条件为一模糊集 ,其隶属函数为 试确定合理的剂量 ,使得在接受约束的条件下,获得最优收益.解 这是一个规划问题,分三步进行.(1) 求无条件模糊优越集 ,由于 ,令 ,得 .又当 时, , 时, ,因而 , .因此 (2) 求条件模糊优越集 其中 满足方程 (3) 选择 ,使 ,即 对目标 的可能度为,而要实现这种可能性,应选择调味剂的最佳剂量为克.需要说明的是,在本例中如果将约束条件确切化,以 的核[0,1]为约束,这是一个普通规划问题,所得结论是选择最佳剂量为1克.从约束条件看,已是100%遵守,但所能达到的最高目标相对整个目标函数来说是很低的,由 ,说明相对整个目标来说,其优越程度仅达.如果把条件放松为模糊约束条件 ,且适当降低 的水平,却可以获得较好的目标值.如例中的结果,当 时,从接受约束条件来看虽仅达,但目标函数的优越程度也升到了,从而提高了整体优化水平.由于在实际问题中,约束条件往往不是绝对的,有一定的伸缩性,模糊规划的思想就是利用这点灵活性,兼顾目标函数与约束条件综合地选择最优方案.例4 植物的种植密度与产量有密切的关系.已知某种杉树的种植密度 与产量 的关系如下: 这里 表示每公顷土地上种植的棵数, 表示每公顷土地产出木材的体积.现有一片杉树森林,其密度不均匀,估计 “大约是三千”.试估计该森林每公顷木材最高产量.解 设 表示“大约是三千”这一模糊, 的隶属函数为 估计木材产量的问题,就是求在 的约束下函数 的模糊条件极大值.为此先求有界函数 的无条件模糊优越集.因 , ,所以 在约束条件 下的条件模糊优越集为: 条件模糊极值为 ,其隶属函数为: 为求条件最佳决策 ,即满足条件 的 注意到 的隶属函数曲线是单调降的,而 是正态分布模糊集, 在约束 下的模糊最佳决策(即模糊条件极大点),是方程 的两个根当中的较小者,解之得 .由 可知, 时,接受约束的程度为,同时,相对于整体目标函数,优越程度也是.由 可知,该森林每公顷木材最高产量估计为 .§3-2 模糊线性规划一、普通线性规划普通线性规划的一般形式为 目标函数 约束条件 矩阵表达形式 其中线性规划问题的标准形式 (3-1) 二、模糊线性规划在实际问题中,有时线性规划的约束条件带有模糊性,这就是解谓的模糊线性规划,其模型为这是“ ”表示一种弹性约束,可读作“近似小于等于”.“近似小于等于”是一个模糊概念,可以用一个模糊集来表示它. 表示第 个约束的左边表达式,模糊集 表示“ ”这一事实,当 时,完全接受约束,应有 ;适当选择一个伸缩系数 ,约定当 时,不认为 ,这时应有 ;当 时, 应从1下降到0,表示约束程度降低.为了简单可行, 规定如下:设 ,对每一个约束 ,相应地有 中一个模糊渠 与之对应,它的隶属函数为其中 是适当选择的常数,叫做伸缩指标, ,这样一来,我们将弹性约束转化成模糊约束,再令 就将全部约束条件转化成一个模糊约束.当 时, 退化为普通约束集 ,模糊约束条件中“ ”退化为“ ”模糊线性规划的模型简记为 (3-2)约束的弹性必然导致目标的弹性,为将目标函数模糊化,先求解普通线性规划问题: 满足 (3-3)以及 满足 (3-4)其中 称为(3-2)的伸缩指标向量.设 是(3-32)的最优值, 是(3-4)的最优值. 所满足的约束条件为 ,对应的模糊约束 .若适当降低模糊约束的隶属度 ,可以相应提高目标函数值 , 所满足的约束条件已放到最宽 ,对应的模糊约束 也接近于0.于是目标函数的弹性可表示为 .为此构造模糊目标集 .其隶属函数为其中 由模糊目标的上述隶属函数可知,当 时, ,要提高目标函数值使之大于 .就必须降低 .为了兼顾目标与约束,可采用模糊决策为 ,最佳决策为 , 满足 若令 , 则有 于是求最佳决策 的问题,就转化为求普通线性规划问题:即 (3-5) 求解上述普通规划问题,可得最佳决策 目标函数值 . 例5:求解模糊线性规划问题 (3-6) 解 (一)解普通线性规划(二)解普通线性规划 (三) 解普通线性规划 解 这个线性规划采用大 法 原线性规划改写为 ∴ 从而(3-4)的最优值 例6某企业根据市场信息及自身生产能力,准备开发甲、乙两种系列产品.甲种系列产品最多大约能生产400套,乙种系列产品最多大约能生产250套.据测算,甲种产品每套成本3万元,每套获纯利润7万元;乙种系列产品每套成本2万元,每套获纯利润3万元.生产甲、乙两种系列产品的资金总投入大约不能超过1500万元.在上述条件下,如何安排两种系列产品的生产,才能使企业获利最大?解 设甲种系列产品生产 套,乙种系列产品生产 套,则目标: 约束: (3-7)设约束条件(1)、(2)、(3)的伸缩系数分别取为 (元), (套), (套).为将目标函数模糊化,解经典线性规划问题使 (4)用单纯形法求解,得 , , 再解经典线性规划问题 (5)解得 , , 于是 将 、 、 、 、 代入(3-5),将原问题经为经典线性规划问题: 使 上述线性规划问题最优解为 , , .因此安排甲种系列产品403套、乙种系列产品159套(取整数)时,能获得最大利润,最大利润为: 万元对比经典线性规划问题(4),利润提高万元,这是因为甲种系列产品403套比400套多3套;乙种系列产品生产159套比150套多9套,这是在伸缩指标允许范围内.总费用 元虽然比1500超出27元,这也是伸缩指标允许的.以上讨论说明,在适当放松约束时可以提高利润.
数学与应用数学幂函数论文,行咯,多少字的,姐给.
首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处
b^2-ac未定
数学与应用数学幂函数论文,行咯,多少字的,姐给.
函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,ymin=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、 指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日还有毕业论文(设计)开题报告 姓名性别学号学院专业年级论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源题目类别指导教师选题的目的、意义(理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元或者多元时的极值求解。为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述):函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同时这些学者都研究的比较透彻、全面。论文(设计)主要内容(提纲):本文重点介绍了有关函数极值的求解问题及其运用。比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理及证明。 在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定理,并对函数极值求解的掌握。拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。研究目标:给出有关不同元函数的极值的求解定理。 研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法; 技术路线:理论研究; 实验方案:参照书本的相关知识,及相关文章; 可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。 研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值的求解问题。进度安排及预期结果: 第七学期第十五周之前:开题报告; 2010年寒假期间:搜集、整理资料,构思、细化研究路线; 第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段; 第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用; 第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文; 第八学期第十周:做好答辩前的准备工作。参考文献: [1] 华东师范大学数学系编.数学分析(第三版)(上)[M].北京:高等教育出版社. [2] 方保镕等.矩阵论[M].北京:清华大学出版社.2004(11). [3]吉艳霞.求函数极值问题的方法探究[J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明[J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法[J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2、题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。
b^2-ac未定
数学与应用数学幂函数论文,行咯,多少字的,姐给.
若得到 AC-B^2=0,还不能得到是否有极值的结论,需要借助更高阶的偏导数来判别,理论依据是Taylor公式。一般教材都没介绍,可参考一元函数的极值的第二个充分条件。谢谢你的这个问题,它将作为我校数学专业下一届学生的毕业论文题目。
b^2-ac未定
若得到ac-b^2=0,还不能得到是否有极值的结论。
先求导,然后使导函数等于零,求出x值,接着确定定义域,画表格。最后找出极值。
注意:极值是把导函数中的x值代入原函数。
扩展资料:
求解函数的极值:
寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。
极值的定义如下:
若函数f(x)在x的一个邻域D有定义,且对D中除x的所有点,都有f(x) 同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值 参考资料来源:百度百科:极值 数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家! 中职数学教学论文题目 1、线性方程的叠加原理及其应用 2、作为函数的含参积分的分析性质研究 3、周期函数初等复合的周期性研究 4、“高等代数”知识在几何中的应用 5、矩阵初等变换的应用 6、“高等代数”中的思想 方法 7、中职数学教学中的数学思想和方法 8、任N个自然数的N级排列的逆序数 9、“高等代数”中多项式的值,根概念及性质的推广 10、线性变换“可对角化”的条件及“对角化”方法 11、数域概念的等价说法及其应用 12、中职数学教学与能力培养 13、数学能力培养的重要性及途径 14、论数学中的基本定理与基本方法 15、论电脑、人脑与数学 16、论数学中的收敛与发散 17、论小概率事件的发生 18、论高等数学与初等数学教学的关系 19、论数学教学中公式的教学 20、数学教学中学生应用能力的培养 21、数学教与学的心理探究 22、论数学思想方法的教与学 23、论数学家与数学 24、对称思想在解题中的应用 25、复数在中学数学中应用 26、复变函数论思想方法在中学数学教学中的应用 27、复变函数论思想方法在中学数学竞赛中的应用 28、代数学基本定理的几种证明 29、复变函数的洛必达法则 30、复函数与实函数的级数理论综述 31、微积分学与哲学 32、实数完备性理论综述 33、微积分学中辅助函数的构造 34、闭区间上连续函数性质的推广 35、培养学生的数学创新能力 36、教师对学生互动性学习的影响 37、学生数学应用意识的培养 38、数学解题中的 逆向思维 的应用 39、数学直觉思维的培养 40、数学教学中对学生心理素质的培养 41、用心理学理论指导数学教学 42、开展数学活动课的理论和实践探索 43、《数学课程标准》解读 44、数学思想在数学教学中的应用,学生思维品质的培养 45、数形结合思想在中学数学中的应用 46、运用化归思想,探索解题途径 47、谈谈构造法解题 48、高等数学在中学数学中的应用 49、解决问题的策略思想--等价与非等价转化 50、挖掘题中的隐含条件解题 51、向量在几何证题中的运用 52、数学概念教学初探 53、数学 教育 中的问题解决及其教学途径 54、分类思想在数学教学中的作用 55、“联想”在数学中的作用研究 56、利用习题变换,培养学生的思维能力 57、中学数学学习中“学习困难生”研究 58、数学概念教学研究 59、反例在数学教学中的作用研究 60、中学生数学问题解决能力培养研究 61、数学教育评价研究 62、传统中学数学教学模式革新研究 63、数学研究性学习设计 64、数学开放题拟以及教学 65、数学课堂 文化 建设研究 66、中职数学教学设计及典型课例分析 67、数学课程标准的新增内容的尝试教学研究 68、数学课堂教学安全采集与研究 69、中职数学选修课教学的实话及效果分析 70、常微分方程与初等数学 71、由递推式求数列的通项及和向量代数在中学中的应用 72、浅谈划归思想在数学中的应用 73、初等函数的极值 74、行列式的计算方法 75、数学竟赛中的不等式问题 76、直觉思维在中学数学中的应用 77、常微分方程各种解的定义,关系及判定方法 78、高等数学在中学数学中的应用 79、常微分方程的发展及应用 80、充分挖掘例题的数学价值和 智力开发 功能 小学数学教学论文题目参考 1、小学数学教师几何知识掌握状况的调查研究 2、小学数学教师教材知识发展情况研究 3、中日小学数学“数与代数”领域比较研究 4、浙江省Y县县域内小学数学教学质量差异研究 5、小学数学教师教科书解读的影响因素及调控策略研究 6、中国、新加坡小学数学新课程的比较研究 7、小学数学探究式教学的实践研究 8、基于教育游戏的小学数学教学设计研究 9、小学数学教学中创设有效问题情境的策略研究 10、小学数学生活化教学的研究 11、数字 故事 在小学数学课堂教学中的应用研究 12、小学数学教师专业发展研究 13、中美小学数学“统计与概率”内容比较研究 14、数学文化在小学数学教学中的价值及其课程论分析 15、小学数学教师培训内容有效性的研究 16、小学数学课堂师生对话的特征分析 17、小学数学优质课堂的特征分析 18、小学数学解决问题方法多样化的研究 19、我国小学数学新教材中例题编写特点研究 20、小学数学问题解决能力培养的研究 21、渗透数学思想方法 提高学生思维素质 22、引导学生参与教学过程 发挥学生的主体作用 23、优化数学课堂练习设计的探索与实践 24、实施“开放性”教学促进学生主体参与 25、数学练习要有趣味性和开放性 26、开发生活资源,体现数学价值 27、对构建简洁数学课堂的几点认识和做法 28、刍议“怎样简便就怎样算”中的“二指技能”现象 29、立足现实起点,提高课堂效率 30、宁缺毋滥--也谈课堂教学中有效情境的创设 31、如何让“生活味”的数学课堂多一点“数学味” 32、有效教学,让数学课堂更精彩 33、提高数学课堂教学效率之我见 34、为学生营造一片探究学习的天地 35、和谐课堂,让预设与生成共精彩 36、走近学生,恰当提问--谈数学课堂提问语的优化策略 37、谈小学数学课堂教学中教师对学生的评价 38、课堂有效提问的初步探究 39、浅谈小学数学研究性学习的途径 40、能说会道,为严谨课堂添彩 41、小学数学教学中的情感教育 42、小学数学学困生的转化策略 43、新课标下提高日常数学课堂效率的探索 44、让学生参与课堂教学 45、浅谈新课程理念下如何优化数学课堂教学 46、数学与生活的和谐之美 47、运用结构观点分析教学小学应用题 48、构建自主探究课堂,促进学生有效发展 49、精心设计课堂结尾巩固提高教学效果 50、浅谈数学课堂提问艺术 51、浅谈发式教学在小学数学教学中的运用 52、浅谈数学课堂中学生问题意识的培养 53、巧用信息技术,优化数学课堂教学 54、新课改下小学复式教学有感 55、让“对话”在数学课堂中焕发生命的精彩 56、小学几何教学的几点做法 初中数学教学论文题目 1、翻转课堂教学模式在初中数学教学中的应用研究 2、数形结合思想在初中数学教学中的实践研究 3、基于翻转课堂教学模式的初中数学教学设计研究 4、初中数学新教材知识结构研究 5、初中数学中的研究性学习案例开发实施研究 6、学案导学教学模式在初中数学教学中的实践与研究 7、从两种初中数学教材的比较看初中数学课程改革 8、信息技术与初中数学教学整合问题研究 9、初中数学学习困难学生学业情绪及其影响因素研究 10、初中数学习题教学研究 11、初中数学教材分析方法的研究 12、初中数学教师课堂教学目标设计的调查研究 13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究 14、初中数学教师数学教学知识的发展研究 15、数学史融入初中数学教科书的现状研究 16、初中数学教师课堂有效教学行为研究 17、数学史与初中数学教学整合的现状研究 18、数学史融入初中数学教育的研究 19、初中数学教材中数学文化内容编排比较研究 20、渗透数学基本思想的初中数学课堂教学实践研究 21、初中数学教师错误分析能力研究 22、初中数学优秀课教学设计研究 23、初中数学课堂教学有效性的研究 24、初中数学数形结合思想教学研究与案例分析 25、新课程下初中数学教科书的习题比较研究 26、中美初中数学教材难度的比较研究 27、数学史融入初中数学教育的实践探索 28、初中数学课堂教学小组合作学习存在的问题及对策研究 29、初中数学教师数学观现状的调查研究 30、初中数学学困生的成因及对策研究 31、“几何画板”在初中数学教学中的应用研究 32、数学素养视角下的初中数学教科书评价 33、北师大版初中数学教材中数形结合思想研究 34、初中数学微课程的设计与应用研究 35、初中数学教学生成性资源利用研究 36、基于问题学习的初中数学情境教学模式探究 37、学案式教学在初中数学教学中的实验研究 38、数学文化视野下的初中数学问题情境研究 39、中美初中数学教材中习题的对比研究 40、基于人教版初中数学教材中数学史专题的教学探索 41、初中数学教学应重视学生直觉思维能力的培养 42、七年级学生学习情况的调研 43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考 44、新课程背景下学生数学学习发展性评价的构建 45、初中数学学生学法辅导之探究 46、合理运用数学情境教学 47、让学生在自信、兴趣和成功的体验中学习数学 48、创设有效问题情景,培养探究合作能力 49、重视数学教学中的生成展示过程,培养学生 创新思维 能力 50、从一道中考题的剖析谈梯形中面积的求解方法 51、浅谈课堂教学中的教学机智 52、从《确定位置》的教学谈体验教学 53、谈主体性数学课堂交流活动实施策略 54、对数学例题教学的一些看法 55、新课程标准下数学教学新方式 56、举反例的两点技巧 57、数学课堂教学中分层教学的实践与探索 58、新课程中数学情境创设的思考 59、数学新课程教学中学生思维的激发与引导 60、新课程初中数学直觉思维培养的研究与实践 2021各阶段数学教学论文题目相关 文章 : ★ 优秀论文题目大全2021 ★ 大学生论文题目大全2021 ★ 大学生论文题目参考2021 ★ 优秀论文题目2021 ★ 2021毕业论文题目怎么定 ★ 2021教育学专业毕业论文题目 ★ 2021优秀数学教研组工作总结5篇 ★ 2021数学教学反思案例 ★ 2021交通运输方向的论文题目及选题 ★ 小学数学教学论文参考(2)