首页 > 学术论文知识库 > 表面活性剂论文结论

表面活性剂论文结论

发布时间:

表面活性剂论文结论

生物法降解秸秆木质素研究进展秸秆是一种丰富的纤维素可再生资源,我国农作物秸秆年产量逾6亿t,除少量被用于造纸、纺织等行业或用作粗饲料、薪柴外,大部分以堆积、荒烧等形式直接倾入环境,造成极大的污染和浪费[1]。能源紧张、粮食短缺及环境污染日趋严重是目前世界各国所面临的难题。而可再生资源的转化利用,能在有利于生态平衡的条件下缓解或解决问题。 木质素又称木素,是植物界中含量仅次于纤维素的一类高分子有机物质,是一种极具潜力的可再生资源[2-4],每年全世界由植物可生长1 500亿t木质素,且木质素总与纤维素伴生,具有无毒、价廉、较好的可热塑和玻璃化特性。木质素是由苯丙烷结构单元组成的复杂的、近似球状的芳香族高聚体,由对羟基肉桂醇(phydroxy cinamylalcohols)脱氢聚合而成,一般认为木质素共有3种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟苯基结构。木质素结构单元之间以醚键和碳-碳键连接,连接部位可发生在苯环酚羟基之间,或发生在结构单元中3个碳原子之间,或是苯环侧链之间。木质素由于分子量大,溶解性差,没有任何规则的重复单元或易被水解的键,因此木质素分子结构复杂而不规则[5,6]。 从20世纪开始,国内外学者一直在寻找降解木质纤维素的最佳途径,研究内容主要包括以下几方面:物理法、化学法、物理化学法、生物降解法[7]。物理法包括辐射、声波、粉碎、整齐爆破等[8,9]。化学法包括无机酸(硫酸、乙酸、盐酸等)、碱(氢氧化钠、氨水等)和有机溶剂(甲醇、乙醇)等。物理化学法,即化学添加法和气爆法相结合。此3种方法,可在一定程度上降解秸秆中的木质纤维素,但都存在条件苛刻、设备要求高的特点,从而使预处理成本增加,且污染严重。生物降解法是从20世纪20年代起开始研究的,采用降解木质素的微生物在培养过程中可以产生分解的酶类,从而可以专一性降解木质素。此法具有作用条件温和、专一性强、无环境污染、处理成本低等优点。

表面活性剂概述: 1.概念: 表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性 非极性烃链: 8个碳原子以上烃链 极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性: 溶液中的正吸附:增加润湿性、乳化性、起泡性 固体表面的吸附:非极性固体表面单层吸附, 极性固体表面可发生多层吸附[编辑本段]表面活性剂的分类 表面活性剂的分类方法很多, 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等; 根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等; 有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 阴离子表面活性剂 1、肥皂类 系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析 。 碱金属皂:O/W 碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2、硫酸化物 RO-SO3-M 主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。 硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。 高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠) 乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。 3、磺酸化物 R-SO3 - M 属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。 常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠 阳离子表面活性剂 该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料 2、氨基酸型和甜菜碱型: 氨基酸型:R-NH+2-CH2CH2COO- 甜菜碱型:R-N+(CH3)2-COO—。 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1.脂肪酸甘油酯: 单硬脂酸甘油酯; HLB为3~4,主要用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3.聚氧乙烯型:Myrij(长链脂肪酸酯);Brij (脂肪醇酯) 4.聚氧乙烯-聚氧丙烯共聚物: Poloxamer 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂[编辑本段]表面活性剂的基本性质 1.临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。 2.亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20。 混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb) 理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7 表面活性剂的基本性质 3、增溶作用 1)胶束增溶:水不溶性、微溶性药物在胶束溶液中溶解度显著增加 非洛地平吐温-----10倍 (表)亲水基团---亲油基团, (药)极性基团---非极性基团 cmc,“表”的量,胶束,增溶量,最大增溶浓度(MAC)[编辑本段]表面活性剂的应用 1.增溶:C>CMC ( HLB13~18) 增溶体系为热力学平衡体系 CMC越低、缔合数越大,增溶量(MAC)就越高 温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度 Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小 昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。 2.乳化: HLB:3-8 W /O型乳化剂:Tween;一价皂 HLB:8-16 O/W型乳化剂:Span;二价皂 3.润湿:(HLB:7-9) 4.助悬: 5.起炮和消泡 6.消毒、杀菌 7.去污剂[编辑本段]表面活性剂的结构 传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。 无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。 根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。[编辑本段]表面活性剂的历史发展 表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增培,这是一个令人鼓舞的数字。 中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。 表面活性剂的化学结构与性能的关系 1.亲疏平衡值与性能之间的关系 H·L·B值:表示表面活性剂的亲水疏水性能 (Hydrophile-Lipophile Balance) 表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。 石蜡HLB值=0(无亲水基) 聚乙二醇HLB值=20(完全亲水) 对阴离子表面活性剂,可通过乳化标准油来确定HLB值。 HLB值 15~18 13~15 8~8 7~9 用途 增溶剂 洗涤剂 油/水型乳化剂 润湿剂 水/油乳化剂 消泡剂 HLB值可作为选用表面活性剂的参考依据。 3. 疏水基种类与性能 疏水基按应用分四种 (1) 脂肪烃: (2) 芳烃: (3) 混合烃: (4) 带有弱亲水性基 (5) 其他:全氟烃基 疏水性大小:(5)>(1)>(3)>(2)>(4) 3.亲水基的位置与性能 末端:净洗作用强,润湿性差;中间:相反。 4.分子量与性能 HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差; 分子量大,润湿作用差,去污力好。 5.浊点 对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。 当温度↑,水分子逐渐脱离醚建,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。

《表面活性剂》论文 表面活性剂的分类及应用 摘要: 表面活性剂的应用范围涵盖了人们生活和工作的各个方面,在20事迹90年代人们已经开始系统的研究表面活性剂。可以说没有表面活性剂就没有现在干净的我们,现在我们对表面活性剂的认识只是停留在表面没有更深入的研究,下面是对表面活性剂一些基础认识。 关键词: HLB值,分类,应用 一、 HLB 值 ----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从1 ~ 40之间。亲水亲油转折点HLB为10。HLB小于10为亲油性,大于10为亲水性。 1~--3作消泡剂 3~--6作W/O型[乳化剂 司盘(脱水山梨醇脂肪酸酯)是w/o型乳化剂,具有很强的乳化、分散、润滑作用,可与各类表面活性剂混用,尤其适应与吐温-60, HLB值。 7~--9作润湿剂; 8~--18作O/W型乳化剂,也叫吐温型乳化剂, 为司盘(Span,山梨醇脂肪酸酯)和环氧乙烷的缩合物,为聚氧乙烯山梨醇脂肪酸酯的一类非离子型去污剂;常作为水包油(O/W)型, 药用: (1)可作某些药物的增溶剂。 (2)有溶血作用,以吐温-80作用最弱。 (3)水溶液加热后可产生混浊,冷后澄明,不影响质量。 (4)在溶液中可干扰抑菌剂的作用 13~-18作增溶剂。 二、分类及常用 : 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯, 脂肪酸山梨坦(司盘), 聚山梨酯(吐温) 阴离子表面活性剂: 1 、肥皂类 :碱金属皂:O/W ,碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2 、硫酸化物 :硫酸化蓖麻油,俗称土耳其红油。 十二烷基硫酸钠(SDS、月桂醇硫酸钠) 3 、磺酸化物 :二辛基琥珀酸磺酸钠(阿洛索-OT) 十二烷基苯磺酸钠 甘胆酸钠 阴离子表面活性剂 阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1 、卵磷脂 :是制备注射用乳剂及脂质微粒制剂的主要辅料 2 、氨基酸型和甜菜碱型 : 氨基酸型 甜菜碱型: 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用; 在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1. 脂肪酸甘油酯 :单硬脂酸甘油酯;HLB为3~4主用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3. 聚氧乙烯型 :Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯) 4. 聚氧乙烯 - 聚氧丙烯共聚物 : 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂 应用 表面活性剂一般是低分子量分散剂。表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间表面张力。 表面活性剂结构上含有两种溶解性或极性相反的基团,使表面活性增加。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子。 聚合物分散剂作用下效力由以下因素确定: 颜料表面极性基团的吸附作用。锚固基团可以是氨基、羧酸、磺酸、磷酸及其盐。 介质中围绕在微粒周围的非极性链段的行为。分子的一些部分(脂肪族或脂肪族-芳香族片断)必须与粘接剂体系高度的相容。 类似表面活性剂的分散剂的稳定机理是静电稳定:围绕颜料粒子的极性基团形成了双层带电的结构。由于布朗运动,液体介质中颜料粒子时常碰撞在一起,因此在其减速进程中具有强烈的重絮凝趋势。 根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷: ·水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。 ·易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。如果泡沫在研磨进程出现,则导致生产能力的下降。 ·干扰涂层间的粘接。 经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿。 用于颜料分散作用的最常用表面活性剂有如下品种: 脂肪酸衍生物,磷酸酯,聚丙烯酸钠/聚丙烯酸,乙炔二醇和大豆卵磷脂。表面活性剂发展方向 1.烷基磷羧酸盐(AEC)工业化制造 随着科技飞速发展和现代文盟的不断进步,人们对表面活性剂使用要求也越来越高,即温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率。烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与烷基多苷和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。 烷基醚羧酸盐的生产。一般采用以脂肪醇或烷基酚为原料,经乙氧基化和羧甲基化,制备AEC和APEC。烷基醚羧酸盐在化学结构上与皂类似,在疏水基和亲水基之间,嵌入一定加成数环氧乙烷,从而使其兼有阴离子和非离子表面活性剂中许多优良性能,成为多功能性品种。它在金属加工用方面,效果比相应的醇(酚)醚表面活性剂更好,它具有: (1)对皮肤和眼的刺激性很小。 (2)清洗性能,受pH值和温度影响较小。 (3)对酸、碱、氯较为稳定。 (4)生物降解性能优异。 图1 表面活性剂结构示意图 烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。 2.新一代表面活性剂Gemini 目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。 表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。 在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。 图2 炔醇类Gemini表面活性剂 Genfini表面活性剂的优良性质: 实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质: (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。 (2)更易聚集生成胶团。 (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。 (4)具有很低的Krat~相转移点。 (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。 (6)具有良好的钙皂分散性质。 (7)在很多场台,是优良的润湿剂。 从理论上讲,在极性头基区的化学键台阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结台。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径 另一方面,由于键台产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。 型嵌段高分子表面活性剂 涂料中颜填料的分散先后使用过聚磷酸盐、硅酸盐、碳酸盐等无机分散剂,传统小分子表面活性剂和聚羧酸盐、聚丙酸酸盐等高分子化合物。高分子化合物主要利用空间位阻使颜填料颗粒稳定,效果好于小分子表面活性剂的静电排斥作用。研究表明,在众多类型的高分子分散剂中,效果最好、效率最高的是AB型嵌段高分子表面活性剂。从分子结构上看,AB型嵌段高分子就是超大号的表面活性剂,A嵌段和B嵌段分别类似于表面活性剂的亲水头基和疏水尾链。AB嵌段高分子表面活性剂在颜填料表面采取尾型吸附形态,A嵌段是亲颜料的锚固基团,B嵌段是亲溶剂的溶剂化尾链。A嵌段可以是酸、胺、醇、酚等官能团,通过离子键、共价键、配位键、氢键及范德华力等相互作用吸附在颗粒表面,由于含有多个吸附点,可以有效地防止分散剂分子脱附,使吸附紧密且持久。B嵌段可以是聚醚、聚酯、聚烯烃、聚丙烯酸酯等基团,分别适用于极性和非极性溶剂。典型的AB嵌段型高分子表面活性剂结构如图3所示。稳定颗粒主要依靠B嵌段形成的吸附层产生的空间位阻作用,所以对作为溶剂化尾链的B嵌段的长度和均一性有极高的要求,希望可以形成厚度适中且均一的吸附层,如果B段过长,可能会起架桥作用,引起分散体系黏度增加,甚至絮凝沉淀。通常认为位阻层的厚度为20nm时,可以达到最好的稳定效果。 图3 AB嵌段型高分子表面活性剂 合成分子结构明确和相对分子质量可控的AB型嵌段高分子表面活性剂是涂料分散助剂的发展方向,这需要用到受控聚合技术。基团转移聚合(GTP)、原子转移游离基聚合(ATRP)、硝酰基聚合(NMP)和可逆加成分裂链段转移聚合(RAFT)是当今最常用的受控聚合技术,利用这些技术,选用合适的方法和设备可得到想要的聚合物结构,可以选择不同的单体,按设计的次序进行排列,最终合成特定结构、相对分子质量分布窄、近单分散的聚合物,如果采用常规的方法,即使花大量的时间、精力、材料也无法做到这样。目前仅有BYK、Ciba、Rhodia等少数几个公司拥有受控聚合技术。深圳海川公司正在开发的新型分散剂也是AB型嵌段高分子表面活性剂。

表面活性剂论文题目

石油工程可以写的题目很多啊

【摘要】体育科学横跨自然科学与社会科学两大门类,具有极强的综合性特征,有其独特的研究对象和科学方法,体育科研论文的写作亦有自己的特点与要求。本文仅就体育科研论文的文章结构、基本格式以及内容与要求作一探讨。【关键词】科研论文;文章结构;基本格式;内容与要求OntheBasicStructureandFormofSportsScienceThesis【Keywords】Thesis;StructureandForm;ContentandRequirement***1前言从事体育科学研究活动,必须具备多学科的知识、多方面的能力和科学的方法。体育科技写作,不仅是体育工作者应具备的知识和能力,而且是必须把握的一种具体的科研方法。因为,一切体育科学研究之成果最后大都以科研论文这种书面表达形式,经科技信息载体传播于世的。体育科研成果如不能最后写成科技作品(论文),公布于众,那么一切个人的科学见解和观点,一切创造和发明,都不可能得到传播和利用,产生应有的社会效益,而只能是研究者头脑里的一些思维活动罢了,世人是无法知晓的,如然,也就失去了科学研究的意义了。诚然,人们衡量体育科研论文质量的标准主要取决于其理论和实践价值的大小,然而,论文所反映的研究成果能否迅速的向社会传播并准确的被人们所理解则取决于论文写作水平的高低。这表明,一篇高质量的体育科研论文要求其内容和形式的统一。随着体育科学的迅速发展,科技信息量与日俱增,据报道,目前全世界体育期刊已达5000余种,每年问世的体育科技文献约25000—30000篇,平均天天有80余篇。体育科研成果的传播、贮存与利用,引起了人们的高度重视,借助于现代科技工具——计算机对体育科技成果、信息进行贮存、检索,使之迅速地传播与利用,已成为一种先进的传播交流手段。微机贮存与检索,要求体育科技学术期刊编排实现规范化,而期刊编排规范化首先要求论文写作的规范化。要实现体育科研论文写作的规范化,就必须了解体育科技写作知识,把握其写作方法和技巧。笔者因职业之原故,拜读体育科研论文原稿颇多,从研读原稿论文感到许多科研论文的选题和所研究的内容颇有价值,但论文写作不符合期刊编排规范化和科研论文撰写的要求。其中最为普遍的突出的问题是文章结构层次混乱、写作格式极不统一(尤其是理论型和实验型的“定量化”研究论文)。这不仅给编者和读者熟悉和理解论文之精髓增加了难度,也直接影响了体育科研成果的传播、贮存和利用。体育科技写作,作为一种科研方法,涉及的知识结构内容颇多,不同文体的体育科技作品有不同的写作要求。本文仅对体育科研论文的文章结构和基本撰写格式的内容与要求作一探讨。2体育科研论文的文章结构根据写作目的的不同、研究对象和方法的差别,体育科研论文大致分为两类,一类是学位论文,一类是学术论文。学位论文,是体育院校的学生或体育科研院(所)研究人员旨在取得学位而写作的论文。如学士论文、硕士论文、博士论文。学术论文,是广大体育工作者在体育实践中为研究和解决某一问题而写作的论文。目前,体育科学技术、理论研究的新成果大部分都是以学术论文的形式发表在体育科技学术刊物上。由于研究对象和方法的差别,学术论文又分为两种类型,即理论型论文和实验型论文。虽然体育科研论文的种类很多,构成的形式多样,但就其文章的主体结构有它的基本型,即序论、本论、结论的三段式。2。1序论部分的写作内容与要求序论,是论文的开头、引子,好比一出长剧的序幕,要有吸引力。通常以引言、导言、绪言、前言等小标题冠之,也可以不冠以任何小标题。该部分的写作内容主要有三个方面:①介绍课题研究的背景材料,前人的工作和现在的知识空白;②研究的理由、目的,理论依据和实验基础,预期结果及其在相关领域里的地位、作用和意义;③交待课题研究的范围、任务。这一部分要写得简明扼要,在整篇文章中它所占的比例要小。具体要求是背景材料的介绍要准确、具体,紧扣课题;研究的说明要实事求是,对作用意义不可夸大和自我评价;任务的交待应具体、明确。2。2本论部分的写作内容与要求本论也称正论,它是体育科研论文的主体,课题的“创造性”主要在这一部分表达出来,它反映了论文所建立的学术理论、采用的技术路线和研究方法达到的水平,简言之,本论水平决定了整个论文的水平。

不知道怎么写的话也可以参考下别人是怎么写的呀~看下(材料科学)或者(材料化学前沿)这样类似的期刊多学习学习下呗~

我也不是很清楚的啊

高分子表面活性剂论文

《表面活性剂》论文 表面活性剂的分类及应用 摘要: 表面活性剂的应用范围涵盖了人们生活和工作的各个方面,在20事迹90年代人们已经开始系统的研究表面活性剂。可以说没有表面活性剂就没有现在干净的我们,现在我们对表面活性剂的认识只是停留在表面没有更深入的研究,下面是对表面活性剂一些基础认识。 关键词: HLB值,分类,应用 一、 HLB 值 ----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从1 ~ 40之间。亲水亲油转折点HLB为10。HLB小于10为亲油性,大于10为亲水性。 1~--3作消泡剂 3~--6作W/O型[乳化剂 司盘(脱水山梨醇脂肪酸酯)是w/o型乳化剂,具有很强的乳化、分散、润滑作用,可与各类表面活性剂混用,尤其适应与吐温-60, HLB值。 7~--9作润湿剂; 8~--18作O/W型乳化剂,也叫吐温型乳化剂, 为司盘(Span,山梨醇脂肪酸酯)和环氧乙烷的缩合物,为聚氧乙烯山梨醇脂肪酸酯的一类非离子型去污剂;常作为水包油(O/W)型, 药用: (1)可作某些药物的增溶剂。 (2)有溶血作用,以吐温-80作用最弱。 (3)水溶液加热后可产生混浊,冷后澄明,不影响质量。 (4)在溶液中可干扰抑菌剂的作用 13~-18作增溶剂。 二、分类及常用 : 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯, 脂肪酸山梨坦(司盘), 聚山梨酯(吐温) 阴离子表面活性剂: 1 、肥皂类 :碱金属皂:O/W ,碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2 、硫酸化物 :硫酸化蓖麻油,俗称土耳其红油。 十二烷基硫酸钠(SDS、月桂醇硫酸钠) 3 、磺酸化物 :二辛基琥珀酸磺酸钠(阿洛索-OT) 十二烷基苯磺酸钠 甘胆酸钠 阴离子表面活性剂 阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1 、卵磷脂 :是制备注射用乳剂及脂质微粒制剂的主要辅料 2 、氨基酸型和甜菜碱型 : 氨基酸型 甜菜碱型: 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用; 在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1. 脂肪酸甘油酯 :单硬脂酸甘油酯;HLB为3~4主用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3. 聚氧乙烯型 :Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯) 4. 聚氧乙烯 - 聚氧丙烯共聚物 : 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂 应用 表面活性剂一般是低分子量分散剂。表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间表面张力。 表面活性剂结构上含有两种溶解性或极性相反的基团,使表面活性增加。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子。 聚合物分散剂作用下效力由以下因素确定: 颜料表面极性基团的吸附作用。锚固基团可以是氨基、羧酸、磺酸、磷酸及其盐。 介质中围绕在微粒周围的非极性链段的行为。分子的一些部分(脂肪族或脂肪族-芳香族片断)必须与粘接剂体系高度的相容。 类似表面活性剂的分散剂的稳定机理是静电稳定:围绕颜料粒子的极性基团形成了双层带电的结构。由于布朗运动,液体介质中颜料粒子时常碰撞在一起,因此在其减速进程中具有强烈的重絮凝趋势。 根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷: ·水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。 ·易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。如果泡沫在研磨进程出现,则导致生产能力的下降。 ·干扰涂层间的粘接。 经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿。 用于颜料分散作用的最常用表面活性剂有如下品种: 脂肪酸衍生物,磷酸酯,聚丙烯酸钠/聚丙烯酸,乙炔二醇和大豆卵磷脂。表面活性剂发展方向 1.烷基磷羧酸盐(AEC)工业化制造 随着科技飞速发展和现代文盟的不断进步,人们对表面活性剂使用要求也越来越高,即温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率。烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与烷基多苷和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。 烷基醚羧酸盐的生产。一般采用以脂肪醇或烷基酚为原料,经乙氧基化和羧甲基化,制备AEC和APEC。烷基醚羧酸盐在化学结构上与皂类似,在疏水基和亲水基之间,嵌入一定加成数环氧乙烷,从而使其兼有阴离子和非离子表面活性剂中许多优良性能,成为多功能性品种。它在金属加工用方面,效果比相应的醇(酚)醚表面活性剂更好,它具有: (1)对皮肤和眼的刺激性很小。 (2)清洗性能,受pH值和温度影响较小。 (3)对酸、碱、氯较为稳定。 (4)生物降解性能优异。 图1 表面活性剂结构示意图 烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。 2.新一代表面活性剂Gemini 目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。 表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。 在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。 图2 炔醇类Gemini表面活性剂 Genfini表面活性剂的优良性质: 实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质: (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。 (2)更易聚集生成胶团。 (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。 (4)具有很低的Krat~相转移点。 (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。 (6)具有良好的钙皂分散性质。 (7)在很多场台,是优良的润湿剂。 从理论上讲,在极性头基区的化学键台阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结台。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径 另一方面,由于键台产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。 型嵌段高分子表面活性剂 涂料中颜填料的分散先后使用过聚磷酸盐、硅酸盐、碳酸盐等无机分散剂,传统小分子表面活性剂和聚羧酸盐、聚丙酸酸盐等高分子化合物。高分子化合物主要利用空间位阻使颜填料颗粒稳定,效果好于小分子表面活性剂的静电排斥作用。研究表明,在众多类型的高分子分散剂中,效果最好、效率最高的是AB型嵌段高分子表面活性剂。从分子结构上看,AB型嵌段高分子就是超大号的表面活性剂,A嵌段和B嵌段分别类似于表面活性剂的亲水头基和疏水尾链。AB嵌段高分子表面活性剂在颜填料表面采取尾型吸附形态,A嵌段是亲颜料的锚固基团,B嵌段是亲溶剂的溶剂化尾链。A嵌段可以是酸、胺、醇、酚等官能团,通过离子键、共价键、配位键、氢键及范德华力等相互作用吸附在颗粒表面,由于含有多个吸附点,可以有效地防止分散剂分子脱附,使吸附紧密且持久。B嵌段可以是聚醚、聚酯、聚烯烃、聚丙烯酸酯等基团,分别适用于极性和非极性溶剂。典型的AB嵌段型高分子表面活性剂结构如图3所示。稳定颗粒主要依靠B嵌段形成的吸附层产生的空间位阻作用,所以对作为溶剂化尾链的B嵌段的长度和均一性有极高的要求,希望可以形成厚度适中且均一的吸附层,如果B段过长,可能会起架桥作用,引起分散体系黏度增加,甚至絮凝沉淀。通常认为位阻层的厚度为20nm时,可以达到最好的稳定效果。 图3 AB嵌段型高分子表面活性剂 合成分子结构明确和相对分子质量可控的AB型嵌段高分子表面活性剂是涂料分散助剂的发展方向,这需要用到受控聚合技术。基团转移聚合(GTP)、原子转移游离基聚合(ATRP)、硝酰基聚合(NMP)和可逆加成分裂链段转移聚合(RAFT)是当今最常用的受控聚合技术,利用这些技术,选用合适的方法和设备可得到想要的聚合物结构,可以选择不同的单体,按设计的次序进行排列,最终合成特定结构、相对分子质量分布窄、近单分散的聚合物,如果采用常规的方法,即使花大量的时间、精力、材料也无法做到这样。目前仅有BYK、Ciba、Rhodia等少数几个公司拥有受控聚合技术。深圳海川公司正在开发的新型分散剂也是AB型嵌段高分子表面活性剂。

表面活性剂在化妆品中的应用摘要:论述了表面活性剂的功能,如润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等功能,以及在化妆品中的作用。介绍了表面活性剂和化妆品的分类情况,化妆品的原料以及化妆品对表面活性剂的要求。详细介绍了化妆品中常用的几种表面活性剂。对化妆品中用的表面活性剂的发展趋势进行了阐述。关键词:表面活性剂;化妆品;功能;应用表面活性剂在化妆品中的主要功能包括乳化、分散、增溶、起泡、清洗、润滑和柔软等。表面活性剂在化妆品中具有广泛的用途,起着重要的作用。化妆品中所利用的表面活性剂的性能不仅仅是其单一的性能,而是利用其多种性能,因此,表面活性剂是化妆品生产中不可缺少的原料,广泛应用于化妆品中。化妆品是指以涂抹、喷、洒或者其他类似方法,施于人体(皮肤、毛发、指趾甲和口唇齿等),以达到清洁、保养、美化、修饰和改变外观,或者修正人体气味,保持良好状态为目的的产品。目前,化妆品的发展趋势是向疗效性、功能性和天然性方向发展。1表面活性剂的分类表面活性剂的分类方法有很多种,根据表面活性剂的来源进行分类,通常把表面活性剂分为合成表面活性剂、天然表面活性剂和生物表面活性剂三大类。合成表面活性剂合成表面活性剂是指以石油、天然气为原料,通过化学方法合成制备的表面活性剂。表面活性剂在性质上的差异,除与烃基的大小和形状有关外,主要与亲水基团类型有关。一般以亲水基团的结构为依据来分类,按亲水基团是否带电可将表面活性剂分为离子型和非离子型两大类,其中离子型表面活性剂又分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。天然表面活性剂20世纪70年代的石油危机对以石油为基本原料的表面活性剂工业产生了巨大的冲击,引起人们对能源消耗、工艺生产过程、生态学和石油制品安全性等一系列问题的思考,从而引发了以天然油脂为原料生产表面活性剂的重大变革。由于生物新技术的应用,油脂分离精制技术的发展,植物油脂品种的改良及增产,使得大量获得价格较低的高纯度的天然油脂成为可能,新的抗氧化剂的开发成功,解决了天然油脂腐败变质的问题,再加上人们对安全及环保意识的提高,以油脂为原料的天然表面活性剂的开发引起人们的高度重视。目前在天然油脂中最受重视的要数棕榈油和棕榈仁油。生物表面活性剂生物表面活性剂是指由细菌、酵母和真菌等多种微生物产生的具有表面活性剂特征的化合物。用微生物生产表面活性剂是20世纪70年代后期国际生物工程领域中研究的新课题。用微生物制取生物表面活性剂可以得到许多难以用化学方法合成的产物,在结构中引进了新的化学基团,而制得的产物易于被生物完全降解,无毒性,在生态学上是安全的。生物表面活性剂根据其亲水基的不同可分为糖脂系、酰基缩氨酸系、磷脂系、脂肪酸系和高分子表面活性剂五类。2表面活性剂的功能表面活性剂是一类具有多种功能的精细化学品,表面活性剂具有润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等多种功能。当液体与固体表面接触时,气体被排斥,原来的固-气界面消失,代之以固-液界面,这种现象称为润湿。从普遍意义而言,润湿是一种流体被另一种流体自表面取代的过程。通常把一种物质的颗粒或液滴以及微小的形态分散到另一介质中的过程叫分散。所得到的均匀、稳定的体系叫分散体。乳化是一种液体以微小液滴或液晶形式均匀分散到另一种不相混溶的液体介质中形成的具有相当稳定性的多相分散体系的过程。表面活性剂在水溶液中形成胶束后,具有能使不溶或微溶于水的有机化合物的溶解度显著增大的能力,且溶液呈透明状,这种作用称为增溶作用。由液体薄膜或固体薄膜隔离开的气泡聚集体称为泡沫,可分为液体泡沫和固体泡沫。在液体泡沫中,液体和气体的界面起主要作用。一般地说,当表面张力低,膜的强度高时,不论是稳定泡沫还是不稳定泡沫,起泡力都较好。溶液的黏度对泡沫稳定在两方面起作用:一方面是增强泡沫液膜的强度;另外,表面黏度大,膜液体不易流动排出,延缓了液膜破裂,而增强了泡沫的稳定性。消泡作用分为破泡和抑泡两种。具有破泡能力的物质称为破泡剂。有效的消泡剂既要能迅速破泡,又要能在相当长的时间内防止泡沫生成。洗涤去污作用是表面活性剂应用最广泛、最具有实用意义的基本特性。洗涤去污过程是极为复杂的,与污垢种类、基本性能、表面活性剂和助剂的种类和结构密切相关,而其过程又是多种表面现象,如吸附、润湿、渗透、乳化、分散、泡沫和增溶等在不同情况下的综合效应。3化妆品的分类化妆品能对人体面部、皮肤表面、毛发和口腔起清洁保护和美化作用。化妆品的品种多种多样,分类方式也各不相同。按使用部位可分为:皮肤用化妆品、毛发用化妆品、指甲用化妆品和口腔用化妆品。按使用目的可分为:洁净用化妆品、基础保护化妆品、美容化妆品和芳香制品,还可根据化妆品本身的剂型分类。4化妆品的原料制造化妆品所用的原料有很多种,据统计大概有3 000多种。根据化妆品原料在化妆品中所含比例的大小,可分为基质原料和配合原料。基质原料是调配各种化妆品的主体,也成为基础原料。膏霜类的油脂,香粉类的滑石粉等均属基质原料;配合原料是用来改善化妆品的某些性质和赋予色、香等的辅助原料,如膏霜中的乳化剂、抗氧化剂和防腐剂等均属配合原料。配合原料在化妆品中的比例虽小,但对化妆品的质量影响却很大。它们之间没有绝对的界限,某一种原料在化妆品中起着基质原料的作用,而在另一化妆品中可能仅起着辅助原料的作用。基质原料1)油脂类油脂是组成膏霜类化妆品的基本原料,主要起护肤、柔滑和滋润等作用。脂肪酸甘油酯是组成动植物油脂的主要成分,在常温下呈液态的称为油,呈固态的称为脂。根据来源又可分为植物性油脂和动物性油脂。植物性油脂包括椰子油、橄榄油、蓖麻籽油、杏仁油、花生油、大豆油和棕榈油等。动物油脂包括牛油、猪油、貂油和海龟油等。这些动植物油脂加氢后的产物称为硬化油。在化妆品中常用的硬化油有:硬化椰子油、硬化牛脂、硬化蓖麻油和硬化大豆油等。2)蜡类蜡是高碳脂肪酸和高碳脂肪醇所组成的酯。在化妆品中主要作为固定剂,增加化妆品的稳定性,调节其黏度,提高液体油的熔点,使用时对皮肤产生柔软的效果。依据来源的不同,蜡类也可分为植物性蜡和动物性蜡。植物性蜡包括巴西棕榈蜡、霍霍巴蜡和小烛树蜡等。动物蜡类包括蜂蜡、羊毛脂蜡、鲸油和虫蜡等。3)高碳烃类用于化妆品原料中的烃类主要包括烷烃和烯烃,它们在化妆品中的主要作用是其溶解作用,净化皮肤表面,还能在皮肤表面形成憎水性油膜,来抑制皮肤表面水分的蒸发,提高化妆品的功效。在化妆品中用的主要包括角鲨烷、凡士林、液体石蜡和固体石蜡等。4)粉类粉类是组成香粉、爽身粉、胭脂、牙粉和牙膏等粉类化妆品的基质原料。一般是不溶于水的固体,经

农药药效的保证越来越依赖于高性能的特种表面活性剂,特别是高分子表面活性剂更是因其优良的性能变得不可或缺,它的优点主要表现为: 1)对指定表面的多点锚固,减少了解吸作用 2)给分散液体和固体提供广泛的保护屏障,使它们不会与邻近的颗粒靠得太近,从而避免了制剂的分解 高分子表面活性剂能提供广泛的制剂稳定窗口,可以进行快速、节省成本的制剂开发和修改。它们还有一个优点就是比低分子量的表面活性剂更加安全和环保,对于制剂的登记来说,这是很大的优势。 制剂除了提供稳定性外,更重要的作用是加强有效成分的给药效果。助剂的添加可以提高产品的润湿、展布、增溶和稀释性能,让产品更便于施用和操作,且药效更好。拥有大量化学和物理性质的在研新有效成分以及老化学有效成分的再开发对制剂专家来说都是新的挑战,为了开发出效果更好的制剂产品,需要更多创新的制剂技术。

表面活性剂综述论文范文

《表面活性剂》论文 表面活性剂的分类及应用 摘要: 表面活性剂的应用范围涵盖了人们生活和工作的各个方面,在20事迹90年代人们已经开始系统的研究表面活性剂。可以说没有表面活性剂就没有现在干净的我们,现在我们对表面活性剂的认识只是停留在表面没有更深入的研究,下面是对表面活性剂一些基础认识。 关键词: HLB值,分类,应用 一、 HLB 值 ----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从1 ~ 40之间。亲水亲油转折点HLB为10。HLB小于10为亲油性,大于10为亲水性。 1~--3作消泡剂 3~--6作W/O型[乳化剂 司盘(脱水山梨醇脂肪酸酯)是w/o型乳化剂,具有很强的乳化、分散、润滑作用,可与各类表面活性剂混用,尤其适应与吐温-60, HLB值。 7~--9作润湿剂; 8~--18作O/W型乳化剂,也叫吐温型乳化剂, 为司盘(Span,山梨醇脂肪酸酯)和环氧乙烷的缩合物,为聚氧乙烯山梨醇脂肪酸酯的一类非离子型去污剂;常作为水包油(O/W)型, 药用: (1)可作某些药物的增溶剂。 (2)有溶血作用,以吐温-80作用最弱。 (3)水溶液加热后可产生混浊,冷后澄明,不影响质量。 (4)在溶液中可干扰抑菌剂的作用 13~-18作增溶剂。 二、分类及常用 : 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯, 脂肪酸山梨坦(司盘), 聚山梨酯(吐温) 阴离子表面活性剂: 1 、肥皂类 :碱金属皂:O/W ,碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2 、硫酸化物 :硫酸化蓖麻油,俗称土耳其红油。 十二烷基硫酸钠(SDS、月桂醇硫酸钠) 3 、磺酸化物 :二辛基琥珀酸磺酸钠(阿洛索-OT) 十二烷基苯磺酸钠 甘胆酸钠 阴离子表面活性剂 阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1 、卵磷脂 :是制备注射用乳剂及脂质微粒制剂的主要辅料 2 、氨基酸型和甜菜碱型 : 氨基酸型 甜菜碱型: 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用; 在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1. 脂肪酸甘油酯 :单硬脂酸甘油酯;HLB为3~4主用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3. 聚氧乙烯型 :Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯) 4. 聚氧乙烯 - 聚氧丙烯共聚物 : 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂 应用 表面活性剂一般是低分子量分散剂。表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间表面张力。 表面活性剂结构上含有两种溶解性或极性相反的基团,使表面活性增加。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子。 聚合物分散剂作用下效力由以下因素确定: 颜料表面极性基团的吸附作用。锚固基团可以是氨基、羧酸、磺酸、磷酸及其盐。 介质中围绕在微粒周围的非极性链段的行为。分子的一些部分(脂肪族或脂肪族-芳香族片断)必须与粘接剂体系高度的相容。 类似表面活性剂的分散剂的稳定机理是静电稳定:围绕颜料粒子的极性基团形成了双层带电的结构。由于布朗运动,液体介质中颜料粒子时常碰撞在一起,因此在其减速进程中具有强烈的重絮凝趋势。 根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷: ·水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。 ·易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。如果泡沫在研磨进程出现,则导致生产能力的下降。 ·干扰涂层间的粘接。 经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿。 用于颜料分散作用的最常用表面活性剂有如下品种: 脂肪酸衍生物,磷酸酯,聚丙烯酸钠/聚丙烯酸,乙炔二醇和大豆卵磷脂。表面活性剂发展方向 1.烷基磷羧酸盐(AEC)工业化制造 随着科技飞速发展和现代文盟的不断进步,人们对表面活性剂使用要求也越来越高,即温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率。烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与烷基多苷和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。 烷基醚羧酸盐的生产。一般采用以脂肪醇或烷基酚为原料,经乙氧基化和羧甲基化,制备AEC和APEC。烷基醚羧酸盐在化学结构上与皂类似,在疏水基和亲水基之间,嵌入一定加成数环氧乙烷,从而使其兼有阴离子和非离子表面活性剂中许多优良性能,成为多功能性品种。它在金属加工用方面,效果比相应的醇(酚)醚表面活性剂更好,它具有: (1)对皮肤和眼的刺激性很小。 (2)清洗性能,受pH值和温度影响较小。 (3)对酸、碱、氯较为稳定。 (4)生物降解性能优异。 图1 表面活性剂结构示意图 烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。 2.新一代表面活性剂Gemini 目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。 表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。 在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。 图2 炔醇类Gemini表面活性剂 Genfini表面活性剂的优良性质: 实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质: (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。 (2)更易聚集生成胶团。 (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。 (4)具有很低的Krat~相转移点。 (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。 (6)具有良好的钙皂分散性质。 (7)在很多场台,是优良的润湿剂。 从理论上讲,在极性头基区的化学键台阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结台。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径 另一方面,由于键台产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。 型嵌段高分子表面活性剂 涂料中颜填料的分散先后使用过聚磷酸盐、硅酸盐、碳酸盐等无机分散剂,传统小分子表面活性剂和聚羧酸盐、聚丙酸酸盐等高分子化合物。高分子化合物主要利用空间位阻使颜填料颗粒稳定,效果好于小分子表面活性剂的静电排斥作用。研究表明,在众多类型的高分子分散剂中,效果最好、效率最高的是AB型嵌段高分子表面活性剂。从分子结构上看,AB型嵌段高分子就是超大号的表面活性剂,A嵌段和B嵌段分别类似于表面活性剂的亲水头基和疏水尾链。AB嵌段高分子表面活性剂在颜填料表面采取尾型吸附形态,A嵌段是亲颜料的锚固基团,B嵌段是亲溶剂的溶剂化尾链。A嵌段可以是酸、胺、醇、酚等官能团,通过离子键、共价键、配位键、氢键及范德华力等相互作用吸附在颗粒表面,由于含有多个吸附点,可以有效地防止分散剂分子脱附,使吸附紧密且持久。B嵌段可以是聚醚、聚酯、聚烯烃、聚丙烯酸酯等基团,分别适用于极性和非极性溶剂。典型的AB嵌段型高分子表面活性剂结构如图3所示。稳定颗粒主要依靠B嵌段形成的吸附层产生的空间位阻作用,所以对作为溶剂化尾链的B嵌段的长度和均一性有极高的要求,希望可以形成厚度适中且均一的吸附层,如果B段过长,可能会起架桥作用,引起分散体系黏度增加,甚至絮凝沉淀。通常认为位阻层的厚度为20nm时,可以达到最好的稳定效果。 图3 AB嵌段型高分子表面活性剂 合成分子结构明确和相对分子质量可控的AB型嵌段高分子表面活性剂是涂料分散助剂的发展方向,这需要用到受控聚合技术。基团转移聚合(GTP)、原子转移游离基聚合(ATRP)、硝酰基聚合(NMP)和可逆加成分裂链段转移聚合(RAFT)是当今最常用的受控聚合技术,利用这些技术,选用合适的方法和设备可得到想要的聚合物结构,可以选择不同的单体,按设计的次序进行排列,最终合成特定结构、相对分子质量分布窄、近单分散的聚合物,如果采用常规的方法,即使花大量的时间、精力、材料也无法做到这样。目前仅有BYK、Ciba、Rhodia等少数几个公司拥有受控聚合技术。深圳海川公司正在开发的新型分散剂也是AB型嵌段高分子表面活性剂。

表面活性剂在工业生产和日常生活中占有非常重要的地位,目前合成的表面活性剂近6000种,广泛应用于乳化,分散,增溶,发泡,洗涤,柔软等各个方面,素有“工业味精”的称号。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团……

表面活性剂在化妆品中的应用摘要:论述了表面活性剂的功能,如润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等功能,以及在化妆品中的作用。介绍了表面活性剂和化妆品的分类情况,化妆品的原料以及化妆品对表面活性剂的要求。详细介绍了化妆品中常用的几种表面活性剂。对化妆品中用的表面活性剂的发展趋势进行了阐述。关键词:表面活性剂;化妆品;功能;应用表面活性剂在化妆品中的主要功能包括乳化、分散、增溶、起泡、清洗、润滑和柔软等。表面活性剂在化妆品中具有广泛的用途,起着重要的作用。化妆品中所利用的表面活性剂的性能不仅仅是其单一的性能,而是利用其多种性能,因此,表面活性剂是化妆品生产中不可缺少的原料,广泛应用于化妆品中。化妆品是指以涂抹、喷、洒或者其他类似方法,施于人体(皮肤、毛发、指趾甲和口唇齿等),以达到清洁、保养、美化、修饰和改变外观,或者修正人体气味,保持良好状态为目的的产品。目前,化妆品的发展趋势是向疗效性、功能性和天然性方向发展。1表面活性剂的分类表面活性剂的分类方法有很多种,根据表面活性剂的来源进行分类,通常把表面活性剂分为合成表面活性剂、天然表面活性剂和生物表面活性剂三大类。合成表面活性剂合成表面活性剂是指以石油、天然气为原料,通过化学方法合成制备的表面活性剂。表面活性剂在性质上的差异,除与烃基的大小和形状有关外,主要与亲水基团类型有关。一般以亲水基团的结构为依据来分类,按亲水基团是否带电可将表面活性剂分为离子型和非离子型两大类,其中离子型表面活性剂又分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。天然表面活性剂20世纪70年代的石油危机对以石油为基本原料的表面活性剂工业产生了巨大的冲击,引起人们对能源消耗、工艺生产过程、生态学和石油制品安全性等一系列问题的思考,从而引发了以天然油脂为原料生产表面活性剂的重大变革。由于生物新技术的应用,油脂分离精制技术的发展,植物油脂品种的改良及增产,使得大量获得价格较低的高纯度的天然油脂成为可能,新的抗氧化剂的开发成功,解决了天然油脂腐败变质的问题,再加上人们对安全及环保意识的提高,以油脂为原料的天然表面活性剂的开发引起人们的高度重视。目前在天然油脂中最受重视的要数棕榈油和棕榈仁油。生物表面活性剂生物表面活性剂是指由细菌、酵母和真菌等多种微生物产生的具有表面活性剂特征的化合物。用微生物生产表面活性剂是20世纪70年代后期国际生物工程领域中研究的新课题。用微生物制取生物表面活性剂可以得到许多难以用化学方法合成的产物,在结构中引进了新的化学基团,而制得的产物易于被生物完全降解,无毒性,在生态学上是安全的。生物表面活性剂根据其亲水基的不同可分为糖脂系、酰基缩氨酸系、磷脂系、脂肪酸系和高分子表面活性剂五类。2表面活性剂的功能表面活性剂是一类具有多种功能的精细化学品,表面活性剂具有润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等多种功能。当液体与固体表面接触时,气体被排斥,原来的固-气界面消失,代之以固-液界面,这种现象称为润湿。从普遍意义而言,润湿是一种流体被另一种流体自表面取代的过程。通常把一种物质的颗粒或液滴以及微小的形态分散到另一介质中的过程叫分散。所得到的均匀、稳定的体系叫分散体。乳化是一种液体以微小液滴或液晶形式均匀分散到另一种不相混溶的液体介质中形成的具有相当稳定性的多相分散体系的过程。表面活性剂在水溶液中形成胶束后,具有能使不溶或微溶于水的有机化合物的溶解度显著增大的能力,且溶液呈透明状,这种作用称为增溶作用。由液体薄膜或固体薄膜隔离开的气泡聚集体称为泡沫,可分为液体泡沫和固体泡沫。在液体泡沫中,液体和气体的界面起主要作用。一般地说,当表面张力低,膜的强度高时,不论是稳定泡沫还是不稳定泡沫,起泡力都较好。溶液的黏度对泡沫稳定在两方面起作用:一方面是增强泡沫液膜的强度;另外,表面黏度大,膜液体不易流动排出,延缓了液膜破裂,而增强了泡沫的稳定性。消泡作用分为破泡和抑泡两种。具有破泡能力的物质称为破泡剂。有效的消泡剂既要能迅速破泡,又要能在相当长的时间内防止泡沫生成。洗涤去污作用是表面活性剂应用最广泛、最具有实用意义的基本特性。洗涤去污过程是极为复杂的,与污垢种类、基本性能、表面活性剂和助剂的种类和结构密切相关,而其过程又是多种表面现象,如吸附、润湿、渗透、乳化、分散、泡沫和增溶等在不同情况下的综合效应。3化妆品的分类化妆品能对人体面部、皮肤表面、毛发和口腔起清洁保护和美化作用。化妆品的品种多种多样,分类方式也各不相同。按使用部位可分为:皮肤用化妆品、毛发用化妆品、指甲用化妆品和口腔用化妆品。按使用目的可分为:洁净用化妆品、基础保护化妆品、美容化妆品和芳香制品,还可根据化妆品本身的剂型分类。4化妆品的原料制造化妆品所用的原料有很多种,据统计大概有3 000多种。根据化妆品原料在化妆品中所含比例的大小,可分为基质原料和配合原料。基质原料是调配各种化妆品的主体,也成为基础原料。膏霜类的油脂,香粉类的滑石粉等均属基质原料;配合原料是用来改善化妆品的某些性质和赋予色、香等的辅助原料,如膏霜中的乳化剂、抗氧化剂和防腐剂等均属配合原料。配合原料在化妆品中的比例虽小,但对化妆品的质量影响却很大。它们之间没有绝对的界限,某一种原料在化妆品中起着基质原料的作用,而在另一化妆品中可能仅起着辅助原料的作用。基质原料1)油脂类油脂是组成膏霜类化妆品的基本原料,主要起护肤、柔滑和滋润等作用。脂肪酸甘油酯是组成动植物油脂的主要成分,在常温下呈液态的称为油,呈固态的称为脂。根据来源又可分为植物性油脂和动物性油脂。植物性油脂包括椰子油、橄榄油、蓖麻籽油、杏仁油、花生油、大豆油和棕榈油等。动物油脂包括牛油、猪油、貂油和海龟油等。这些动植物油脂加氢后的产物称为硬化油。在化妆品中常用的硬化油有:硬化椰子油、硬化牛脂、硬化蓖麻油和硬化大豆油等。2)蜡类蜡是高碳脂肪酸和高碳脂肪醇所组成的酯。在化妆品中主要作为固定剂,增加化妆品的稳定性,调节其黏度,提高液体油的熔点,使用时对皮肤产生柔软的效果。依据来源的不同,蜡类也可分为植物性蜡和动物性蜡。植物性蜡包括巴西棕榈蜡、霍霍巴蜡和小烛树蜡等。动物蜡类包括蜂蜡、羊毛脂蜡、鲸油和虫蜡等。3)高碳烃类用于化妆品原料中的烃类主要包括烷烃和烯烃,它们在化妆品中的主要作用是其溶解作用,净化皮肤表面,还能在皮肤表面形成憎水性油膜,来抑制皮肤表面水分的蒸发,提高化妆品的功效。在化妆品中用的主要包括角鲨烷、凡士林、液体石蜡和固体石蜡等。4)粉类粉类是组成香粉、爽身粉、胭脂、牙粉和牙膏等粉类化妆品的基质原料。一般是不溶于水的固体,经

表面活性剂在抗静电论文

我转一篇服装抗静电剂的论文供您参考吧,希望能对您工作有用。 几种抗静电剂在涤纶织物上的应用 (广州振科科技有限公司 广州510655) 摘要:通过几种不同的抗静电剂在涤纶织物上的应用对比,表明了阳离子型表面活性剂在抗静电领域的特殊价值,找出了最优的抗静电剂ZK38。 关键词:涤纶 抗静电剂 阳离子表面活性剂 Abstract:Compare with any other kind of products,such as PKA,NB908,ZK38 antistatic agent is a kind of quanternary ammonium salt cationic surfactant which has the characteristics of good antistatic effect on polyester fibre. Key words: polyester fibre ;antistatic agent; cation surfactant 前言 涤纶是一种应用广泛的合成纤维,其产量居世界合成纤维之首。但由于其分子结构高度对称而且亚苯基键刚性强,因而具有疏水性、难染性、易产生静电、易燃等缺点。在纺造过程中,由于带静电易从空气中吸引灰尘和飞毛,使织物上产生集中的深色污点;在穿着过程中,由于静电不仅大量吸附灰尘,易玷污,而且衣服与人体、衣服与衣服也会发生缠附现象。因此,消除或减弱涤纶所带的静电已成为当前研究的重要课题。 1.抗静电剂的分类 涤纶消除静电的方法有许多种,这里讨论的方法是常见的抗静电剂法,即用抗静电剂对纤维及其织物表面处理,降低纤维的比电阻,从而提高涤纶的抗静电性,以消除静电。抗静电剂大多数为表面活性剂,它具有极性基团,可以吸湿,使聚合体的表面电阻减小,加快静电荷的散逸。目前,抗静电剂品种很多,按离子型分类法,主要有阴离子型、阳离子型、两性及非离子型四种抗静电剂。 其优缺点如下: 阴离子抗静电剂应用最广泛,但如何针对不同种类的纤维确定烷基数及中和剂等工作十分复杂。 阳离子抗静电剂对纤维的吸附性最强,因此,显示出最好的抗静电效果,尤其作为纤维制品的抗静电剂,不仅抗静电性好,而且使纺织产品手感得到明显地改善。 两性抗静电剂,其效果可与阳离子抗静电剂媲美,但价格昂贵,故目前使用范围不大。非离子型抗静电剂,在一般湿度下抗静电效果一般,但在低湿度情况下却显露出明显的抗静电效果。 2.阳离子表面活性剂的抗静电原理 阳离子表面活性剂带有正电荷,而大多数纤维表面带有负电荷,由于相反电荷中和,抗静电效果比阴离子型和非离子型好,此外,它还能在纤维表面形成憎水性油膜,降低纤维的摩擦系数,显示出柔软平滑效果。以季胺盐为例,它是由亲水基团和疏水基团所组成的。其疏水基结构与阴离子表面活性剂相似,疏水基和亲水基的连接方式也很类同,即除亲水基直接连在疏水链上外,往往还通过酯、醚、酰胺等形式来连接,但溶于水时,其亲水基呈现正电荷(其亲水基团主要为碱性氮原子,也有磷、硫、碘等)。由于其极强的吸附能力,容易在基体表面上形成亲油性膜及产生阳电性,故广泛用作纺织品的柔软剂及抗静电剂等(前者是由于亲油性膜的形成而使纺织品有憎水的作用以及能显著地降低纤维表面的静摩擦系数,从而使纤维具有良好的平滑性,而后者则是阳电性作用的表现)。对于通常带有负电荷的纺织品来讲,它的吸附能力比阴离子和非离子强。正是这种特殊性质决定了阳离子表面活性剂在抗静电领域的特殊价值。 3.实验部分: 实验材料 聚酯布 主要试剂 ⑴抗静电剂PKA ⑵抗静电剂NB908 ⑶抗静电剂ZK38 阳离子型表面活性剂 主要仪器、设备 烘箱:101一A型数显电热鼓风干燥箱,上海锦屏仪器仪表有限公司通州分公司; ZC36型高阻计,测量范围:106 ~1017Ω上海精密科学仪器有限公司第六电表厂 性能测试 表面电阻按GB/T16801-1997测试。 4.结果讨论 不同浓度的抗静电剂处理后的涤纶织物表面电阻值 给出了不同浓度的抗静电剂溶液处理的纤维的抗静电效果。由图可见,随着抗静电剂溶液浓度的增加,表面电阻值减少即试样的抗静效果增强。但浓度由1%增加到2%的时候,抗静电效果变化比较明显,而由2%继续增至4%时,变化已经趋于平稳了。这可以解释为,当溶液浓度较稀时,浓度的增加可以使纤维表面吸附量增大;随着溶液浓度的增大,纤维表面的吸附量逐渐接近饱和,抗静电剂的浓度增加对抗静电性能的影响就很小了。 从上图中还可以看出,1%的ZK38的抗静电效果远远优于4%的抗静电剂PKA。 相同成本的抗静电剂处理后的涤纶织物表面电阻值 从可以很直观的看出,相同成本的抗静电剂溶液处理后的纤维的抗静电效果。由图可见,抗静电剂的量为元/L时,即抗静电剂PKA,抗静电剂NB908和抗静电剂ZK38的加入量分别是15g/L,和3g/L处理后的纤维的抗静电效果是用ZK38处理的最好,抗静电效果的优劣关系分别是:ZK38>NB908>PKA;当同时增大抗静电剂的用量,使抗静电剂的成本升高至元/L,随着抗静电剂浓度的增加,表面电阻值都明显降低,但抗静电效果的关系仍保持一致——在三者中,ZK38的抗静电效果不但最优,而且同时具有最高的性能价格比。 5.结论 ⑴通过用不同浓度的抗静电剂处理涤纶织物,表明抗静电剂的浓度和纤维的抗静电性能的关系:随着抗静电剂浓度的增大,纤维的抗静电性能增强;当纤维表面吸附抗静电剂逐渐趋于饱和时,纤维的抗静电性能将不再增强。 ⑵通过不同种类的抗静电剂在相同浓度和相同成本条件下,处理涤纶织物的后织物的抗静电性能的变化对比,找出了对涤纶等合成纤维具有性能最优,同时也具有最佳性能价格比的阳离子型抗静电剂ZK38。

摘要:综述了生物表面活性剂的种类及其生产菌,介绍了目前常用的两种生产方法:微生物发酵法和酶法合成生物表面活性剂。总结了其在环境工程中的应用,如在废水处理中浮选去除重金属离子,在污染场地的生物修复中用于促进烷烃、多环芳烃(PAHs)的降解,修复受重金属污染的土壤等,并对今后的研究方向做了探讨。 关键词:生物表面活性剂 生物修复 重金属 多环芳烃 生物表面活性剂是微生物在一定条件下培养时,在代谢过程中分泌的具有表面活性的代谢产物。与化学合成表面活性剂相比,生物表面活性剂具有许多独特的属性,如:结构的多样性、生物可降解性、广泛的生物活性及对环境的温和性等[1]。由于化学合成表面活性剂受原材料、价格和产品性能等因素的影响,且在生产和使用过程中常会严重污染环境及危害人类健康。因此,随着人类环保和健康意识的增强,近二十多年来,对生物表面活性剂的研究日益增多,发展很快,国外已就多种生物表面活性剂及其生产工艺申请了专利[2],如乙酸钙不动杆菌生产的一种胞外生物乳化剂已经有了成品出售。国内对生物表面活性剂的研制和开发应用起步较晚,但近年来也给予了高度重视,其中研究最多的就是生物表面活性剂在提高石油采收率以及生物修复中的应用。 1 生物表面活性剂的种类及其生产菌 生物表面活性剂的种类 化学合成表面活性剂通常是根据它们的极性基团来分类,而生物表面活性剂则通过它们的生化性质和生产菌的不同来区分。一般可分为五种类型:糖脂、磷脂和脂肪酸、脂肽和脂蛋白、聚合物和特殊表面活性剂[1]。 生物表面活性剂的生产菌 大多数生物表面活性剂是细菌、酵母菌和真菌的代谢产物。这些生产菌大多是从油类污染的湖泊、土壤或海洋中筛选得到的。如Banat等[3]从油泥污染的土壤中分离得到两株生物表面活性剂的菌株:芽孢杆菌AB-2和Y12-B。表1列出了一些主要的生物表面活性剂的种类及其生产菌[2,4]。 表1 生物表面活性剂的种类及其生产菌生物表面活性剂 生产菌 海藻糖脂 石蜡节杆菌(Arthrobacter paraffineus) 棒状杆菌(Corynebacterium spp.) 红平红球菌(Rhodococus erythropolis) 鼠李糖脂 铜绿假单胞菌(Pseudomonas aeruginosa) 槐糖脂 解脂假丝酵母(Candida lipolytica) 球拟酵母(Torulopsis bombicola) 葡萄糖、果糖、蔗糖脂 棒状杆菌(Corynebacterium spp.) 红平红球菌(R.. erythropolis) 纤维二糖脂 玉蜀黍黑粉菌(Ustilago maydis) 脂多糖 乙酸钙不动杆菌(Acinetobacter calcoaceticus RAG1) 假单胞菌(Pseudomonas spp.) 脂肽 枯草芽孢杆菌(Bacillus subtilis) 地衣芽孢杆菌(Bacillus licheniformis) 荧光假单胞菌(Pseudomonas fluorescens) 鸟氨酸,赖氨酸,缩氨酸 氧化硫硫杆菌(Thiobacillus thiooxidans) 盐屋链霉菌(Streptomyces sioyaensia) 葡萄糖杆菌(Gluconobacter cerinus) 磷脂 氧化硫硫杆菌(T. thiooxidans) 脂肪酸 野兔棒状杆菌(Corynebacterium lepus) 石蜡节杆菌(Arthrobacter paraffineus) 2 生物表面活性剂的生产 目前,可以通过两种途径生产生物表面活性剂:微生物发酵法和酶法。 采用发酵法生产时,生物表面活性剂的种类、产量主要取决于生产菌的种类、生长阶段,碳基质的性质,培养基中N、P 和金属离子Mg2+、Fe2+的浓度以及培养条件(pH、温度、搅拌速度等)。 如Davis等[5]在成批培养枯草芽孢杆菌时发现,在溶解氧耗尽和限氮条件下可得最大浓度( mg/L)的莎梵婷。Kitamoto等[6]利用南极假丝酵母的休止细胞生产甘露糖赤藓糖醇脂,对培养条件进行优化后,最高产量可达140 g/L。发酵法生产生物表面活性剂的优点在于生产费用低、种类多样和工艺简便等,便于大规模工业化生产,但产物的分离纯化成本较高。 与微生物发酵法相比,酶法合成的表面活性剂分子多是一些结构相对简单的分子,但同样具有优良的表面活性。其优点在于产物的提取费用低、次级结构改良方便、容易提纯以及固定化酶可重复使用等,且酶法合成的表面活性剂可用于生产高附加值产品,如药品组分。尽管现阶段酶制剂成本较高,但通过基因工程技术增强酶的稳定性与活性,有望降低其生产成本。 3 生物表面活性剂的提取 发酵产物的提取(也称下游处理)费用大约占总生产费用的60%,这是生物表面活性剂产品商业化的一个主要障碍。生物表面活性剂的最佳提取方法随发酵操作及其物理化学性质的不同而不同。其中溶剂萃取是最常用的提取方法,如Kuyukina等[7]利用甲基-叔丁基醚萃取红球菌生产的生物表面活性剂,可以获得较高产率10 mg/L。超滤是用于提取生物表面活性剂的一种新方法。Lin等[8]用分子量截止值为30000 Da的超滤膜从发酵液中提取枯草芽孢杆菌产生的脂肽类生物表面活性剂莎梵婷,收率达95%。Mattei等设计了一套连续提取生物表面活性剂的装置,应用切面流过滤法能连续提取产物,产率高达3 g/L[1]。能与连续发酵生产配套的产物提取方法有泡沫分离、离子交换树脂法等。Davis等[9]用泡沫分离法连续提取枯草芽孢杆菌产生的莎梵婷,收率达。鼠李糖脂的提取过程是先离心过滤除去细胞,再通过吸附色谱将鼠李糖脂浓缩在安珀莱特XAD-2树脂上,后用离子交换色谱法提纯,最后将液体蒸发和冷冻干燥可得纯度为90%的成品,收率达60%[2]。 4 生物表面活性剂在环境工程中的应用 许多化学合成表面活性剂由于难降解、有毒及在生态系统中的积累等性质而破坏生态环境,相比之下,生物表面活性剂则由于易生物降解、对生态环境无毒等特性而更适合于环境工程中污染治理。如:在废水处理工艺中可作为浮选捕收剂与带电胶粒相吸以除去有毒金属离子,修复受有机物和重金属污染的场地等。 在废水处理工艺中的应用 用生物法处理废水时,重金属离子对活性污泥中的微生物菌群常会产生抑制或毒害作用,因此,在用生物法处理含重金属离子的废水时须进行预处理。当前,常用氢氧化物沉淀法除去废水中的重金属离子,但其沉淀效率受氢氧化物溶解度的限制,应用效果不甚理想;浮选法用于废水预处理时又常因所用浮选捕收剂在其后续处理过程中难降解(如化学合成表面活性剂十二烷基磺酸钠),易产生二次污染而受限制,因此,有必要开发易生物降解、对环境无毒害的替代品,而生物表面活性剂恰好具有这一优势。但是,国内外对这一方面的应用研究很少,直到最近才有报道。Zouboulis 等[10]研究了生物表面活性剂作为捕收剂除去广泛存在于工业废水中的两种有毒金属离子:Cr4+和Zn2+。结果表明,莎梵婷和地衣芽孢杆菌素在pH为4 时均能很好地从废水中分离吸附了Cr4+的αFeO(OH)或Cr4+与 FeCl3•6H2O形成的螯合物,极大地提高了Cr4+(50 mg/L)的去除率,几乎可达100%;在pH为6时,莎梵婷对螯合物中的Zn2+(50 mg/L)去除率高达96%,而在相同条件下,地衣芽孢杆菌素的处理效果不明显,去除率为50%左右。

抗静电剂就是表面活性剂的一种,抗静电剂吸收空气中的水分在制品表面形成一层导电网格

  • 索引序列
  • 表面活性剂论文结论
  • 表面活性剂论文题目
  • 高分子表面活性剂论文
  • 表面活性剂综述论文范文
  • 表面活性剂在抗静电论文
  • 返回顶部