首页 > 学术论文知识库 > 碳材料论文期刊

碳材料论文期刊

发布时间:

碳材料论文期刊

carbon更好。1、carbon比chemistrymateria的知名度更高。《CARBON》是国际碳材料顶级期刊。2、carbon比chemistrymateria的发表内容更为权威。《CARBON》是Elsevier出版社发行的老牌权威期刊。

《Carbon》是SCI收录期刊收录的刊物,影响因子是。

《Carbon》杂志是一个国际多学科论坛,旨在交流碳材料和碳纳米材料领域的科学进展。期刊报道了与碳的形成、结构、性质、行为和技术应用相关的重要新发现,碳是一类主要由元素碳组成的有序或无序固相。

这些材料可以是合成材料,也可以是天然材料,包括但不限于氧化石墨烯和氧化石墨烯、碳纳米管、碳纤维和丝、石墨、多孔碳、热解碳、玻璃碳、炭黑、金刚石和类金刚石碳、富勒烯和炭。如果碳成分是论文科学内容的一个主要焦点,则将考虑有关复合材料的论文。

如果有机物质是此类碳材料的前体,则可考虑使用有关有机物质的论文。碳材料的相关应用领域包括但不限于电子和光子器件、结构和热应用、智能材料和系统、储能和转换、催化、环境保护以及生物和医学。 碳出版综合研究文章、致编辑的信函,并邀请该领域的主要专家进行评论。

选择具有较高科学价值、传授重要新知识、对国际碳材料界具有高度兴趣的论文。该杂志欢迎大量和纳米级碳材料的手稿,特别对帮助定义和发展适用于所有碳的基础科学的手稿感兴趣,包括现有和新兴材料。

CARBON简介

CARBON杂志属于工程技术行业,“材料科学:综合”子行业的优秀级杂志。 投稿难度评价:中等偏上杂志,要求也较高,此区杂志很多,但是投中,并不容易 审稿速度:一般,3-6周级别/热度:暗红评语:杂志级别不错,但是比较冷门,关注人数偏少。

说明:指数是根据中国科研工作者(含医学临床,基础,生物,化学等学科)对SCI杂志的认知度,熟悉程度,以及投稿的量等众多指标综合评定而成。当然,具体的,您还可以结合“投稿经验分享系统”,进行综合判断,这更是大家的实战经验,更值得分享和参考。

注意,上述热门指数采用专利技术,由计算机系统自动计算,并给出建议,存在不准确的可能,仅供您投稿选择杂志时参考。

以上内容参考:Carbon(SCI收录期刊) - 百度百科

关于碳材料的论文

近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“General synthesis of single-atom catalysts with high metal loading using graphene quantum dots”的研究论文。该研究开发了一套高载量过渡金属单原子材料的普适性合成策略,实现了高达 40 wt.% 或 at.% 的高过渡金属原子负载,比目前报道的单原子负载量提升了几倍甚至数十倍。 该工作由电子 科技 大学、加拿大光源和美国莱斯大学三个单位共同合作完成。材料与能源学院的夏川教授为论文第一作者和通讯作者,美国莱斯大学的汪淏田教授和加拿大光源的胡永峰教授为论文通讯作者。该合作团队在电催化材料研究和电化学反应器设计领域建立了坚实的基础,并取得了丰硕的研究成果。 过渡金属单原子材料具有极高的原子利用率、独特的电子结构以及明晰且可调的配位结构,在各种电催化过程中展现出优异的活性。但常规单原子材料中金属原子密度较低(通常小于5 wt.%或1 at.%),大大限制了其整体催化性能及工业应用前景,因此发展出高载量过渡金属单原子材料普适性合成策略至关重要。现有“自上而下”和“自下而上”工艺对提高合成单原子材料的金属负载量有很大的局限(图1, a-b)。以碳材料负载的单原子为例,现有的“自上而下”方法通过在碳材料载体表面制造缺陷,然后通过缺陷稳定单原子。然而,无法精确调控缺陷尺寸导致缺陷位点的数目极大地受到限制,而且当金属负载量提高时,容易在大尺寸的缺陷位处形成团簇。“自下而上”方法则使用金属和有机物前驱体(如金属有机框架、金属-卟啉分子、金属-有机小分子)热解碳化的方式获得负载金属单原子的碳材料。在金属负载量过大时,金属原子之间将因为没有足够的隔离空间而导致热解过程中团簇或者颗粒的产生。 鉴于此,该团队发展了区别于现有“自上而下”和“自下而上”工艺的单原子催化材料制备方法(图1c),以突破单原子负载量的限制。该团队创新性地使用比表面大、热稳定性高的石墨烯量子点作为碳基底,对其进行-NH2基团修饰,使其对金属离子具有高配位活性。引入金属离子后可得到以金属离子作为节点、功能化石墨烯量子点作为结构单元的交联网络,最后热解即可得到高载量的金属单原子材料。相较于传统“自上而下”和“自下而上”的单原子催化剂合成方法,该研究报道的方法既保证了高含量金属离子初始锚定时的高分散性又能有效抑制后续热解过程基底烧结重构引起的金属原子团聚。 XAFS、HADDF-STEM等多种表征手段证明,由该法制得的负载型金属单原子催化材料在保证金属原子单分散的同时还能实现远超现有文献报道水平的金属载量。借助该方法,该团队成功制备出质量分数高达(原子分数为)的Ir单原子催化材料(图2),该负载量相较于文献报道的Ir单原子最高载量提升了数倍。 另外,该合成策略还具有普适性,能够用于制备其他贵金属或非贵金属的高载量金属单原子催化材料。例如,在碳基底材料上,Pt单原子的负载量最高可达 wt.%,Ni单原子负载量可达15 wt.%(图3)。 夏川,电子 科技 大学材料与能源学院教授,国家青年人才。研究方向为基于新能源的电催化、电合成、电化学生物合成,致力于实现碳平衡的能量与物质循环。在“液体燃料与基础化学品现场合成”这一特色方向开展了深入、系统的研究,在反应器与催化剂设计领域均取得丰硕成果,共发表学术论文50余篇,授权美国专利3项,H因子34,引用5200余次。近五年来,以第一作者/通讯作者身份在Science、Nat. Energy、Nat. Catal.、Nat. Chem.等国内外高水平期刊共发表论文20余篇,其中ESI高被引论文9篇,热点论文2篇。

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

一种固体负载离子液体和金属并应用于乙炔氢氯化反应的方法,所选用的固体载体为比表面积大于、孔容大于的固体,所选择离子液体的阳离子为咪唑鎓阳离子、吡啶鎓阳离子或吡咯烷鎓阳离子,阴离子可以选择任意阴离子,所选择的金属主要是以au、pd为代表的贵金属等。该专利申请中,金属分散在离子液体层中,尽管催化活性较高,但是评价结果显示反应500h后乙炔转化率只有60%左右。中国专利cn104936933a公开了一种催化剂的制备方法。该专利申请中,金属首先锚定在碳载体表面,随后再在金属表面覆盖了一层离子液体层。但是该催化剂催化寿命较短,尚无工业化应用实例。乙炔氢氯化的产物氯乙烯(VCM)是生产聚氯乙烯(聚氯乙烯)非常重要的单体。PVC是世界最重要的树脂类型之一。因为我国贫油多煤的的能源构成,当前我国工业化制VCM所采用的主要是电石气与氯化氢发生加成反应合成。该反应(乙炔氢氯化)应用的工业催化剂是以活性碳作为载体,氯化汞作为活性组分,但由于汞基催化剂中的汞组分易流失,且污染环境,对人体造成伤害,以及汞资源的日趋减少,因此,开发环境友好的,价格低廉的,易于工业化的新型催化剂,实现乙炔氢氯化反应可持续发展是当前主要需解决的问题。。据以前珍贵的研究:金基催化剂在乙炔氢氯化反应中展现优良的性能,但该类催化剂价格过高;贱金属催化剂也有作用,但活性和稳定性不如金基催化剂;因此,设计更为廉价、催化性能和稳定性更好的催化剂是目前乙炔法制备氯乙烯单体的主要研究方向。该论文以廉价易得的非金属碳材料催化剂为主要研究内容,探讨了碳材料缺陷、杂化方式以及P掺杂对乙炔氢氯化反应的影响机理。该论文主要分为以下几个方面:(1)碳缺陷对乙炔氢氯化反应催化性能影响机理研究。以有机聚合物为前驱体,经过高温炭化等步骤制备具有不同缺陷含量的非金属催化剂,通过高温脱除N的比例来控制催化剂中缺陷的含量,实验得知1100℃条件下制备的催化剂展现出最优的催化活性,此时缺陷的含量最高,结合TPD等结果分析,缺陷在乙炔氢氯化反应中也起到一定的作用。反应后的催化剂经过氨气处理后它的催化性能得到一定的恢复,表明氨气处理是催化剂再生的方法之一。(2)碳材料杂化方式对乙炔氢氯化反应的影响机理研究。以微粉纳米金刚石为前驱体,经过不同温度处理得到sp~(2/)/sp~3含量不同的碳材料非金属催化剂。在乙炔氢氯化反应中,该催化剂展现出优良的催化稳定性和活性。通过XPS分析得知,制备的热退火纳米金刚石中以sp~2杂化方式存在的碳随着碳化温度的升高而增多且从XPS宽扫图中未发现其他杂质;通过Raman表征可知,热退火金刚石的I_D/I_G值增加。TPD测试分别分析了热退火纳米金刚石催化剂对乙炔和氯化氢的吸附情况。通过TPD分析得知随着热退火金刚石催化剂中sp~2杂化方式的增多,碳材料催化剂对乙炔和氯化氢的吸附性能增强,进而提升了对乙炔氢氯化反应的催化活性。(3)磷、氮共掺杂碳材料对乙炔氢氯化反应的影响机理研究。本论文采用了一种简单便捷的制备方法,将葡萄糖(碳源)与植酸(磷源)溶解混合,经过水热碳化后再于高温煅烧的同时利用氢氧化钾刻蚀,分别制备了纯碳材料、碳氮材料、磷氮共掺杂碳材料催化剂应用于乙炔氢氯化。经过XRD测试得知前驱物成功地碳化成碳材料,经过XPS测试表明磷元素成功地掺入到材料里。所有非金属碳材料催化剂均在220℃和乙炔空速为36 h~(-1)条件下测试,分析知制得的催化剂活性从大到小分别是:P,N-C、N-C、C.这表明磷掺杂后催化剂的催化活性进一步提高,经过TPD分析得知,掺杂磷后的催化剂对HCl的吸附起到促进作用。

新型碳材料模板论文

低碳环保的城市其实就是一种比较复杂的低碳经济的发展方式,这是我为大家整理的低碳生活的科技论文,仅供参考!低碳生活的科技论文篇一 探讨低碳环保城市规划设计 摘要:生态城市规划建设是促进人与自然和谐共处的良性规划,基于这种情况,必须立足长远,特别是设计人员在设计中要坚持生态原则,通过实现现代城市规划的发展目标,满足人们的生活需求和城市增长需要。本文对低碳环保的城市的规划进行了分析探讨,仅供参考。 关键词:城市规划;低碳环保;发展 中图分类号:TU984 文献标识码: A 一、低碳环保城市的概述 低碳环保的城市其实就是一种比较复杂的低碳经济的发展方式,并且通过改变人们的消费理念和社会经发展形式,从而提高人们的生活质量,保障人们的生活水平,与此同时也要做到减少城市发展过程中碳的排放量,随着社会的不断发展,人们生活的环境也在不断的恶化,出现了大气污染、气候变暖等情况,此时,人们对低碳环保理念的发展也逐渐的产生兴趣,受到越来越多的人民群众的关注,也是城市可持续发展必不可少的。由于气候变暖很大一部分的可能性是由人们的活动造成的,所以在进行城市规划与建设时,应该大力宣传低碳环保的重要性,促进城市向低碳城市发展的进程。 二、生态城市规划的重要性、必要性 1、生态城市规划的必要性 当前,我国面临着水土严重流失,森林植被锐减、水资源匮乏、水体、大气污染严重等现象,这些现象同时又影响了城市化发展进程,也直接影响了经济发展和社会进步,而生态城市化建设是本着保持生态平衡促进环境良好的规划,既减轻环境负担又给人们创造舒适的居住环境。 2、生态城市规划的重要性 城市不仅要满足人们生产生活的需求,还要满足生理、精神生活需求,是居民生活的重要载体。所以,在城市规划过程中要考虑环境与生态协调和谐发展,从而,生态城市的概念应运而生,随着人类 文化 文明的不断进步和发展,人们对生态自然的追求和品质生活的向往也越来越高,生态城市的发展能够促进人与自然的和谐进步、经济稳步发展的生态良性循环,生态城市规划设计是一项可持续发展的计划,更是一项利国利民、时间久远、意义重大的任务。 三、生态城市规划的原则 生态性。在城市规划过程中,通过衡量环境承载能力,合理利用自然条件,根据城市发展规划因地制宜,加大城市绿化面积,优化水资源,减少噪音污染,着重保护自然环境和生态平衡。 经济性。生态化城市规划既能促进经济增长,又能在一定程度上使数量和质量增加,并在原有城市发展的基础上,推动经济发展,生态环境的经济性需要是减轻对人类健康和环境的危害,提高资源的再生和综合利用率,改进生产技术和生产工艺、使用清洁能源和高效率的设备、改善管理维护的 方法 都是促进城市经济增长的办法。 可持续性。从长远来看,生态城市规划是实现未来发展的目标,考虑到现在整个城市的生态平衡性和完整性,兼顾历史和原有城市本色,在发展过程中,不破坏原有生态系统,整体为城市规划需求服务。 科学性。科学合理的设计和规划生态城市,能满足人们生活和精神需要,充分体验城市整体功能,经过全方位调查和研究,结合城市生态系统的具体情况,从以前单一的绿化变为注重人们对居住环境的感受和注重城市建筑实用性、美观性。 四、低碳城市与碳的排放 随着城市的发展,全球气温在逐渐的变暖,那到底是什么原因导致了全球气温的变化?这就成为我们研究的关键所在。从社会发展的方面看,在过去的很长一段时间内,由于社会发展的需求,工业化革命的发展导致大量的化石燃料的使用,使得全球的二氧化碳的排放量日益的增加,目前,还有持续增加的趋势。从碳的排放源头来看,在人口密集、交通、建筑、工业都发达的城市中,其对碳的使用与排放都是高消耗的,根据统计数据,全球的大城市能源的消耗占全球的75%,二氧化碳的排放量占全球的80%,最终,碳的排放量主要来源于居民生活、城市交通、工业发展三个方面。人为的二氧化碳的排放主要来自交通运输、居家取暖做饭、火力发电、金属冶炼等方面。 从自然的科学角度看,土地覆盖率与土体利用的变化、太阳的活动强度、海洋的作用等都是导致气候变暖的因素。其中有不少人为的因素的存在,例如,土地的覆盖与使用的变化,尤其是进入工业化的时代后,城市的发展可能是直接导致气候变暖的重要原因之一。总而言之,城市低碳环保理念的提出已经成为减少碳的排放量的关键所在。为了能更好的应对气候的变暖和能源的危机,研究城市的低碳环保是必不可少的,我们要努力建立一个低排放、高效率的低碳城市,通过对产业的调整和发展模式的改变,合理、有效的促进低碳城市的发展。低碳城市的发展不仅仅是对未来发展的一种约束,同时也是对快速跨入城市低碳发展模式的契机,从而减少气候的改变,增加经济效益。 五、城市规划中低碳环保理念的应用 1、低碳生活 低碳生活实际上就是指生活中所耗费的能量的减少,进而降低碳的使用,减少二氧化碳的排放。并且通过对社会生活时能源与物质的消耗的减少、废弃物与垃圾的减少,实现减排节能的作用,提高低碳城市的发展。崇尚简朴的生活,尽量避免资源的浪费,政府应当鼓励宣传人人都要做到低碳的生活方式,促进低碳理念的发展,改变以往的不良习惯,为低碳城市的发展做出一份贡献。 2、低碳交通 (1)想要进行城市交通的低碳应当考虑到交通条件的内部优化。实际上就是对城市的交通进行系统的、完善的规划,并且制定出相应的交通规划,在以节约能源与资源的基础上,尽量做到最大限度的减少碳的排放量。还应当在满足人们的日常交通生活的基础上,尽可能的减少城市的压力。例如,有些城市的做法就是相当可取的,在城市建立基础道路以外,建立相应的快速道路,比如地铁等,同时也要加强公交系统的完善,提高城市交通的高效性,从而减少碳的排放。也要对环保型交通设施研究与探索,增加低碳理念在城市交通建设的使用,增加城市的低碳规划。 (2)做好城市交通规划的外部协调。把城市的交通规划和城市的一些其他政策进行协调,并以交通规划来支持土地的规划,并且把低碳城市的理念深入到规划中。进而进行全方位的对城市交通的发展以及城市现状进行合理的分析,并进行合理的完善。真正做到实现城市交通的减排和节能,到达低碳城市发展的需求;建立合理的体制进行相应的管理,不断提高人民的综合素质,培养生活居民的低碳交通的意识,形成完善的交通观念,促进低碳城市的发展。 3、低碳产业 产业结构是衡量经济发展与经济整体素质的重要指标,也是决定经济增长方法的重要因素,同时也是能源发展需求的重要成分。从工业结构的方面分析,重工业产生的排放物比较多;从产业结构分析,服务行业的能源消耗强度相对比较低,而工业的能源消耗强度相对较大。所以要通过降低二氧化碳的排放量与提高附加值的方法来拉动低碳化的发展。一方面,增大对高耗能产业的控制力度,降低碳的排放量;另一方面,提高生产方式的创新,以资源节约、循环的经济方式来改变以往的产业经济,提高产业的技术水平,最大限度的减少碳的排放,也要把低碳环保的生活理念引入到城市的产业调整中,积极的开展循环型经济的策略,改变固有的产业结构,从而促进低碳城市经济的形成,增加城市的发展。 结束语 随着社会的飞速发展,城市的建设问题已经逐渐引起了社会各界的关注,但是随着气候变化的影响,碳排放量的的增加已经影响着全球气温的攀升,所以碳的排放与城市的规划息息相关,因而,发展低碳环保的城市规划策略已经逐渐发展为城市建设必不可少的重要手段,有利于促进城市的减排、节能,从而降低空气污染。目前,我国城市规划的发展体系,是建立在促进国民经济发展的前提下,我国正处于经济快速发展的时期,碳的排放量也逐渐的增加,进行低碳环保的城市规划策略也是我国经济发展的关键所在。 参考文献 [1]云利波,魏延军.基于城市规划管理对城市规划设计的影响[A].科技部.2014年全国科技工作会 议论文 集[C].科技部:,2014:1. [2]时蒙蒙.山东省低碳生态城市发展战略研究[D].山东师范大学,2014. [3]刘存发,刘芳.分析基于低碳理念的城市规划设计策略[J].中外建筑,2014,04:72-73. [4]刘羽佳.论城市规划设计如何体现环保节能[J].石油石化节能,2014,05:58-59. 低碳生活的科技论文篇二 浅谈低碳环保简约别墅设计 摘要:气候变化使人们更加认识到发展低碳经济的重要性。随着低碳理念在国内的大肆宣传与低碳经济在国内的大力发展,低碳设计一词也应运而生,并成为21世纪全世界最热门的话题之一。目前,我国的建筑节能设计重点往建筑设计中的低碳设计方向发展,这样能够增强我国的能源可持续发展战略。别墅景观设计是一个重要方面,其对于设计水平的高低有着很大的要求,在别墅设计中贯彻低碳环保简约的理念,对于别墅设计的发展有着重要的意义。 关键词:低碳环保简约;别墅设计;方法 中图分类号:TU2文献标识码: A 引言 随着我国经济的飞速发展,人民生活水平的不断提高,建筑材料已经从简单几类发展到品种繁多,但是,由于我们以前的环保意识不是很强,因而导致了工业的污染,资源的浪费,环境的破坏。比如私自乱开矿厂,野蛮地开垦耕地,塑料制品的随意乱扔和焚烧,垃圾的乱倒,树木的乱砍滥伐,等等,造成了环境的污染。因此,当代新型的低碳环保材料就更应该引起人们的重视。以前,人们运用的装饰材料主要注重的是外观和功能性,但现在不但要有功能和使用性,而且应该具备环保性和二次利用的功能。时至今日,环保、绿色、低碳的设计理念已经成为了别墅设计的主旋律。 一、别墅的简约环保低碳 自20世纪60年代出现了别墅设计中的简约主义。著名现代主义建筑与设计大师迈斯・凡德洛提出了一句经典设计 名言 “少即多”(Lessismore),可以说是简约主义的一个重要的宣言。它可以删繁就简,并且以获得建筑本质元素的再现,在获得简洁明快的空间的同时,往往隐藏着复杂精巧的结构。简约主义的唯美不但在西方现代美学得以延伸,在东方也有继承和发扬。在现代的生活中我们承受了过多的压力,人们渴望拥有自由,回归自然的生活环境和氛围。让我们的心趋向平和,自然,纯净。简约的生活态度,环保的生活环境,低碳的生活品质,已达到人与自然相和谐。 二、别墅建筑设计中涉及的“碳” 我们经常会忽略到,二氧化破的排放总量中,建筑行业就占到了50%,远高于工业领域和运输领域。别墅建筑的低碳设计指的是在整个别墅的建设过程中,利用景观的资源优势,减少人工材料的运用的一种设计方式,从而使得二氧化碳的排放量尽量减少,达到低碳的目的。如今,低碳建筑设计已经慢慢成为国际建筑行业的主流趋势。“低碳经济”的概念首次提出是在2003年英国出版的能源白皮书《我们能源的未来:创建低碳经济》中。低破经济细细说来,就是在可持续发展观的支持之下,通过新能源开发、产业转型、制度创新、技术创新等多种手段,最大可能地降低石油、煤炭、天然气等含碳量高的能源消耗。通过减少温室气体的排放,以期达到保护生态环境和发展经济社会双�效果的一种经济发展形态。 三、低碳环保设计理念 (一)能源组合优化 关于能源组合的优化,主要是对一些新兴能源的合理利用,尽可能地减少矿产资源的消耗量,从而方便人们对大气污染气体排放进行有效的控制,而且在我国工业发展的过程中,人们也可以采用相关的技术来对其燃煤设备进行适当的改造,这样不仅降低了工业生产的成本,还有利于自然环境的保护。 (二)节能 节能一直是近年来人们关注的话题,而且随着科学技术的不断进步,人们也研发了许多新兴的节能设备和技术,而在别墅设计的过程中,人们也可以将这些节能设备和技术应用到其中,使得建筑耗能量可以得到有效的控制。而且议计师们也可以通过叶科学技术和自然条件的紧密结合,进而满足低碳建筑结构的节能、通风以及自然采光的相关要求。不过,由于不同的地区其气候条件也存在着一定的差异,因此在对其结构进行设计时,设计人员也应该根据当地的气候条件,采用适当的技术手段来对其进行节能处理。 (三)节约资源 对于建筑节能材料和技术的采用,在低碳环保的别墅设计中也有着十分重要的意义,它不但可以对别墅的结构进行优化,降低对自然资源的浪费,还有效地提高了资源的利用率。 四、低碳环保技能设计方法与技术 (一)设计与自然地形的结合 在别墅景观设计中采用低碳环保简约的手法,是指在特定的地形内创造一个具有形态、形式因素构成的较为独立的、具有一定的社会文化内涵、有观赏功能、改善环境及使用功能。可以通过其内涵,引发人的情感、意趣、联想、移情等心理反映。即所谓景观效应。别墅景观设计必须要合理的利用地形,所选的地段要平坦、或缓缓凹地起坡、或险峻陡峭。以便减少土方工程工作,将别墅的每个部分与所处地段的起伏的地理进行有机地结合。这是别墅景观设计的重要环节之一,地势平坦是建筑平面灵活布局的有利条件。虽然坡地有时带给设计师在空间设计一定的难度。但在景观设计中恰恰也能有针对性地利用空间特性和运用设计者空间想象和设计能力,成为创造出优美建筑造型的有利因素,使得建筑更为活泼和富有表现力。 (二)设计与环境景色的交融 生态别墅户外的环境设计除了满足观赏的需求,在建筑景观上往往要设计一些自然环境的景色。除此以外还要设计多处风景优美的郊外配套设施,也要配色设计实现环境景色锦上添花。这些集借景、用景、造景、点景为一体,把别墅的景观与自然充分融合,使居住者拥有一种置身在大自然中的美感,同时体现了建筑与自然环境之间微妙的的流畅感,真正体现生态理念。晴帘纵秀、山岭岩崖、青石绿树,这些大自然景观勾划出的画面可以说是别墅占有地段得天独厚的优越条件,还为其他的建筑景观所共享,建筑师可以充分利用其自然环境景色的特点,使居住者能观赏到周边的旖旎风光。 (三)借景造景手法的运用 景观设计里运用静态的“借景”与动态的“造景”是目前别墅景观设计中最基本的2个要素,“借景”即借用外部的景色资源,如山间小溪“人文景点”。“造景”则是营造社区内部已有的景点,改良已有的居住环境。两者互相谐调,构成了所谓的双景别墅,这也是很多别墅项目的重要卖点。在社区内部景观的营造上,又分为“自然风景”和“人工造景”。一是恰当利用了内部的自然条件,如坡地、河流、树木等等,达到节约资源和有效利用资源的目的。二是大力投入金钱成本,营造出一个人工景观。景观设计的手法日益多元化,既有本土化的元素也有舶来品,既有传统风格,也有大胆前卫的作品,但借景造景的手法一直为众多的设计师所重视和青睐。同样以蚌埠淮上区曹老集镇杨树林高档别墅为例,别墅区周围树木种类和数量繁多,放眼望去绿荫片片,不远处又有龙子湖相伴,龙子湖区的优美风景实为借景的首选,同时别墅区整体的景观风格以私密幽静、自然和谐为主,让人不禁流连忘返。 五、低碳简约设计理念在别墅设计中的应用 低碳环保的别墅设计涉及的面很广,但是设计的主要内容可以归纳为三个方面,这些方面的内容,它们之间相互存在着一定的内在联系:第一,低碳别墅设计里的空间组织,它主要包括平面布置。首先我们需要对原有建筑设计的意图进行充分的理解,并且对建筑物的功能分析、总体布局、人流动向以及结构体系,等等,要有很深入的了解,我们在对低碳别墅设计时,应该对空间和平面布置给予完善、调整和再次的创造。第二,低碳别墅景观的界面设计处理,它主要是指对整个景观中的各个围合、隔断、墙面、地面、平顶等进行设计,使得的各景观界面的形状、图形线脚、肌理构成合理的设计。第三,低碳别墅的光照设计,它主要是指环境的自然采光和人工照明的相互关系,光照除了能满足人们正常的工作生活环境的采光和照明要求以外,还要满足一定的光照和光影效果,对室内外的环境起到烘托气氛的作用。 结束语 随着生活水平的提高,对于人们的生活空间就变得更大、更自由,在生活水平提高的同时,对我们居住的环境也提出了更高的要求,环保的室内外环境受到了更多的欢迎,简约的设计风格、私密的个人空间逐渐成为新的时尚。在这个风格的引导下,别墅的设计就更应该趋向于优化和环保。通过运用绿色环保的建筑材料以及技术,使得别墅的设计更趋于低碳环保,更重要的是能够为人们带来一个更加舒适的、高质量的生活环境。 参考文献: [1]夏洪亮,郑伟. 小议别墅景观环境[J]. 科技信息(学术研究),2007,18:311. [2]栗军,李美玲. 探讨景观设计中生态设计的重要性[J]. 现代园艺,2014,02:108. [3]龙渡江. 基于生态设计理论的低碳景观设计特征及应用模式研究[J]. 柳州师专学报,2014,01:66-69.

研究使用钻石作为硬度的基准是有原因的。闪闪发光的宝石具有最高的被认可维克斯硬度(VH)的任何天然材料在约70千兆帕斯卡 (GPa),他们甚至以希腊语单词命名的 “无敌”。 中国科学家发明了一种叫做AM-III的新型碳,这是迄今为止已知的最坚硬、最强的无定形物质。VH为113 GPa,实际上比钻石更难——而且同样坚固。 研究人员在上周发表在《国家科学评论》杂志上的研究报告中解释说:“这些材料具有出色的机械性能——可与晶体金刚石相媲美,AM-III的硬度和强度超过了任何已知的无定形材料。” 这种超硬、超强、超导(无定形)碳材料的出现为最苛刻的实际应用提供了极好的候选材料。 钻石的非凡强度和耐久性在很大程度上归功于其极其常规的结构——它只由排列在四面体结构中的单个碳原子组成。因此,你可能会期望这种更坚固的新材料有类似的结构,那就大错特错了。 实际上,研究小组通过压扁巴基球(一个由60个连接碳原子组成的笼子,排列有点像一个足球),直到它们崩塌产生无定形物质——这就是AM-III中的AM所代表的。这使得它与钻石存在一个非常大的不同——事实上,它更像是玻璃。 你可能听说过玻璃实际上是液体的“神话”。事实并非如此,但它也不完全是固体:它是这些奇特的无定形固体中的另一种。这意味着,对于玻璃和AM-III来说,分子结构没有长期的顺序——分子并不像你在液体中看到的混乱那样杂乱无章,但它们也没有你在固体中发现的那么规律和有序。这意味着你最终会拥有一种在每一种实际意义上都是固体的材料,但是其分子仍然可以随着时间的推移而移动——尽管时间非常非常长。 AM-III 的众多建议应用之一非常直接地使用这种玻璃般的质量:有人建议,这种新材料可用于制造比当前技术硬 20 到 100 倍的防弹窗。 研究人员说,AM-III的无定形质量为它提供了一大堆其他属性,使其在高 科技 产业中广泛应用。例如,AM-III 也是一种相当不错的半导体。研究人员称,这意味着这种新材料有可能被用于"新型光电应用"——认为太阳能或太空时代的武器。 虽然这种新材料的大规模生产可能需要一些时间,而且可能不太便宜,但各种应用使得这种新型黄色玻璃成为我们未来可能经常看到的东西。 “AM-III确实是一种前所未有的新型AM碳材料,”该论文解释道。“独特的短程顺序、微观结构和构图提供了半导体和卓越机械性能的独特组合 。”因此,许多研究人员呼吁对AM碳分配进行进一步的实验和理论 探索 。

碳纤维复合材料论文

中航泰达对于碳纤维复合材料制品的成型工艺较常见的有5种:裱糊成型工艺,纤维缠绕成型工艺,拉挤工艺,树脂传递模压工艺,编制成型工艺。因为复合材料本身的比强度和比刚度较高,而且在耐高温以及抗疲劳上性能良好,因此碳纤维复合材料制品也继承了这些优点,不仅工艺简单而且性能较好,因此近年来碳纤维复合材料制品的应用范围可以说是不可谓不广,因此在航空航领域,汽车工业,化工以及医学领域都有复合材料的身影,希望对您有所帮助,望采纳

碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。良好的导电导热性能、电磁屏蔽性好等。因此碳纤维复合材料制品也继承了碳纤维的这些优点

你碳纤维的碳字写成炭,差距很大的哦

您好!不知道您提问的具体是什么内容哦。简单介绍一下复合材料。复合材料简单来说就是塑料粒子,供塑料零部件注塑生产用的基础化工原料,而复合材料是对基础化学材料进行再次加工,达到性能更优异。如更耐磨,改变颜色,材料韧性,耐腐蚀性等要求。碳纤维塑料粒子是一种目前塑料粒子行业内较高水平的复合材料,市面上能做的企业不多,因为对机台设备及研发水平要求非常高。介绍一下碳纤维材料的应用:1.碳纳米管CNT材料,已不再仅仅出现在论文中,CNT材料已应用于静电喷涂和EMI的场合,如汽车翼子板,后视镜等等。2.碳纤维CF的应用更加广泛·PA6-CF应用于天窗部件,PP-CF用于电池组件,PA-CF应用于无人机和自行车部件,3D打印的PA-CF管件。 PA-CF系列应用于自行车和油田部件,CFRTP材料管材。

冶金材料期刊

做材料(冶金占小部分)最好的公认是Nature materials ,这是最顶级的,影响因子普遍在30以上 而对于过程冶金而言,美国的Metallurgical and Materials Transaction B 是国际公认的最高水平的刊物,侧重理论研究(冶金会刊也就是Mettallurgical and Materials Transactions A也不错,但A差一些)。影响因子不高,仅多一点。不仅刊登钢铁冶金、还有有色冶金。日本的ISIJ internationa影响因子多些,是过程冶金领域最高的,主要涉及钢铁冶金,与transaction B 相比, 侧重工业过程的内容多一些。如果算是顶级刊物的话,冶金领域只有这两个算得上了。 其他该领域的SCI期刊,德国的steel research还可以,IF〉, 英国的ironmaking and steelmaking, IF>,但是最近几年,都有下降得趋势,尤其是ironmaking steelmaking,文章质量和水平越来越低。加拿大的Canadian Metallugical Quartly 以前水平很高,现在稿源严重下降,影响因子只有左右,但是文章水平还不算很差(可见北美对学术要求的严谨)

1、cta materialia 材料学报 751C0006 英国 2 、Synthetic metals 合成金属 751LD053 瑞士 3、 Scripta materialia 材料学刊 751C0009 英国 4、 Applied surface science 应用表面科学 539LB051 荷兰 5 、Metallurgical and materials transactions.A,Physical metallurgy and materials science 冶金学与材料汇刊.A辑,物理冶金学与材料科学 751B0002-1 美国 6、 Journal of alloys and compounds 合金与化合物杂志 764LD001 瑞士 7、 International materials reviews 国际材料评论 751C0011 英国 8、 Intermetallics 金属间化合物 751C0069 英国 9、 Materials transactions 日本金属学会材料汇刊 751D0055 日本 10、 JOM 矿物、金属与材料学会会刊 764B0001 美国 11、 Metallurgical and materials transactions.B,Process metallurgy and materials processing science 冶金学与材料汇刊.B辑,生产冶金学与材料处理科学 751B0002-2 美国 12、 Zeitschrift fÜr Metallkunde 金属学杂志 751E0003 德国 13、 ISIJ international 日本钢铁学会杂志国际版 752D0054 日本 14、 日本金属学会志日本金属学会志 751D0053 日本 15、 International journal of refractory metals and hard materials 国际高熔点金属与硬质材料杂志 751C0019 英国 16、 Materials characterization 材料特性 751B0010 美国 17、 Hydrometallurgy 湿法冶金学 75lLB001 荷兰 18 、铁と钢 铁和钢 752D0001 日本 19、 Journal of phase equilibria and diffusion 相平衡与扩散杂志 751B0012 美国 20、 International Journal of powder metallurgy 国际粉末冶金杂志 751B0007 美国 21、 Ironmaking &steelmaking 钢铁冶炼 752C0003 英国 22、 Powder metallurgy 粉末冶金学

  • 索引序列
  • 碳材料论文期刊
  • 关于碳材料的论文
  • 新型碳材料模板论文
  • 碳纤维复合材料论文
  • 冶金材料期刊
  • 返回顶部