首页 > 学术论文知识库 > 大学数学论文图文结合

大学数学论文图文结合

发布时间:

大学数学论文图文结合

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

用Г函数求积分

贝塔函数的性质及应用

贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

对称性:=。事实上,设有

递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

由上式得以下几个简单公式:

用贝塔函数求积分

解:设有

(因是偶函数)

例贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

贝塞尔函数的性质及应用

贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报..

[4].数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

你自己有没有想好具体些什么题目的论文 ?先确定好你自己的题目呀,是在没思路你就参看范文,(理论数学)等上面的题目你看下,找到你自己想写的方向~

高数论文什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。

数形结合小学论文

学术堂整理了十个毕业论文题目供大家进行参考:1、小学数学教师几何知识掌握状况的调查研究2、小学数学教师教材知识发展情况研究3、中日小学数学“数与代数”领域比较研究4、浙江省Y县县域内小学数学教学质量差异研究5、小学数学教师教科书解读的影响因素及调控策略研究6、中国、新加坡小学数学新课程的比较研究7、小学数学探究式教学的实践研究8、基于教育游戏的小学数学教学设计研究9、小学数学教学中创设有效问题情境的策略研究10、小学数学生活化教学的研究

为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪我国小学数学教育改革展望面向21世纪的小学数学课程改革与发展不拘一格育“鸣凤”使学生真正成为学习的主人改革课堂教学的着力点谈素质教育在小学数学教学中的实施素质教育与小学数学教育改革浅谈学生数学思维能力的培养浅议表象积累与培养学生的思维能力也谈学生创新意识培养实施创新教学策略 培养学生创新意识10以内加法整理和复习改良“有余数除法计算”教法给学生创新的时间和空间和谐愉悦 主动探索——一年级《统计》教学片断评析小学数学教育--教师之家--教师培训教学策略A、B、C面向21世纪的数学素质及其培养能被3整除的数的特征年、月、日培养自学能力 推进素质教育浅谈小学数学总复习的“步步反馈,逐层提高”法入情才能入理 激情方能启思实施“生活数学”教育 培养自主创新能力数学作业批改中巧用评语提高元认知水平 培养自学能力“圆的面积”的教案圆柱的认识运用多媒体辅助教学 优化数学教学方法组织课堂讨论 优化课堂教学

我国思维科学的开拓者钱学森先生认为,人类思维可以分为三种:抽象(逻辑)思维、形象直感思维和灵 感(顿悟)思维。并建议把形象思维作为思维科学研究的突破口。什么是形象思维呢?所谓形象思维就是运用 头脑中积累起来的表象进行的思维。表象是我们以前知觉过的,而在头脑中再现的那些对象现象的映象。形象 思维具有间接性和概括性的特点。形象思维同抽象思维一样,是认识的高级形式——理性认识。 为什么要培养学生的形象思维能力呢?按照现代科学研究的最新成果,人的大脑左右两半球各有不同功能 ,左半球是语言中枢,主管语言和抽象思维,右半球主管音乐,绘画等形象思维材料的综合活动。两者相互配 合,相辅相成,相互促进,才能使个体得到和谐发展。 从儿童思维特点来看:小学生的思维是从具体形象思维为主要形式逐步向抽象逻辑思维过渡,但这时的逻 辑思维是初步的,且在很大程度上仍具有具体形象性。因此,培养学生的形象思维能力,既是儿童本身的需要 ,又是他们学习抽象数学知识的需要。 那么在小学数学教学中,如何培养学生的形象思维能力呢? 一、充分感知,丰富表象,为培养形象思维积累材料 儿童能够敏锐感知鲜明的、富有色彩、色调和声音的形象,善于用形象色彩和声音触发思维。表象是形象 思维的细胞,形象思维要依靠表象来进行思维,要发展学生的形象思维,必须打好基础,丰富表象材料的积累 。 1.动手操作,丰富表象 动手操作,使学生各种感官都参与到学习中来,从多方面,多角度观察事物。例如:教学余数概念,先让 学生动手分小棒:(1)9根小棒每2根为一份,可以分几份,还剩几根?(2)13根小棒,平均分给5 个人,每 个同学可以分几根,还剩几根?操作完毕,引导学生用语言表达操作过程,说说是怎样分小棒的,从而形成表 象,然后再让学生闭上眼睛,想想下面题目应该怎样分?①有7块饼干,每人分3块,可以分给几个人,还剩几 块?②有12支铅笔,平均分给5个人,每人可以分几支,还剩几支等。这样让学生在操作中思维,在思维中操作 ,理解了被除数是总数,除数和商分别是要分的份数和每份数,余数是不够一份而多出的数,余数要比除数小 的道理。在头脑中形成了正确清晰的表象,正确的思维才有牢固的基础。 2.直观演示,丰富表象 小学生无意注意占重要地位,任何新鲜事物的出现都会引发学生积极参与学习过程的兴趣。在教学过程中 ,用图片、教具或电教手段组织教学,把抽象知识形象化,让学生充分感知所学材料,有了定量的感性材料, 才能在脑中留下鲜明的映象。 例如:教学“长方体认识”,教师可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、 砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒……),通过感 知实物,学生对什么样的物体是长方体获得了初步的感性认识。在此基础上,教师再引导学生边观察模型,边 看书本,从不同的位置和方向认识长方体的六个面及相对的面的面积相等,十二条棱及互相平行的棱长相等的 特点;通过观察长方体的一个顶点和相交于这个顶点的三条棱长,认识长方体的长、宽、高;通过模型的平放 、侧放、直立三种形态,来说明长、宽、高相对说来是固定不变的,把知识讲“活”,这样学生在动口、动脑 的学习过程中建立了清晰深刻的表象,为思维的理性化提供了条件。 电教手段引入课堂,可变静为动,化近为远,并以它丰富多彩、灵活多样的教学形式,为学生提供反映思 维过程的演示,能充分调动学生的心理因素,取得较好的效果。例如:在教“求另一个加数的减法应用题”时 ,通过幻灯片的演示,使学生形象地理解总数与部分的关系,即总数-部分=另一部分。 教学中,要利用各种教学手段,让学生充分感知,在脑中建立清晰的数学表象,为提高学生的数学想象力 积累素材。 二、引导想象,发展形象思维 现代认知心理学认为,表象不但可以储存,而且可以对储存的表象痕迹(信息)进行加工改组,形成新的 表象,即想象表象,它也是进行形象思维的重要方式。所以,教师要善于创设课堂教学中的问题情景,如图示 情景、语言情景,激发学生参与探索的欲望,充分发挥学生丰富的想象力。 如:教完梯形知识后,可引导学生想象:“当梯形的一个底逐渐缩短,直到为0,梯形会变成什么形?当梯 形短底延长, 直到与另一底边相等时,它又变成什么形?”借助表象,能有机地把看上去似乎无联系的三角形 、平行四边形、梯形结合起来。还可以根据梯形面积公式记忆三角形和平行四边形的面积公式: 1 S[,梯形]=—(a+b)h 2 1 当a=0时,变成三角形,面积公式为:S=——ah 2 当a=b时,变成平行四边形,面积公式为:S=ah 三、数形结合,培养形象思维能力 数学是研究现实世界中数量关系和空间形式的学科,从总的来说,数学是数与形结合的学科。不同类型的 数学图形,提供了大脑形象思维的表象材料,调动了右脑思维的积极性和主动性,提高了形象思维能力,促进 了个体左右脑的协调发展,使人变得更聪明。 例如:课本中配合应用题的具体情节而设计的插图,开阔了学生形象思维的天地,增强了刻苦学习的意志 。又如课本中出示的例题和复习题,表示数量关系时,运用了绚丽色彩和各种小动物、植物、大河、山川,现 代的飞机、汽车、轮船、卫星、建筑,古代的文物、书籍、大脑后难以形成清晰的表象。如果采用数形结合的方法画出线段图,便可帮助学生建立正确的表象,使隐蔽 复杂的数量关系变得明朗。例如:“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6,小新储蓄的是小华 的2/3,小新储蓄了多少元?”这题学生往往难以确立单位“1”的量。教学时, 可引导学生画出如下线段图 来分析数量关系: 根据线段图,同学可以很快列出算式:18×5/6×2/3-10(元) 所以说线段图具有半抽象半具体的特点,它既能舍弃应用题的具体情节,又能形象地揭示条件与条件、条 件与问题之间的关系,把数转化为形,明确显示出已知与未知的内在联系,激活学生的解题思路。这里线段图 的运用、数与形的结合,较好地激发了学生的再造性想象,不仅发展了学生的形象思维,而且实现了形象思维 与抽象思维的互补。

这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究5、改进教学方法培养创新技能6、使学生真正成为学习的主人7、改革课堂教学的着力点8、谈素质教育在小学数学教学中的实施9、素质教育与小学数学教育改革10、浅谈学生数学思维能力的培养11、实施创新教学策略,培养学生创新意识12、10以内加法整理和复习13、改良“有余数除法计算”教法14、给学生创新的时间和空间15、谈谈计算教学的改革16、面向21世纪的数学素质及其培养17、能被3整除的数的特征18、年、月、日19、培养自学能力,推进素质教育20、浅谈小学数学总复习的“步步反馈,逐层提高”法21、入情才能入理 激情方能启思22、实施“生活数学”教育,培养自主创新能力23、数学作业批改中巧用评语24、提高认知水平,培养自学能力25、圆的面积”的教案26、圆柱的认识27、运用多媒体辅助教学,优化数学教学方法28、组织课堂讨论 优化课堂教学29、重视学生获取知识的思维过程30、小论文巧算圆的面积31、联系生活实际提高课堂效率32、数学教学中如何调动学生的学习积极性33、根据心理学的理论进行计算法则教学34、简单应用题教学再探35、创设情境,培养学生创造个性36、学生“四会”能力的培养37、营造探究氛围一例38、实施创新教育 培养创新人格39、《9和几的进位加法》教学设计40、信息技术与小学数学41、合理运用学具 提高数学课堂教学效率42、略谈“问题解决”与小学数学教学43、渗透数学思想方法 提高学生思维素质44、引导学生参与教学过程 发挥学生的主体作用45、培养学生的创新意识要处理好的几个关系46、浅谈“数形结合”在小学低段数学教学中的应用47、借助学具,提高数学课堂效率48、对数学新课程理念下练习课教学的几点思考48、多通道促进数学课堂公平50、上“活”概念课,灵动新课堂51、对学生数学作业订正现状调查分析及对策52、对小学数学动态生成式课堂结构的认识53、对新课程中估算教学的几点想法54、谈小学应用题教学如何为学生自主探索创造条件55、小学数学课堂中的口头评价56、让新理念成为把握教材的支撑点57、立足现实起点,提高课堂效率58、谈课堂教学中有效情境的创设59、提高数学课堂教学效率之我见60、为学生营造一片探究学习的天地

数形结合的数学小论文

数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了

初中数学教学中渗透数形结合思想的意义及途径论文

在个人成长的多个环节中,大家都跟论文打过交道吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么你知道一篇好的论文该怎么写吗?下面是我帮大家整理的初中数学教学中渗透数形结合思想的意义及途径论文,希望对大家有所帮助。

摘要: 初中数学教学作为连接小学与高中数学知识的纽带,对于学生数学知识的学习与巩固具有重要的作用,并为学生日后进行高层次的数学学习奠定基础。因此,初中数学教师在进行教学时,要格外重视提高学生的数学学习效率,帮助学生全面掌握相关的数学知识及能力。数形结合思想是初中数学课堂教学中普遍使用的教学方式,其在提高学生数学学习能力以及教师课堂教学质量方面具有重要的促进作用。基于此,本文主要对数形结合思想在初中数学教学中的渗透路径进行探讨,并给出相关策略。

关键词: 数形结合思想;初中;数学教学;渗透路径;

在新课改不断推进以及新课标对初中数学教学提出更高要求的背景下,传统初中数学教学模式已经难以满足当前教育的需要。因此,教师在进行数学教学时也在不断改变传统的教学观念及模式,积极探索及创新的教学手段,以提高当下数学课堂教学效果,并取得了一定的收获。其中,数形结合思想因其能够帮助学生更好地理解数学理论知识,从而实现提高学生数学学习能力的作用,而受到初中数学教师的普遍应用。

一、数形结合思想在初中数学教学中的重要性

(一)有助于调动学生对数学课堂学习的兴趣

初中数学教材知识内容相较于小学数学知识有了很大的变化,其难度也有所增加。而该阶段学生的思维方式正处于过渡时期,也就是说,让学生理解抽象性数学理论知识是有一定难度的,加之数学教学氛围一般都普遍枯燥乏味,因而学生很难对数学课堂学习提起兴趣,更不要说调动学生数学学习的积极性了,以致学生学习效率低下。但是,数形结合思想在教学中的应用则可以有效地改善这种情况,借助数形结合的方式,教师可以将抽象化的理论知识变得更为具体可感,进而为学生的数学学习创设一个逼真的教学情境,这样有助于吸引学生的注意力,激发学生学习的兴趣与积极性,促使其自觉参与到学习中来[1]。

(二)有助于拓展学生的数学思维

理论源自实践,数学学科虽然是一门抽象性极强的科目,但是它与人们的`现实生活联系密切,尤其是有关数学与图形的知识是日常生活中经常涉及的,如温度计高低的变化、超市的收银以及舞蹈时的位置等都或多或少涉及数学知识。因此,数学教师在进行数学教学时,应当有意识的引导学生将数学理论知识与生活实际相结合,并在此基础上对数学问题及其现象进行分析与解答,从而提高学生解答问题的能力。总之,当学生学会懂得采用数形结合的思想分析问题时,学生自身的思维也会有很大的提升。

(三)有助于强化学生对知识的记忆以及提高其创造能力

之所以要学习知识,其最终目的还是为了解决生活中遇到的问题,但是学生要想运用理论知识解决现实问题,其首先就要充分理解以及掌握相关数学知识,也就是说,学生解决数学问题的前提是其要全面掌握数学知识[2]。而数形结合思想在教学中的应用,就可以很好的帮助学生记忆以及区分数学知识,进而指导学生进行实践。同时,数学问题所涉及的答案或许是唯一的,但其具体的解题思路及方式却是具有多样性的。换句话说,采用数形结合的思想分析及解答数学问题,那学生可以获得多种解题方法。总之,在初中数学教学中,采用数形结合的思想进行数学教学,有助于提高学生对抽象性数学知识的记忆,并让学生在解答数学问题的过程中,促进其发散思维及创新能力的提升。

二、数形结合思想在初中数学教学中的渗透路径

(一)培养学生数形结合意识,调动学生数学学习的积极性

为了激发学生数学学习的兴趣,促使学生积极投入到数学学习中,进而提高学生数学学习水平,初中数学教师在进行数学教学时,要合理地采用数形结合思想展开数学课堂教学,并让学生在分析与解答有关无理数与有理数相关知识的数学问题的过程中,帮助学生有效地使用该思想思考问题[3]。特别是在初中数学教学的早期,教师要有意识的培养学生学会采用数形结合的思想展开数学学习,并让学生在掌握该思想的运用方法的前提下,促使学生形成相关的数形结合意识,这样有助于学生在学习的过程中产生对数学知识学习的兴趣。例如,在进行“勾股定理”的教学时,数学教师就可以指导学生运用数形结合思想进行该知识点的学习,其可以让学生借助勾画图形的方式发现解决数学问题的关键,从而提高学生解决问题的能力。同样,在解答有关不等式组的数学问题时,学生也可以借助绘制图形的方式画出解集同数轴之间的关系,并以此算出答案。总之,借助数形结合思想,不仅有助于培养学生的数形结合意识,提高学生对数学问题的分析及解题能力,进而促进其数学学习能力的提升,而且也有助于降低学生数学学习的难度,提高学生数学学习的积极性。

(二)适当地引入教学案例展开课堂教学,强化学生数形结合思想

教师要想学生充分把握数形结合思想及其应用,就不能仅靠对学生的引导,其还需要在日常教学中强化对学生相关知识的训练,以帮助学生熟练地采用该思想解答问题。对此,初中数学教师在教学时,可适当地引入相关的案例展开课堂教学,通过向学生分析及讲解相关的案例,以及完善自身的教学设计等,以引导学生在实际动手操作的过程中发现其存在的问题,进而帮助学生在认识到自己错误的基础上进行针对性改进。当然,教师也可以有意识地在日常生活中收集一些富有趣味性的数学知识及故事,并将其作为案例融入数学教学中,以激发学生的求知欲和探究欲,从而促使其积极参与到数学教学中[4]。例如,在解答有关二次函数的数学问题时,教师要适当地引入案例对学生进行讲解,以便学生从中学会判断数学题目的根本意图,然后再让学生以绘图的方式,画出与之相匹配的图像,并求出相关的坐标,从而以此得出有关图像的开口方向及其定点位置等相关知识。

(三)创设有效的教学情境,引导学生进行探究性数学学习

学生的数学学习离不开对数学问题的解答,对数学问题的解答是提高学生数学学习能力、巩固已学知识以及检验学生对相关数学知识掌握程度的有效方法,因此,数学问题在学生数学学习的过程中占有很大的比重。同时,由于数学问题的题目普遍具有开放性、新颖性以及规律性等特点。所以,数学教师在向学生讲解如何解答数学问题时,其应当采用数学思维展开对知识的讲解,以便学生在教师的教授下全面地掌握数学解题方法及技巧,进而深化对数学理论知识的了解及应用,从而提高学生数学解题的效率及正确率[5]。此外,教师在教学时,也可以借助创设有效教学情境的方式,向学生提出相关数学问题,并引导学生采用小组合作或探究性方式进行数学学习,这样有助于学生在合作学习中总结相关的数学知识,如数学原理、规律及概念等,促使学生懂得灵活运用所学知识进行问题的解答。例如,在进行“多边形”的教学时,教师可以先让学生说说生活中由线段围成的图形形状,如长方形的菜园子、正方形的餐桌、六边形的地板等,以吸引学生对该节知识内容的学习兴趣。然后,教师可以让学生借鉴之前所学的有关三角形的概念意义,对多边形的概念下定义,并试着说出不同多边形的异同点。从而引出本节知识内容,如顶点、边、内角、外角、对角线间的关系等,进而让学生在分析知识点的过程中,了解多边形的基本概念及其性质以及相关原理。

三、结束语

总而言之,在新课改的背景下,初中数学教师在进行数学课堂教学时,要合理地采用数形结合思想展开对数学知识的讲解,以便在调动学生数学学习兴趣的同时,让学生掌握相关的数形结合方法,并引导学生将该方法运用到数学学习中,进而提高学生数学学习效率,提升其学习水平,促进初中数学教学质量的提高。

四、参考文献

[1]童琛菲.数形结合思想在初中数学解题教学中的渗透策略[J].数学学习与研究:教研版,2020(3):114.

[2]南旭辉.初中数学教学中数形结合思想的应用策略探究[J].新一代:理论版,2019(14):90.

[3]戴彦雪.相互渗透,交叉作用-论初中数学教学中数形结合思想的应用[J].数学大世界旬刊,2017(2).

[4]刘金方.数形结合思想在初中数学教学中的实践研究-以人教版初中数学教材为例[J].课程教育研究,2015(30):139.

[5]吴学军.数形结合引思激趣-论数形结合思想在初中数学教学中的渗透[J].数理化解题研究,2019(35):17-18.

1.题名规范题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。2.命题方式简明扼要,提纲挈领。3.英文题名方法①英文题名以短语为主要形式,尤以名词短语最常见,即题名基本上由一个或几个名词加上其前置和(或)后置定语构成;短语型题名要确定好中心词,再进行前后修饰。各个词的顺序很重要,词序不当,会导致表达不准。②一般不要用陈述句,因为题名主要起标示作用,而陈述句容易使题名具有判断式的语义,且不够精炼和醒目。少数情况(评述性、综述性和驳斥性)下可以用疑问句做题名,因为疑问句有探讨性语气,易引起读者兴趣。③同一篇论文的英文题名与中文题名内容上应一致,但不等于说词语要一一对应。在许多情况下,个别非实质性的词可以省略或变动。④国外科技期刊一般对题名字数有所限制,有的规定题名不超过2行,每行不超过42个印刷符号和空格;有的要求题名不超过14个词。这些规定可供我们参考。⑤在论文的英文题名中。凡可用可不用的冠词均不用。

本学期,我们学习了许许多多的数学知识.从“几何”到“代数”再到“数形结合”.太多太多了.8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”.一开始接触“函数”这个概念时还是非常陌生的.因为转眼望去,前面的单元基本是“小学”和“初一”接触过得.而对于“函数”来说确是几乎“一无所知”.只知道初一老师说过“可能性”和“函数”有着密切的关系.翻开这个单元时,真的有点“丈二和尚摸不着头脑”.上面说了种种对“函数”概念的无知.所以自然在一开始学习的过程中会遇到“困难”.这单元的第一章从生活实际出发讲了“函数”的定义等等.这是一个比较“浮浅”的类容(从我现在的角度来说).从这里我真正接触到了“函数”,但也许是学习没有完全进入.当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他.”第二章类容可以说就是对第一章的一个“浓缩”.好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去.学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多.真正的困难出现在第三章,谈到了“一次函数的图象”.可以老实说这章听得差不多是我本学期听的最累的一节课.老师发下来讲义,我那节课觉得您讲的奇快.我还没反应过来你就讲完了.我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的.于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变.觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了.以上就是我学习“一次函数”的经历.下面我们在来分析一下“一次函数”.从类别上讲,“一次函数”是一个“数形结合”的“典范”.它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”.使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了.其次“一次函数”我认为是一个有趣,神奇的类容.它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律.不能不觉得“一次函数”充满了“魔力”.此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”.我想2章的联合编排更是教会我们“复习整理”的学习方法.所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”.“一次函数”也使我对这本教材有了全新的认识和看法.“一次函数”不仅有趣而且更是“历届”中考的“重中之重”.所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容.参考资料:

中国结合医学杂志图片

中国结合医学杂志是一本英文版刊物,刊名为Chinese Journal of Integrative Medicine,目前为SCI期刊、CSCD来源刊物。《中国结合医学杂志》是经国家新闻出版广电总局批准,国家中医药管理局主管,中国中医科学院、中国中西医结合学会主办,国内统一刊号:CN11-4928/R,国际标准刊号:ISSN1672-0415,邮发代号:82-825。

是关于传染病的杂志。

好像是一本国家级的,纯英文杂志。

数形结合在中学数学中的应用论文

中学数学中的数形结合比较明显的地方当然是函数这一块了,函数中的值域,最值,单调性以及函数的工具导数这几方面比较具体,你可以找些具体的题目,在高三总复习资料上对应的部分一定有的。希望可以帮到你。

中学数学教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要涉及数学思想的问题。因为数学思想是人类思想文化宝库中的瑰宝,是数学的精髓,它对数学教育具有决定性的指导意义。本文对这个概念的意义及在教学中的作用作一探讨。希望能再引起广大数学教育工作者的关注。一、对中学数学思想的基本认识 “数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。 通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,只要是在充分分析、归纳概括数学材料的基础上来论述数学思想,那么所得的结论总是可能做到并行不悖、互为补充的,总是能在中学数学教材中起到积极的促进作用的。 关于这个概念的外延,从量的方面讲有宏观、中观和微观之分。 属于宏观的,有数学观(数学的起源与发展、数学的本能和特征、数学与现实世界的关系),数学在科学中的文化地位,数学方法的认识论、方法论价值等;属于中观的,有关于数学内部各个部门之间的分流的原因与结果,各个分支发展过程中积淀下来的内容上的对立与统一的相克相生的关系等;属于微观结构的,则包含着对各个分支及各种体系结构中特定内容和方法的认识,包括对所创立的新概念、新模型、新方法和新理论的认识。 从质的方面说,还可分成表层认识与深层认识、片面认识与完全认识、局部认识与全面认识、孤立认识与整体认识、静态认识与动态认识、唯心认识与唯物认识、谬误认识和正确认识等。二、数学思想的特性和作用 数学思想是在数学的发展史上形成和发展的,它是人类对数学及其研究对象,对数学知识(主要指概念、定理、法则和范例)以及数学方法的本质性的认识。它表现在对数学对象的开拓之中,表现在对数学概念、命题和数学模型的分析与概括之中,还表现在新的数学方法的产生过程中。它具有如下的突出特性和作用。 (一)数学思想凝聚成数学概念和命题,原则和方法 我们知道,不同层次的思想,凝聚成不同层次的数学模型和数学结构,从而构成数学的知识系统与结构。在这个系统与结构中,数学思想起着统帅的作用。 (二)数学思想深刻而概括,富有哲理性 各种各样的具体的数学思想,是从众多的具体的个性中抽取出来且对个性具有普遍指导意义的共性。它比某个具体的数学问题(定理法则等)更具有一般性,其概括程度相对较高。现实生活中普遍存在的运动和变化、相辅相成、对立统一等“事实”,都可作为数学思想进行哲学概括的材料,这样的概括能促使人们形成科学的世界观和方法论。 (三)数学思想富有创造性� 借助于分析与归纳、类比与联想、猜想与验证等手段,可以使本来较抽象的结构获得相对直观的形象的解释,能使一些看似无处着手的问题转化成极具规律的数学模型。从而将一种关系结构变成或映射成另一种关系结构,又可反演回来,于是复杂问题被简单化了,不能解的问题的解找到了。如将著名的哥尼斯堡七桥问题转化成一笔画问题,便是典型的一例。当时,数学家们在作这些探讨时是很难的,是零零碎碎的,有时为了一个模型的建立,一种思想的概括,要付出毕生精力才能得到,这使后人能从中得到真知灼见,体会到创造的艰辛,发展顽强奋战的个性,培养创造的精神。三、数学思想的教学功能 我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。 (一)数学思想是教材体系的灵魂� 从教材的构成体系来看,整个初中数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。教师在教学中如能抓住数学思想这一主线,便能高屋建瓴,提挈教材进行再创造,才能使教学见效快,收益大。 (二)数学思想是我们进行教学设计的指导思想 笔者认为,数学课堂教学设计应分三个层次进行,这便是宏观设计、微观设计和情境设计。无论哪个层次上的设计,其目的都在于为了让学生“参与”到获得和发展真理性认识的数学活动过程中去。这种设计不能只是数学认识过程中的“还原”,一定要有数学思想的飞跃和创造。这就是说,一个好的教学设计,应当是历史上数学思想发生、发展过程的模拟和简缩。例如初中阶段的函数概念,便是概括了变量之间关系的简缩,也应当是渗透现代数学思想、使用现代手段实现的新的认识过程。又如高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。这样的教学设计,才能适应瞬息万变的技术革命的要求。靠一贯如此设计的课堂教学培养出来的人才,方能在21世纪的激烈竞争中立于不败之地。 (三)数学思想是课堂教学质量的重要保证 数学思想性高的教学设计,是高质量进行教学的基本保证。在数学课堂教学中,教师面对的是几十个学生,这几十个智慧的头脑会提出各种各样的问题。随着新技术手段的现代化,学生知识面的拓宽,他们提出的许多问题是教师难以解答的。面对这些活泼肯钻研的学生所提的问题,教师只有达到一定的思想深度,才能保证准确辨别各种各样问题的症结,给出中肯的分析;才能恰当适时地运用类比联想,给出生动的陈述,把抽象的问题形象化,复杂的问题简单化;才能敏锐地发现学生的思想火花,找到闪光点并及时加以提炼升华,鼓励学生大胆地进行创造,把众多学生牢牢地吸引住,并能积极主动地参与到教学活动中来,真正成为教学过程的主体;也才能使有一定思想的教学设计,真正变成高质量的数学教学活动过程。 有人把数学课堂教学质量理解为学生思维活动的质和量,就是学生知识结构,思维方法形成的清晰程度和他们参与思维活动的深度和广度。我们可以从“新、高、深”三个方面来衡量一堂数学课的教学效果。“新”指学生的思维活动要有新意,“高”指学生通过学习能形成一定高度的数学思想,“深”则指学生参与到教学活动的程度。 有思想深度的课,能给学生留下长久的思想激动和对知识的深刻理解,在以后的学习和工作中,他们可能把具体的数学知识忘了,但数学地思考问题的方法将永存。我们进行数学教学的根本目的,是通过数学知识和观念的培养,通过一些数学思想的传授,要让学生形成一种“数学头脑”,使他们在观察问题和提出问题、解决问题的每一个过程中,都带有鲜明的“数学色彩”,这样的数学一定会有真正的实效和长效,真正提高人的素质。 数学课堂教学是教师“主体表演”的过程,是语言、动作、板书演示、语言交流、情感交流等融于一体的过程。在这种过程中,往往既能反映出教师专业基础知识的情况,又能反映出教师对教学理论的掌握情况,同时还可反映出教师的数学思想的有关情况。实践证明,在数学教学中,数学思想、方法已经越来越多地得到人们的重视,特别是在数学教学中,如何使学生较快地理解和掌握数学思想、方法,更是我们广大中学数学教师所关心的问题。一、创设自由、宽松、民主、和谐的课堂氛围,激发学习兴趣平等、和谐、信任的师生关系,自由、宽松、民主、融洽的课堂气氛是唤起学生学习兴趣并促其主动学习的基础,也是实现主体性参与教学的前提。在课堂教学中,努力创造自由、宽松、民主、平等、和谐、乐学、互相信任、心情愉悦的课堂氛围,使学生的个性潜能得到释放,学生才能把精力放在学习上,愉快的学习,积极主动地探索。对学困生和潜能生更要关注,多与他们沟通,不挖苦、不歧视,用真情关心、爱护他们,使他们真正感受到老师的爱,减少他们因学业成绩不理想而造成精神上的沉重压力,善于发现他们的闪光点,以促其建立自信,变“要我学”为“我要学”,积极主动的参与学习。二、创设问题情境,引发学习兴趣学生探究的主动性往往来自一个好的问题情境,一个好的问题情境,也常常有“一石激起千层浪”的效果,使学生感到心奋,能主动地参与,自主地探究。所以在以问题为中心的小学数学课堂教学模式的研究中,人们已经有了“创设情境”是学生提出数学问题的前提的研究,而且模式的问世指日可待。思维总是由问题引起的,学生学习的过程就是发现问题、分析问题、解决问题的过程,有价值的问题才能使学生的思维处于主动积极、愉快地获取知识的活跃状态。因此,我们可以根据学生的心理特点和学科的知识特点,采取恰当的方法创设问题情境,使学习变被动为主动。使教学内容更具有真实性、趣味性、问题性、开放性,让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到学习数学的乐趣。三、情境的创设要为新旧知识的衔接创造条件认知心理学认为,学生在学习某一新的数学知识之前应该有一个相对稳定的认知结构,这个结构往往距新知还有一段距离,即或就是一步之差,教学也要要求找准新旧知识的衔接点,设计恰当的内容,充当新旧知识链结的“亚目标”,前苏联心理学家维果茨基把这个“亚目标”叫做学生学习的“最近发展区”。这样,不仅可以为学生知识的有效链结创造条件,为实现新知的内化打下坚实的基础,同时还可以,为知识的过渡给人以自然顺利的美感。数学知识前后连接紧密,无理方程要去掉根号化为有理方程;有理方程中的分式方程要去掉分母化为整式方程;整式方程中的高次方程要降次为一次方程或二次方程;多元方程要消元化为一元方程。四、根据耳聋学生年级和年龄特点,唤起学习兴趣高年级的聋生注意时间长,耐力较持久,自控力也较好,思维呈连续性,学习积极性高,许多有攻坚、显示自己聪明才智的心理。在教学中要有技巧,在教学中充分利用学生的好奇心。在教学中善于制造悬念,适当的沉默或等待,恰当的比喻,敏锐的洞察力都将聋生的注意力吸引到教学中来,并有益于学生思维的动化。运用直观教具教学。聋哑学生的思维还处于形象思维阶段,抽象逻辑思维能力差。以感性材料为起点,贯彻抽象与具体相结合的原则,充分利用图片模具、多媒体、声、光、灯等直观教具进行生动形象具体的演示,丰富学生的感性认识,使学生在观察、分析、判断联想的过程中开拓思路,加深理解。活泼好动是聋生的特点,教师在教学中应尽可能。超级秘书网创造条件,让学生动手操作,使枯燥的学习变为具体有趣的东西,在实践活动中尝到探索知识的乐趣。五、创设竞争性情境,调动学习兴趣国内外的大量研究表明,在学生学习知识的过程中,适当开展一些合理的学习竞赛活动是必要的,也是有益的。布鲁纳就在他的发现学习理论中强调,学习的最好动机是对所学材料的兴趣,是奖励、竞争之类的外在刺激。因此,教学中,我们可适当创设竞争情境,引入竞争教学模式,为学生创造展示自我、表现自我的机会,激发学习兴趣。如在做练习时,我们可以设计形式多样的竞争:把竞争带入课堂,利用学生自尊心、自我表现欲、荣誉感强,好胜不服输的心理特点,在教师的引导调动下便可为课堂教学创设一种适合学生的竞争气氛,有效地提高学生的学习兴趣。学生在竞争中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。学生在学习中重要的心理特征就是希望老师发现自己的优点并得到激励与肯定。在教学中,我们应多给学生一些成功的体验:如课堂上让他们提出一个问题,或是解决一个问题,或会做一道计算题时等对他们做出适当的表扬和鼓励,或是作业批语中多一些鼓励,多一些喝彩这样帮助学生认识自我,建立自信,让他们在积极参与中体验成功带来的喜悦,增强自信心。一、良好的心理素养、痴迷的学习兴趣——学好数学的前提喜爱也就是做一件事的理由和把事情坚持下去的最强动力。良好的心理素养、近乎痴迷的兴趣是高效率学习数学的前提,也是在最后的考试中取胜的必要条件。大多数同学都会觉得繁重的数学学习几乎让人喘不过气来,遇到一道难解的题,或者期末考试考砸了,更是郁闷至极;也许,此时的我们,都会有一种很不舒服的压抑感——这是由繁重的学习任务,紧张的竞争氛围,沉重的学习压力造成的;可是,我们能逃避吗?难道就这样被动的忍受吗?不,既然不能逃避,那唯一的办法,就是去正视他,化解它!心情不愉快的时候总会有的,怎么办呢?遇到这种情形,可以找一个自己信任的人,把自己的不快倾诉出来,寻求他人的理解,这样,就能很快收回烦恼的心,专心学习,也才能保证学习的效率。此外,由于学习太紧张,再加上学习中难免会有这样那样不顺心的事情,我建议,我们每天都要找一个时间,最好是在傍晚的时候,走出教室、走出家门,在安静的地方走一走,放松一下,回顾一下一天的学习和生活,表面上看起来这样做耽误了一些时间,但其实是有了一个轻松愉快的心境,提高了学习效率。除此之外,对自己还要有十足的自信,自信的学习,自信的走入考场,就能自信的取得成功,如果做不到这一点,精神太紧张,特别是在考试的时候,就很难将自己的水平发挥出来,更不要说超水平发挥了。??那么,数学学习中、考场上,什么是心理的最高境界呢?一句话,“宠辱不惊“!也就是说,不管遇到什么样的情况,都能兴趣不减,心静如水,沉稳对付;不管遇到什么样的情形,都要不受其影响,按照预定的计划和步骤学习和考试,发挥出自己的最好水平。当然,真能做到这一点,也非常不易,但是,只要我们有意识的去锻炼,去努力,就一定会有收获!二、持之以恒、百折不挠的毅力——学好数学的保障学习是要吃苦的,是要能忍得住板凳上、台灯前的寂寞。学习就是学习,学习不是娱乐,没有哪一种学习方法能让你象看美国大片似的学到博士。这是自然规律。三、事半功倍的方法——学好数学的手段1.做一个个人错题集。我给同学们一个公式:少错=多对。如果做错了题目,不管发现什么错误,不管是多么简单的错误,都收录进来;我相信,一旦你真的做起来,你就会吃惊的发现,你的错误并不是更正一次就可以改掉的,相反,有很多错误都是第二次、第三次犯了,甚至于更多次!看着自己的错体集,哎呀,太触目惊心了。这真是一个自我反省的好地方,更是一个提高成绩的好方法。复习越往后,在知识上取得突破的可能性就越小,而能纠正自己的错误,实在是一个不小的增长空间。如果你还没有这个习惯,那么,就去准备一个吧,收集自己的错误,分门别类,然后没事的时候就翻一翻,看一看,自警一番,肯定会有很大的收获。2.参考书有一本足矣。我想说有一本主要的参考书就足够了。我发现了一个很奇怪的现象,现在市场上很多参考书卖得很好,都挂着某某名校名师的牌子,鼓吹的有多么多么好,结果,不少同学在眼花缭乱中拿了一本又一本。其实,我们在学习、复习中时间很有限,可供自己支配的时间更有限,在这些有限的时间,朝三暮四,一会儿看这一本参考书,一会儿看那一本参考书,还不如不看。把课本的知识结构知识要点烂熟于心,能够在很少的时间里把一科知识全部回顾一遍。能做到这点,要比看一些参考书要重要的多。总之,一句话,抓住最根本,最主要的,不要盲目的看参考书,特别是不要看很多参考书。3.遇到疑难该怎么办呢?首先是要尽可能的通过自己的努力去解决,如果不能解决,也要弄明白自己不会的原因是什么,问题出在那里。我经常说的一句话是:决不奢望不遇到难题,但是,也决不允许自己不明白难题难在那里。自己不能解决的时候,就可以采取讨论以及向老师请教等方式,最终解决那些难题;解决绝不是你原来不会做的通过别人的帮助会作了,而是,在会作之后,回过头来比较一下原来不会的原因是什么,一定要把这个原因找出来,否则,就失去了一次提高的机会,作题也失去了意义。4.怎么跳出题海?我想大家一定非常关心这个题目,因为物理难懂、化学难记、数学有做不完的题。但题目是数学的心脏,不做题是万万不行的。而摆在我们面前的题目太多了,好像永远也做不完。试试下面的方法,第一,在完成作业的基础上分析一下每到题目都是怎么考察的,考察了什么知识点,这个知识点的考察还有没有其他的方式;第二,继续做题时,完全不必要每道题目都详细的解出来了,只要看过之后,可以归入我们上面分析过的题型,知道解题思路就可以跳过去了!这样,对每个知识点,都能把握其考试方式,这才是真正的提高。如果意识不到这一点,做一道题只是做了一道题,“就题论题”,不能跳出题外,看到本质,遇到新的题目,稍有一些不同就没有办法了,还谈什么提高呢?又怎能摆脱让你烦恼的题海呢?5.学习考场制胜的法宝。首先,要摆脱心理上的恐惧,可以这样提醒自己,“害怕什么呢,不管有多难,大家都和我一样。”这样自我心理暗示一段时间之后,心里就坦然平静多了。其实学习和考试中最重要的不是要学或考的怎么怎么样,而是能把自己的水平发挥出来,这也是超水平发挥的前提。大家不妨试一试,也许效果很好呢!其次,就是要有正确的学习和考试策略,做到“宠辱不惊”,特别是,遇到难题的时候,不要紧张。考试中有这样一种现象,一旦遇到一个题目,作了好长时间还无法解决,就焦躁不安,严重影响后面的作题,进而也影响考试的成绩。6.正确认识考试。其实,这里,我只是提醒大家注意一个事实而已了。那就是,如果不是竞赛,那么考试卷中,超过80%的内容都是我们在平时的学习中已经练习过的内容的翻版,也就是说,80%多的题目都是非常基础的,80%多的分值通过努力,我们每个人都是可以拿到的,如果大家不相信,可以自己去看一看是不是这样。想想看,抓住了这些基础的题目,是什么水平呢?所以每一个同学都要看到这个事实,让自己自信起来。

数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了

  • 索引序列
  • 大学数学论文图文结合
  • 数形结合小学论文
  • 数形结合的数学小论文
  • 中国结合医学杂志图片
  • 数形结合在中学数学中的应用论文
  • 返回顶部