首页 > 学术论文知识库 > 石墨烯性能研究论文

石墨烯性能研究论文

发布时间:

石墨烯性能研究论文

Laser‑Induced Graphene: En Route to Smart Sensing

Libei Huang, Jianjun Su, Yun Song, Ruquan Ye*

Nano‑Micro Lett.(2020)12:157

本文亮点

1. 总结了 激光诱导石墨烯 的制备和工程化策略。

2. 综述 基于LIG的传感器 ,重点介绍其设计原理和工作机制。

3. 讨论LIG传感器与信号传输的集成及其未来 智能化传感系统 的前景。

内容简介

香港城市大学化学系叶汝全教授团队 以设计原理和工作机制为核心,综述了LIG技术在传感器应用上的进展,论文第一作者为香港城市大学化学系博士研究生黄丽蓓。文章首先简要介绍了LIG和LIG复合物的制备原理,包括形貌和组分的调控,物理和化学特性的控制等。接着基于设计原理和工作机制(特异结合型和非特异结合型的化学传感器,基于压阻效应的机械传感器等),对LIG传感器进行总结。最后,作者讨论了LIG的影响及其未来发展。

图文导读

I LIG的制备及其相关机械性能

聚酰亚胺膜等可被CO₂激光转化成石墨烯,无需掩膜板, 任何形状的LIG可通过计算机控制软件的控制进行制备。通过改变制备的气氛,前驱物,激光的参数包括激光扫描速度,工作模式,频率,每点脉冲数等,可对LIG的物理和化学特性进行调控。不仅是红外激光,可见光,紫外光等激光器也可成功制备LIG。红外激光制备LIG主要是源于光热效应,瞬间的高温可是前驱物的化学键断裂和重新组合,这个过程会伴随着气体的生成,这也是LIG高孔隙率的原因之一。

对于紫外光激光来说,LIG的转化主要是一种光化学反应,因为紫外光波长短,能量大,可直接使化学键断裂。而对于可见光激光,光热效应和光化学反应则可能同时存在。相比于丝网印刷,3D打印,光刻等,激光诱导制备石墨烯展现了它制备过程简单、低成本、高效、环保的独特优势。得益于前驱物(有机薄膜)的柔韧性以及LIG易于转移到兼具机械性能和延展性的衬底上的特点,LIG在传感器,特别是可穿戴器件上具有广泛的应用。

图1. (a)PI转化成LIG的示意图。(b)LIG的SEM,HRTEM图。比例尺为10 μm和5 nm。(c)在不同气氛下,LIG的接触角。(d)纤维状的LIG的SEM图。

图2. LIG及其复合材料的机械特性。(a)弯曲状态下的硼掺杂的LIG。(b)不同弯曲半径下硼掺杂的LIG电容的电容保持率。(c-d)LIG超级电容器在不同拉伸强度下的测试。(e)LIG与水泥复合。(f)基于LIG-水泥复合物的气体传感器。

II 基于LIG的化学传感器

化学传感器广泛应用于食品安全、水产养殖和饮用水中的污染物、有危险气体排放的工业周围的空气质量以及葡萄糖、乳酸和多巴胺等代谢物的检测。化学物质检测的工作机理通常依赖于由刺激物引起的电阻、电容和电荷转移电阻等电信号的变化。这种化学物质的检测可分为两大类,一类是基于化学物质与LIG表面的特异结合,另一类是基于非特异性结合。

特异性结合的化学传感器

特异性结合型化学传感器是通常是对LIG的表面进行修饰,如抗体、酶和适配体等。由于识别元件和目标化学物质之间的精确结合,此类传感器往往表现出非凡的传感选择性。当识别元件与目标化学物质结合后,电极表面的电容、界面传输电阻等信号将产生变化,与目标化学物质的浓度相关。通过检测相关电信号的变化,可以推导出对应化学物质的浓度。

图3. 基于LIG的特异结合型化学传感器的制作工艺及传感性能。利用化学物质与被修饰的LIG之间特异性结合机制,从小分子到生物分子甚至病原体,许多物质已经被成功地检测。

图4. 各种特异性结合的LIG化学传感器。(a)凝血酶传感器、(b)双酚a传感器和(c)酶类葡萄糖传感器示意图。(d)用于检测大肠杆菌O157:H7的基于AuNPs-LIG的传感器示意图。(e)大肠杆菌传感器的奈奎斯特图。(f)阻抗响应随浓度的校准曲线。

非特异性结合的化学传感器

非特异性结合化学传感器在化学传感器中也起着重要作用,相比特异性结合型传感器,非特异性结合传感器的成本通常较低。化学氧化还原反应和物理性质都是非特异结合型化学传感器的信息来源。

化学氧化还原反应

化学氧化还原反应通常用于检测溶质或者气体。检测可以是定性的,也可以是定量的。例如,不同分析物往往有不同的氧化还原电位,因而通过氧化还原电位的鉴定,有助于区分不同的分析物。同时,与氧化还原反应相关的电流密度与分析物的浓度正相关,通过标定特定电位下的电流密度,可以提供有关分析物浓度的信息。

图5. 基于化学氧化还原反应的葡萄糖传感器。(a)连续添加不同葡萄糖浓度的电流响应。(b)葡萄糖传感器的校准曲线。

物理特性

利用LIG与被测物相互作用时的电阻、被测物的热导、被测物溶液的电导率或阻抗等物理性质来探测相应的响应。例如,但溶液离子浓度增加,界面传输电阻将下降。通过构建离子浓度与界面传输电阻的关系,可以用以检测未知溶液的离子浓度。然而,由于其他离子亦能产生类似的效果,这一检测手段不适于对多组分溶液的浓度检测。

图6. 基于内在和外在物理特性的非特异性结合传感器。(a)基于电阻变化的氢气传感器。氢气作用于LIG(顶部)和氢气在LIG/Pd(底部)上催化反应的能带分析。(b)不同弯曲状态下的电阻响应与H₂浓度的关系。(c)基于热导的气体传感器对各种气体的响应。(d)弯曲曲率半径为7 mm的气体传感器对空气的响应幅度。插图显示了0和1000次弯曲循环后气体传感器对空气的响应。(e)硝酸盐传感器对硝酸盐浓度的响应。插图是传感器浸入溶液中的等效电路。(f)实际温度和测量温度的比较。

III LIG机械传感器

机械传感器广泛应用于人体精细运动检测、手语翻译和机器人抓手等领域。基于LIG的机械传感器通常是建立在压阻效应的基础上的,它可以检测由激励引起的形状变形引起的电阻变化。当LIG处于拉伸、弯曲、震动状态时,其电阻将产生变化。通过监测LIG的电阻,结合机器学习,可以判定器件所处的物理状态。同时,记录LIG电阻因心跳、脉搏、声带振动等引起的时间分辨变化,则可以用以检测心率、辨别声音。

图7. (a)3D打印PEEK齿轮转换成LIG的过程的示意图。(b)PEEK LIG 智能组件的双向弯曲和拉伸的工作机制。(c)传感器电阻随施加应变的变化。(d)弯曲响应时间和恢复时间。(e)齿轮磨损程度与电路电阻的关系。插图显示了智能齿轮的三种不同磨损程度:(I)未磨损(II)部分磨损(III)严重磨损。

通过按时间顺序记录压阻效应,基于LIG的机械传感器可用于实时检测各种信号,如心跳、动作和声音。

图8. 脑电图、心电图和肌电图测量。

IV 展望

自2014年LIG的发现以来,LIG合成技术的进步显著改善了石墨烯的性能,增加了应用的通用性。例如,激光的波长从红外延伸到可见光甚至紫外线,这使LIG结构的空间分辨率提高到 12 µm。LIG复合材料的制备策略,如原位改性和非原位改性,可以提高LIG的机械强度、导电性等物理性能,也可以通过加入功能材料来提高LIG的化学性能。LIG技术的低成本和合成的简单性促进了一系列LIG传感器的发展,使其成为工业生产的潜在候选技术之一。

随着传感机制的合理设计,从各种化学物质到声音、运动和温度,各种各样的刺激被成功检测。由于LIG的高比表面积和化学稳定性,这些传感器往往表现出高灵敏度和高稳定性。此外,LIG的高导电性使其成为将刺激信号转换为电信号的理想传感器。由聚合物制成的原始LIG通常是柔性的,其转移到其他基材(如弹性体或水泥)可以赋予其弹性或刚性,这使得LIG可用于不同的场景,如可穿戴电子设备和智能建筑等。LIG传感器的发展已经从单一的检测元件发展成为集成系统。通过将无线传输和微控制器模块与物联网集成起来,实现了对被测物的实时和连续检测。

作为一种可图形化和可打印的制造技术,基于LIG的传感器为开发集成化小型化器件开辟了一条新的途径。然而,LIG技术在实际应用中仍有一定的改进空间。例如,在某些情况下,LIG层与前驱体的结合强度不够。尽管可通过一些方式进行规避,如用粘性聚合物功能化或将LIG转移到弹性体上,但是化学品的消耗和额外的制造步骤对生产来说并不理想。有些LIG传感器没有进行体内或现场检测,这可能无法反映传感器在实际情况下的可行性、稳定性和耐用性。然而,这对于实际应用来说却是很重要的,因为来自环境的干扰和实验室条件的变化可能会影响传感器的灵敏度和可靠性。尽管如此,在全球范围内研究人员的共同努力下,LIG转变为各种传感器的多样性一直是令人满意的。随着未来的发展,LIG传感器将在广泛的应用中找到一片新天地。

作者简介

叶汝全

本文通讯作者

香港城市大学 助理教授

主要研究领域

激光诱导石墨烯技术在催化、水处理、能源转换、传感器等方向的应用;二氧化碳还原,水分解等催化反应的界面、催化剂的合理设计,提高能源利用效率。

主要研究成果

在Nat. Commun., Adv. Mater., ACS Nano, Acc. Chem. Res., Angew. Chem. Int. Ed.等高影响力学术期刊以第一作者或通讯作者发表论文20余篇,获授权国际专利、美国授权专利6项,曾获国家优秀自费留学生奖,香港工程师学会青年工程师/研究人员杰出论文奖。

撰稿:原文作者

长三角激光联盟陈长军 转载

超级材料—石墨烯

“超级材料”这个词近来被大量的使用——陶瓷超级材料,气凝胶超级材料,弹性体超级材料。但是有一种超级材料把它们都淹没了,它让它的发现者获得了诺贝尔奖,并为科学的炒作和兴奋定义了上限。它有可能使处理、电力储存、甚至太空 探索 发生革命性的变化,这就是石墨烯材料。那么石墨烯的市场应用主要有哪些方面的呢?

石墨烯是由单层碳原子排列成六边形晶格的一种异形体(形式)。它是碳的许多其他异形体的基本结构元素,如石墨、钻石、碳、碳纳米管和富勒烯。石墨烯有许多不同寻常的性质,它能有效地传导热量和电,它的导电性也非常高,而且几乎是透明的。它不仅具有令人难以置信的物理特性,还被广泛引用为每一重量基础上创造的最坚固的材料。例如,石墨烯在原子小的情况下,可以使处理器中的晶体管更加紧密地封装,并允许许多电子行业向前迈进一大步。

在未来的石墨烯时代,随着批量化生产以及石墨烯技术等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,未来,石墨烯将会在以下领域率先实现商业化应用:

01 基础研究方面的应用

石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质——因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。

02 传感器方面的应用

石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。石墨烯独特的二维结构使它对周围的环境非常敏感。石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。

03 新能源电池方面的应用

新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源 汽车 电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。

04 防腐涂料领域的应用

目前国内防腐涂料消费量近180万吨,占世界防腐涂料总消费量的40%以上。我国防腐涂料需求主要集中在船舶、石油化工、桥梁、集装箱等领域。涂料中添加石墨烯后,石墨烯能够形成稳定的导电网格,有效提高锌粉的利用率,同时,石墨烯涂层能在金属表而与活性介质之间形成物理阻隔层,对基底材料起到良好的防护作用。

近年石油化工、铁路交通、新能源、基础设施建设等更是蓬勃发展,为防腐涂料提供了广阔的市场空间。烯旺 科技 致力于对石墨烯涂料进行大规模商业和工业应用,为全球客户提供高效产品和全方位解决方案,打破中国重防腐涂料和核心原料严重依赖进口的局面,为涂料行业工业提供坚实的基础。 作为石墨烯应用的开拓者,石墨烯防腐涂料和功能性涂料成为烯旺 科技 重点发展战略之一。烯旺 科技 整合集团投资的涂料资源,组织顶尖科研人员,率先开发了石墨烯复合陶瓷耐蚀树脂和涂料系列产品以及独特的石墨烯改性锌粉底漆等。

05 医疗 健康 领域的应用

今年3月,南京医科大学和烯旺 科技 共同研发的一项石墨烯无创治疗肿瘤新技术,被美国生物医学顶级期刊《Advanced Therapeutics》(先进医疗) 作为封面论文发表,这种无创、低副作用、低成本的全新治疗策略,或将成为治愈癌症的一大进步,有望成为未来肿瘤治疗的主流方法之一。

在慢性病的治疗上,石墨烯具有巨大的医疗潜力。石墨烯释放的远红外,作用于人体时会引发细胞原子与分子的共振,共振效应可将远红外线的热能传递到人体皮下的较深部分,作用于血管微循环系统,可加速血液循环,强化各组织间的新陈代谢,调理身体,促进慢性病的康复。石墨烯在医疗领域的发展令人惊喜,运用非药物疗法治病,一方面减少损伤,一方面节省费用,不仅让医疗技术变得更加成熟,提高医疗活动的效率和质量,更可以与传统医疗技术形成互补,同时降低医疗成本。借助这样治疗方式,才能不断让优质的医疗资源普惠到更多人群中。

石墨烯 科技 为医学领域带来了重大突破,更为人类 健康 贡献了非凡力量。烯旺 科技 在石墨烯医疗领域的更多应用,让更多科学以及医学专家坚信,在未来数十年内,更多现在无法解决的问题,石墨烯将发挥更大的作用。

总而言之,从现今石墨烯技术的实际应用以及技术水平来看,对石墨烯的很多发展已经有了决定性的进度,其中在防腐涂料及医疗 健康 领域,烯旺 科技 已发展到可以规模商业应用的阶段。我们相信,随着越来越多成熟石墨烯应用的加速落地,石墨烯,将重新定义世界,让我们一起期待世界的改变。

石墨烯研究论文

石墨烯的创新用途论文我们可以帮助您的,

成果简介

基于石墨烯的光电探测器由于其带宽大、占地面积小以及与硅基光子学平台的兼容性而在高速光通信中引起了极大的关注。大带宽硅基光相干接收器是具有先进调制格式的大容量光通信网络的关键元件。 本文,华中 科技 大学张新亮教授团队等研究人员在《Nat Commun》期刊 发表名“Ultrahigh-speed graphene-based optical coherent receiver”的论文, 研究通过实验证明一种基于90度光学混合和石墨烯上等离子体槽波导光电探测器的集成光学相干接收器,具有紧凑的占地面积和远超过67GHz的大带宽 。结合平衡检测,接收 90 Gbit/s 二进制相移键控信号并提高信噪比。此外,实现了在单极化载波上接收 200 Gbit/s 正交相移键控和 240 Gbit/s 16 正交调幅信号,附加功耗低于 14 fJ/bit。这种基于石墨烯的光相干接收器将有望在 400千兆以太网和800千兆以太网技术中应用,为未来高速相干光通信网络铺平另一条路线。

图文导读

图1:在PSW上使用石墨烯的 OCR。

图2:90度光学混合性能。

图3:石墨烯-PSW PD 的性能。

图4:平衡检测测试。

图5:相干检测的实验演示。

小结

综上所述,结果表明,我们提出的基于石墨烯的 OCR 对高级调制格式具有超高速和高质量的接收能力,这些格式对光的幅度和相位信息进行编码。 经过验证的基于石墨烯的器件为超紧凑和高性能 OCR 提供了一条不同的材料路线,在数据中心和下一代高速光互连中具有竞争力。

文献:

情况挺好的,工作非常的顺利,很坚持自己的事业,取得了很多成绩,生活也非常的幸福美满,状态挺好的,令人很羡慕。

自己下载百度文库客户端,里面多的是。

石墨烯研究论文2000字

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

自己下载百度文库客户端,里面多的是。

超级材料—石墨烯

“超级材料”这个词近来被大量的使用——陶瓷超级材料,气凝胶超级材料,弹性体超级材料。但是有一种超级材料把它们都淹没了,它让它的发现者获得了诺贝尔奖,并为科学的炒作和兴奋定义了上限。它有可能使处理、电力储存、甚至太空 探索 发生革命性的变化,这就是石墨烯材料。那么石墨烯的市场应用主要有哪些方面的呢?

石墨烯是由单层碳原子排列成六边形晶格的一种异形体(形式)。它是碳的许多其他异形体的基本结构元素,如石墨、钻石、碳、碳纳米管和富勒烯。石墨烯有许多不同寻常的性质,它能有效地传导热量和电,它的导电性也非常高,而且几乎是透明的。它不仅具有令人难以置信的物理特性,还被广泛引用为每一重量基础上创造的最坚固的材料。例如,石墨烯在原子小的情况下,可以使处理器中的晶体管更加紧密地封装,并允许许多电子行业向前迈进一大步。

在未来的石墨烯时代,随着批量化生产以及石墨烯技术等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,未来,石墨烯将会在以下领域率先实现商业化应用:

01 基础研究方面的应用

石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质——因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。

02 传感器方面的应用

石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。石墨烯独特的二维结构使它对周围的环境非常敏感。石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。

03 新能源电池方面的应用

新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源 汽车 电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。

04 防腐涂料领域的应用

目前国内防腐涂料消费量近180万吨,占世界防腐涂料总消费量的40%以上。我国防腐涂料需求主要集中在船舶、石油化工、桥梁、集装箱等领域。涂料中添加石墨烯后,石墨烯能够形成稳定的导电网格,有效提高锌粉的利用率,同时,石墨烯涂层能在金属表而与活性介质之间形成物理阻隔层,对基底材料起到良好的防护作用。

近年石油化工、铁路交通、新能源、基础设施建设等更是蓬勃发展,为防腐涂料提供了广阔的市场空间。烯旺 科技 致力于对石墨烯涂料进行大规模商业和工业应用,为全球客户提供高效产品和全方位解决方案,打破中国重防腐涂料和核心原料严重依赖进口的局面,为涂料行业工业提供坚实的基础。 作为石墨烯应用的开拓者,石墨烯防腐涂料和功能性涂料成为烯旺 科技 重点发展战略之一。烯旺 科技 整合集团投资的涂料资源,组织顶尖科研人员,率先开发了石墨烯复合陶瓷耐蚀树脂和涂料系列产品以及独特的石墨烯改性锌粉底漆等。

05 医疗 健康 领域的应用

今年3月,南京医科大学和烯旺 科技 共同研发的一项石墨烯无创治疗肿瘤新技术,被美国生物医学顶级期刊《Advanced Therapeutics》(先进医疗) 作为封面论文发表,这种无创、低副作用、低成本的全新治疗策略,或将成为治愈癌症的一大进步,有望成为未来肿瘤治疗的主流方法之一。

在慢性病的治疗上,石墨烯具有巨大的医疗潜力。石墨烯释放的远红外,作用于人体时会引发细胞原子与分子的共振,共振效应可将远红外线的热能传递到人体皮下的较深部分,作用于血管微循环系统,可加速血液循环,强化各组织间的新陈代谢,调理身体,促进慢性病的康复。石墨烯在医疗领域的发展令人惊喜,运用非药物疗法治病,一方面减少损伤,一方面节省费用,不仅让医疗技术变得更加成熟,提高医疗活动的效率和质量,更可以与传统医疗技术形成互补,同时降低医疗成本。借助这样治疗方式,才能不断让优质的医疗资源普惠到更多人群中。

石墨烯 科技 为医学领域带来了重大突破,更为人类 健康 贡献了非凡力量。烯旺 科技 在石墨烯医疗领域的更多应用,让更多科学以及医学专家坚信,在未来数十年内,更多现在无法解决的问题,石墨烯将发挥更大的作用。

总而言之,从现今石墨烯技术的实际应用以及技术水平来看,对石墨烯的很多发展已经有了决定性的进度,其中在防腐涂料及医疗 健康 领域,烯旺 科技 已发展到可以规模商业应用的阶段。我们相信,随着越来越多成熟石墨烯应用的加速落地,石墨烯,将重新定义世界,让我们一起期待世界的改变。

文 颖宝

这群年轻人,与凝望他们的时代。

1996年发生了许多具有先锋意义的历史:凤凰卫视中文台开播,羊“多莉”诞生,王菲成为首位登上《时代周刊》封面的华人歌手。

还有,《新周刊》创刊。

这一年出生的孩子们,具有一种和“前辈们”与众不同的特质。在国内,他们是特立独行的之一批95后;在国外,他们又被称为“Z世代”。

我们从中挑选出6位代表人物,和大家分享他们不一样的故事和人生。

新锐、朝气与无畏,是他们的标签。/《破风》剧照

竞技,飞跃

傅园慧,游泳运动员

傅园慧3岁的时候,每到换季就要咳嗽上小半个月,医生说她有哮喘倾向。这句话在她5岁那年应验了。

听说强魄的体格能抗衡哮喘,傅春升便将她送去学游泳。游泳馆里,许多小孩用力抱着教练的腿、生怕被扔下水,傅园慧却一边跳进泳池、一边将手背在身后模仿摆动的翅膀,朝妈妈大喊:“水里好好玩!我是属小的吗?”

教练说,不怕水是傅园慧的天赋。但天赋变实力的过程,高低起伏。

2012年,傅园慧在100米女子仰泳项目中,以59秒99的成绩出战伦敦的资格。然而到了真正的赛场,她变成了唯一没有游进60秒的选手。

那段时间,长年浸泡在水里导致的中耳炎,让傅园慧的耳朵刺痛难忍。加之心理压力大,她时常将自己关在房间里,在黑暗中呆坐一整个晚上。傅春升心疼女儿、劝她,却被回怼:“不要捣乱好不好。”

在2022 年的里约上,傅园慧刷新了100米女子仰泳的全国纪录,夺得铜牌。记者问她是否有保留实力,她搞怪地回“没有保留,我已经用了洪荒之力啦!”

一夜间,即使没有 的人们,也都知道了这一位“洪荒少女”。

在今年7月公布的中国游泳队东京参赛名单上,傅园慧与另外两位名将叶诗文、刘湘缺位。有体育记者分析,三位女将均为25岁,而征战东京的女性运动员,平均年龄为岁。

此外,她们近年来的表现未达预期。早前在东京选拔赛中,傅园慧因抢跳被取消成绩,未能进入决赛。

傅园慧曾在媒体镜头前自我检讨:“没什么好推脱的,但我会竭尽全力做好一切。”

傅园慧就是这样,做真我,不逃避。

2022 年1月7日是傅园慧21岁生日,她在微博中写道:“永远也无法忘记曾经已经不堪一击的我,和这一年最痛苦挣扎时的我,是什么样子。那是一种深刻的绝望。”2022 年,她的微博风格开始变得积极:“让时间翻开崭新的一页。”/傅园慧微博

周琦,篮球运动员

被粉丝唤作“大王”时,周琦才15岁。

2011年,中国青年篮球队征战U16土耳其男篮邀请赛,夺得冠军与7连胜的好成绩。中锋周琦以场均分、个篮板、次封盖的数据一战成名。亚洲篮球联合会在新闻报夸赞周琦“将是中国男篮继姚明和王治郅后另一位具备潜力的中锋”。(封盖:俗称盖帽,对方球员投篮过程中,己方球员在空球打掉的动作。)

但随着时间推移,周琦的表现备受争议。2022 年,篮球世界杯小组赛在五棵松体育馆,在主场迎战的中国队败给了波兰队。

球迷将矛头指向了周琦——比赛最后秒,中国队仍以72:71领先。此时,掌握球权的他却出现发球失误,被波兰球员抢断。中国队因此被拖入加时赛,最终以76:79小比分落败。直播镜头扫过场下坐着的姚明,他的眼眶红了一圈。

即使影响赛事结果的因素有很多,比如易建联与郭艾伦皆因犯规提前下场,但无法改变这场比赛被钉上耻辱柱的事实。球迷一度将周琦的标签改为“波兰中锋”“波兰卧底”,并造出了 络成语“姚头叹琦”。

在综艺《吐槽大会》上,范志毅句句扎心:“周琦那个发球我看了好几遍,我上去用脚都能传给别人,你用手都不行。”舞台边上,周琦抱着篮球苦笑。

今年5月,周琦位列《2022 中国运动员传播影响力榜》第10位,这证明了他的实力尚在,且能对起到正面的导向作用。

他也在积极调整发展方向。近期,周琦在采访中表示,想从队转入辽宁队,因为后者能提供更好的。

失败并不要紧,重要的是反思和调整。

今年,周琦加强了训练,试图寻回光环。/周琦微博

上天,入地

周承钰,中国最年轻的火箭发射女指挥

综艺《创造101》成团夜里,节目组公布了限定女团名为“火箭少女101”,寓意直冲云霄、奔放未来。

把“火箭少女”这个词用在周承钰身上,其实更为合适。

2022 年11月24日,嫦娥五号探测器成功发射升空3小时后,作为连接器系统指挥员的周承钰发了一条朋友圈:“连接器完美脱落,连接器家族牛!预祝嫦娥五号顺利返回!”

这一年,她才24岁。

周承钰本科就读于国防科技大学。毕业前夕,导师给她安排了颇为硬骨头的论文题目。她一看,觉得自己研究不出结果,想打退堂鼓。导师翻出师兄师姐们的课题,全是难度更高的前沿新兴研究。导师对她说:如今手上的课题与前辈们的课题,你选一个。

于是周承钰把刚想“扔掉”的硬骨头抱了回家。

在嫦娥五号的升空地文昌发射场里,她是近80人的科研队伍中最年轻的指挥员,也是首位女性指挥员。

刚上班时,前辈们本着照顾小丫头的想法,更多地分配的工作给她。结果在长征五号遥三运载火箭测试任务中,她每天到二级连接器配气台工作,竟没有一句抱怨,让前辈们不已。

通往配气台的钢铁台阶,有15层楼高、共180多级阶梯,倾斜角接近90°,别说 立行走了,用四肢攀爬着上去一趟都累得够呛。私底下,科研人员唤它为“天梯”。周承钰一天爬4趟,一爬就是60天。

被问到是否觉得工作艰难时,她回答,在做毕业课题时已经“经历过更难的,所以不觉得现在难了”。

周承钰指挥的连接器系统,是发射场动力系统与加注系统的关键部分,具有设备分布广、协调接口多等特点,即便是经验丰富的科研人员,也要小心翼翼地操作。从嫦娥五号升空的结果来看,她将工作完成得很好,并且能高效有序调度超30名科研人员共同推进工作。

文昌发射场的同事里,有许多国防科技大学的师兄,周承钰想追上他们。如果时光倒流,回到选毕业课题的那一天,她或许会选择前辈们的题——

“他们能做好,我也能。”

嫦娥五号成功发射后,周承钰与话题#24岁女孩成文昌发射场最年轻女指挥#也同步上了热搜。/央视新闻截图

曹原,《自然》2022 年度科学人物榜首

2022 年,科学刊物《自然》将曹原安置在年度科学人物首位,附文“中国潜在的最年轻的者”。

国内媒体更倾向将他描述为“石墨烯的驾驭者”。

排在他后面的,有发布了盖亚探测器对10亿多颗恒星追踪数据的天文学家Anthony Brown、通过基因组数据协助警方逮捕上世纪七八十年代犯下数起凶杀案的“金州”的系谱学家Barbara Rae-Venter等等。

童年时期,曹原对照着科学画册,将银镯子泡入硝酸溶液,合成了。看着“凭空消失”的首饰,曹妈妈哭笑不得。曹原后来的大学老师、中科大物理教授丁泽军说:“曹原是一个真真正正为科学而生的人。”

曹原仅用3年就学完了初中、高中课程,然后在14岁那年凭借669分的高考分数,入读中科大少年班;4年后,他前往麻省理工学院读博。

2022 年,尚在麻省理工的曹原以之一 身份,发表了那两篇轰动世界的石墨烯超导论文,成为《自然》创建149年以来,之一位在同一天内、连续发两篇论文的 ,同时也是年纪最小的 。

在现代,电力是与水源、粮食同等重要的。“电阻”则顾名思义,会阻碍电流输送,造成一定程度的电力损耗。如果尽量减少电阻,人类将更多。百年来,世界各地的科学家为了这个问题想破脑袋,却一直停留在假设层面。

曹原的论文打破了僵局:当两层平行石墨烯的转角接近°时,就会产生超导效应。有媒体评价,这一技术发现,将中国的石墨烯研究向前推进了30年。

从麻省理工学院毕业后,曹原婉拒了校方的劝留,选择回究石墨烯,“科学没有国界,但科学家有自己的祖国”。

就在刚刚过去的7月21日,曹原在《自然》发表了一篇新论文,阐述石墨烯超导研究的最新进展。这是他自2022 年至今,在顶刊上发布的第8篇论文。

连天才都在奔跑。

曹原今年才25岁。/ 络

逆行,抢救

佘沙,援鄂

热映《中国医生》中,张涵予饰演的金银潭医院院长,就病患源源不断的情况,在动员大会上,询问大家是否有自愿到重症监护室帮忙的。话音落下,现场安静了足足5秒。一个女孩突然 起来:“我报名。”在她的背影后,越来越多人 了起来。

在现实世界的2022 年,有无数像她这样自告奋勇的逆行者。

佘沙是人,2008年,她的老家经历了级大,“房子都塌了,一片废墟”。12岁的她, 在尚有的小学操场上,不知所措。

一群穿着白大褂的部队军医向她跑来。准确地说,是向跑来。佘沙一家在医护人员及全国各地陌生援助者的帮助下,走出了阴霾。

2022 年,佘沙入职四川省第四医院,成为肿瘤介入治疗方面的。2022 年疫情暴发之际,她先后3次主动请缨援鄂,最终被分配到武汉大学医院工作——

这所医院是抗疫一线,也曾是期间救治伤员的定点医院。带领佘沙进行抗疫工作的长,恰是在中救助伤员的志愿者。得知这巧合后,佘沙说,善意会在冥冥之中延续。

佘沙在武汉大学医院负责“预防医院感染”工作,即对可能发生的医院感染进行预防与控制。她每天都在奔走、弯腰下蹲数次,给队驻点酒店的各个角落消,以避免医护人员在休息期间被感染;推车等工具全部在污染区,她便用人力搬运这种“最笨”的,将呼吸机等仪器一件件扛进医院。

2022 年,佘沙入选由、全国妇联等四部门联合发布的“一线医务人员抗疫巾帼英雄谱”,被授予“抗击肺炎疫情全国三八红旗手”称号。

回想2022 年除夕那天,佘沙缠着四川省第四医,嚷嚷着要加入援鄂队伍。问,你真不怕被感染哦?

佘沙说,哎呀,我不一样,我是的呀!

2022 年电视剧《最美逆行者》中,由任敏饰演的于丽娜 ,为报援助之恩加入援鄂队。有人说,于丽娜的原型就是佘沙。/图为佘沙本人 新华

甘如意,武汉医生

与佘沙一同入选“一线医务人员抗疫巾帼英雄谱”的,还有武汉医生甘如意。但大众对她更熟悉的称呼,是“4天3夜骑行女孩”。

甘如意在武汉金口卫生院范湖分血液检验科工作。2022 年1月中旬,武汉的疫情真正严重起来之前,甘如意已经回了荆州老家准备过年。

疫情的消息让她日渐焦虑。检验科只有3个医生,她提前回家了,剩下两位同事已经在抗疫岗位上扛了十几天。腊月廿九的晚上,她对爸爸说:“我要回医院了。”

当时武汉已经封城,与之的公共交通也都停止。她想过坐计程车,但连续问了几个司机,都不敢靠近武汉。

她决定骑自行车去武汉。从荆州县垱镇杨家码头村,到武汉金口卫生院范湖分院,一共285公里。预测,需要连续骑行18个小时。

实际耗时比预测时间要多得多。1月31日,大年初六,她骑行了5小时顺利到达县城,但在前往荆州市的长江大桥上,被以疫情防控为由阻拦骑车通行。她将自行车存放在副食店内,徒步过桥,然后在荆州扫了一辆共享单车,蹬上了318国道,前往下一 潜江市。

2月2日晚8点,抵达潜江市时,她已经骑行了3天、126公里,膝盖生疼、精神疲惫不已。所幸,她在潜江街头遇到两名。后者之余,在隔天安排她坐上了一辆前往武汉的送血车。

4月8日,武汉解封。离家68天的甘如意回到了荆州,妈妈给她做了一桌子菜,说:“你走的时候还是冬天,回来的时候已是春天了。”

上图为工作中的甘如意,下图为她骑过的自行车——这辆车如今收在武汉金山舰抗疫博物馆中。/ 络

抗压、超越、探索、不服输、心怀善意,是这一群1996年生的年轻人所坚持的人生品质。

若要给他们一个标签,那便是“新锐人物”。

1996-2022 年,新周刊发行25年间,亦坚持向时代传递这种新锐的价值观。

新周刊与新锐人物们一同成长、一同经历挫折、一同奔向未来。

以上就是与69属猴男和76属龙女相配吗相关内容,是关于傅园慧的分享。看完76年女和68年男合适吗后,希望这对大家有所帮助!

石墨烯的研究发展论文

石墨烯产业规模持续扩大,下游领域不断拓宽,多地企业密集投建石墨烯制备和应用项目,并借助并购重组打通上下游各环节,提高自身产能,整合产业资源,优化提升石墨烯产业能级。

1、2020年中国石墨烯行业发展现状分析:行业发展势头良好,市场规模持续扩大

中国石墨烯行业正处于市场导入期,产品尚未成熟,行业利润率较低,但市场规模持续扩大。2015年到2018年,我国石墨烯产业处于高速发展期。据中国经济信息社数据统计,2015年石墨烯市场规模仅为6亿元,2018年我国石墨烯产业规模约为111亿元,复合增长率高达117%。

在高速发展后,从2019年开始石墨烯行业进入快速平稳发展期,增速有所降低。《2020年中国石墨烯产业发展形势展望》中估算2019年中国石墨烯规模将达到120亿元,考虑到疫情的影响,前瞻测算2020年石墨烯市场增速将有所下降,石墨烯市场规模达到126亿元。

2、中国石墨烯行业细分产品分析:下游涉及行业众多,石墨烯应用领域广泛

石墨烯下游行业众多,主要应用于以下五个领域:

一是光电产品领域,以其非常好的透光性、导电性和可弯曲性,在触摸屏、可穿戴设备、OLED、太阳能等领域中发挥作用。

二是能源技术领域,主要依赖于石墨烯超高的比表面积、超轻的重量和非常好的导电性。

三是功能复合材料,通过将石墨烯加入各种塑形基体,能够制备出具有很好导电、导热、可加工、耐损伤的特殊材料。

四是微电子器件,未来的石墨烯半导体、石墨烯集成电路、THz器件等领域,需要利用石墨烯独特的性质来发挥。

五是生物医药和传感器领域,石墨烯对单分子的响应能力、承载抗体后的分子输运能力都是其他传感器不能实现的。

3、中国石墨烯行业产能分析:龙头公司产能持续扩增加,中小企业生产能力有待提高

2018年以来,石墨烯粉体和薄膜的生产规模进一步扩大。粉体方面,常州第六元素、青岛昊鑫、宁波墨西等多家企业已拥有国内领先的石墨烯粉体生产线。薄膜方面,长沙暖宇新材料科技公司年产量100万平方米的石墨烯膜生产线已开建,预计建成后将成为国内第二大石墨烯膜生产线。

——石墨烯粉体

石墨烯粉体材料制备工艺类化工属性,将以添加剂的形式提升传统产品性能。以粉体应用为主的行业包括防腐涂料、锂电池、超级电容、导热塑料、消费电子散热片等。石墨烯粉体将主要以添加剂的形式与传统产品混合,结合石墨烯特殊的物理化学特性生产具备更多功能、更高性能的新产品。

石墨烯粉体多掺杂在其他材料中使用,比如导电剂、超级电容、特种涂料、高效催化剂等。目前中国规模以上企业石墨烯粉体的生产能力多在100吨左右。

——石墨烯薄膜

石墨烯薄膜可以应用在导热膜上,发挥其优异的导热性能,用于智能手机、平板电脑等设备的散热层;利用石墨烯的导电透光以及高度柔性,可以用来制作柔性显示屏、可穿戴设备等;石墨烯巨大的比表面积以及优异的电子传输性能,是的传感器领域成为石墨烯薄膜的一大目标市场;此外,石墨烯对硅的替代有望带来半导体领域颠覆性的革命,成为下一代集成电路、超级计算机的基础材料。

中国石墨烯薄膜的产能约超过650万平方米左右,主要集中在常州地区。

4、中国石墨烯行业未来发展趋势:扩产成为行业趋势

我国石墨烯产业化发展势头迅猛,各地企业积极投建石墨烯项目。随着石墨烯行业规模的不断扩大,下游应用的不断延伸,2018年以来,石墨烯龙头企业纷纷投资建立新的生产线,扩大产能,以实现规模化生产。

—— 更多数据可参考前瞻产业研究院《中国石墨烯行业深度市场调研与投资战略规划分析报告》

主要上市公司:贝特瑞(835185);方大炭素(600516);银基烯碳(400070);碳元科技(603133);沃特新材料(002886);常州二维碳素(833608)

本文核心数据:石墨烯行业企业营收额;石墨烯行业区域企业数量;石墨烯行业企业产能

行业概况

1、定义

石墨烯,是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。应用于物理、材料、电子信息、计算机等众多领域,具有较好的额导热性、光学特性和稳定性。石墨烯虽然从合成和证实存在到今天只有短短十几年的时间,但目前已经得到了较为广泛的应用。石墨烯层数可分为单层石墨层、少层石墨烯和多层石墨烯;按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等;按照产品形态又可分为石墨烯粉体和石墨烯薄膜。

2、产业链剖析:下游应用较为广泛

石墨烯产业链的上游为石墨矿资源及生产设备;中游为石墨烯薄膜和石墨烯粉体制造;下游主要的应用以新能源、涂料、大健康、节能环保、化工新材料、电子信息等六大产业。

目前,我国石墨烯产业链的上游石墨烯矿产及设备公司有方大炭素、思泉新材和宝泰隆等;中游石墨烯粉体和薄膜的生产公司有常州二维碳素、第六元素和中泰化学等;下游应用领域众多,目前较为广泛的新能源领域的代表企业有贝特瑞新材料、东方碳素、南都电池和欣旺达等;涂料领域的代表性企业有墨睿科技和深创时代等;大健康领域代表性公司有烯旺科技和圣泉集团等;节能环保领域的代表性企业有正拓能源和驰飞等;化工新材料的代表性企业有新纶科技和华高烯暖等;电子信息领域的代表性企业包括远望谷和汉威电子等。

行业发展历程:行业处在突飞猛进阶段

石墨烯的理论研究始于1947年,迄今已有70余年的历史。但真正能够独立存在的二维石墨烯晶体则是出现在2004年,英国曼彻斯特大学天文物理学教授Andre K. Geim领导的研究小组利用微机械剥离方法首次获得了石墨烯,标志着这一新型材料的问世。中国国家自然科学基从2007年开始对石墨烯项目投资,促进了我国石墨烯产业的发展。2013年以来,石墨烯先后被列入“十二五”“十三五”规划中,政策的推动促使了我国一大批石墨烯企业的诞生,石墨烯生产开始走向批量化、规模化。2017年至今,石墨烯已经在锂电池、太阳能、散热材料、电缆LED等行业有了较为广泛的应用。

行业政策背景:“十四五”规划愈发重视石墨烯行业的发展

相比于国外政府较早进行政策扶持,我国直到2012年才由工信部发布《新材料产业“十二五”发展规划》,首次明确提出支持石墨烯新材料的发展。之后,我国先后出台《关于加快石墨烯产业创新发展的若干意见》《国家创新驱动发展战略纲要》《新材料产业发展指南》《“十三五”材料领域科技创新专项规划》等文件,确立石墨烯在新时代我国制造业发展中的重要战略地位,鼓励在电化学储能、海洋工程、柔性电子器件、重大环保技术装备、汽车、航天航空行业等领域拓展石墨烯应用。2021年,国家发改委发布了《国民经济和社会发展第十四个五年规划纲要》,提出大力支持发展新材料产业的重点任务。

行业发展现状

目前,石墨烯产品主要为石墨烯粉体和石墨烯薄膜。石墨烯粉体主要应用于防腐涂料、锂电池、超级电容、导热塑料、消费电子散热片等行业;石墨烯薄膜主要在导热膜、柔性显示、传感器、集成电器等行业有较为广泛的应用。

1、供给:石墨烯粉体和石墨烯薄膜已经实现大规模量产

目前中国大部分石墨烯行业代表性企业均已建立石墨烯产品生产线,其中,在明确公布产量数据的企业中,第六元素、凯纳股份、青岛昊鑫及先丰纳米的石墨烯相关产品产能均达到了千吨级别。此外,根据2021年11月12日举办的2021(第八届)中国国际石墨烯创新大会公布的数据,目前中国已成为石墨烯材料生产大国,石墨烯粉体产能达万吨,石墨烯薄膜产能740万平米。

注:上述数据均来源于企业官网,部分企业官网数据未做更新。

2、需求:石墨烯需求不断增加,市场规模达百亿以上

2015年到2018年,我国石墨烯产业处于高速发展期。据中国经济信息社数据统计,2015年石墨烯市场规模仅为6亿元,2018年我国石墨烯产业规模约为111亿元,复合增长率高达117%。在高速发展后,从2019年开始石墨烯行业进入快速平稳发展期,增速有所降低,根据赛迪智库发布的《2020年中国石墨烯产业发展形势展望》估算,2019年中国石墨烯规模将达到120亿元;根据石墨烯联盟公布的数据,2020年国内石墨烯相关领域市场规模达140亿元。初步估测2021年中国石墨烯市场规模或达到157亿元。

3、专利情况:2020年石墨烯相关专利申请热度最高

根据智慧芽搜索结果,2015-2022年9月,我国石墨烯相关专利申请数量先增后降,2020年相关专利申请数量达到峰值33390项,2021年相关专利申请数量下降至30165项。此外,截至2022年9月的石墨烯相关专利中,发明申请类型的专利占比最多,达到了57%,其次为授权发明,占比为27%。

注:查询时间为2022年9月26日。

4、发展痛点:关键技术制约下游应用拓展

由于石墨烯从发现至今仅经历10余年时间,其发展仍处于较新的阶段,尽管石墨烯在规模化生产技术和 工艺装备等方面均取得重大进展,但其低成本规模化制备技术、下游应用技术、绿色制备技术等方面仍存在技术瓶颈,且产品普遍存在尺寸和层数不均匀、质量不稳定等问题,材料的各项性能指标远不及实验室水平,难以满足大规模工业化量产的需求,制约了石墨烯在下游应用领域的拓展。

更多本行业研究分析详见前瞻产业研究院《中国石墨烯行业市场前瞻与投资战略规划分析报告》。

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

石墨烯具有非常好的热传导性能,这一性能可以在哪些领域得到很好的运用?

近年来,石墨烯作为一种新型的碳材料,因其众多独特的优良性能,引起了人们的广泛关注和极大兴趣。据了解,石墨烯具有非常好的导热性能,电热转换率高达99%,能有效减少热量损失,加速热对流,带来极佳的采暖效果和舒适体验。

作为行业的龙头企业,近程加热鑫科与中科院石墨烯研究中心、浙江大学技术学院、SGS检测实验室等多家国内外权威机构合作,借助中科院在石墨烯领域的平台优势和技术、人才优势,鑫科掌握了领先的核心温控技术和新型加热材料应用技术,确立了在近体加热行业的领先地位。

据了解,中科院宁波材料所基于其在石墨烯材料领域的研究,于2016年成立了宁波石墨烯创新中心。2018年,中科院启动了首批工程实验室的建设,并批准依托中科院宁波材料所与中科院10个研究所联合建设GRAPHENE工程实验室。该工程实验室汇集了中科院在石墨烯技术领域的创新资源,具有国际领先水平,成为支撑国家石墨烯创新中心建设的重要技术创新平台。石墨烯是已知的最具导电性的材料,这一特性特别适合于高频电路。因此,石墨烯被认为是硅的替代品,可以制造超细的晶体管,用于生产未来的超级计算机。据称,由石墨烯制成的计算机处理器的运行速度将提高数百倍,并且消耗的能源更少。

今年早些时候,中国科学院上海微系统与信息技术研究所在石墨烯研究方面取得了新进展。世界上首次报道了利用铜蒸气辅助的Cu-ni合金超高速生长英寸石墨烯单晶。该论文于2月24日发表在《自然-材料》上,研究论文于2月24日在线发表在小。

石墨烯对航空的研究论文

成果简介

基于石墨烯的光电探测器由于其带宽大、占地面积小以及与硅基光子学平台的兼容性而在高速光通信中引起了极大的关注。大带宽硅基光相干接收器是具有先进调制格式的大容量光通信网络的关键元件。 本文,华中 科技 大学张新亮教授团队等研究人员在《Nat Commun》期刊 发表名“Ultrahigh-speed graphene-based optical coherent receiver”的论文, 研究通过实验证明一种基于90度光学混合和石墨烯上等离子体槽波导光电探测器的集成光学相干接收器,具有紧凑的占地面积和远超过67GHz的大带宽 。结合平衡检测,接收 90 Gbit/s 二进制相移键控信号并提高信噪比。此外,实现了在单极化载波上接收 200 Gbit/s 正交相移键控和 240 Gbit/s 16 正交调幅信号,附加功耗低于 14 fJ/bit。这种基于石墨烯的光相干接收器将有望在 400千兆以太网和800千兆以太网技术中应用,为未来高速相干光通信网络铺平另一条路线。

图文导读

图1:在PSW上使用石墨烯的 OCR。

图2:90度光学混合性能。

图3:石墨烯-PSW PD 的性能。

图4:平衡检测测试。

图5:相干检测的实验演示。

小结

综上所述,结果表明,我们提出的基于石墨烯的 OCR 对高级调制格式具有超高速和高质量的接收能力,这些格式对光的幅度和相位信息进行编码。 经过验证的基于石墨烯的器件为超紧凑和高性能 OCR 提供了一条不同的材料路线,在数据中心和下一代高速光互连中具有竞争力。

文献:

在往届冬奥会中,曾出现过现场寒冷导致大量观众提前退场、媒体记者和志愿者手脚冻僵难以正常工作的情况。本届北京冬奥会运动场馆的温度最低可达零下30多摄氏度,而高科技材料石墨烯有效帮助了工作人员和5G转播设备等抵御低温挑战。在通电的情况下,石墨烯产生的热能以平面方式均匀地辐射出来,可以很好地被人体接受,产生由内而外的温暖。石墨烯的发现者之一、2010年诺贝尔物理学奖得主安德烈·盖姆(Andre Geim)这样描述石墨烯:“石墨烯对很多人来说就像爱丽丝仙境一样,非常神奇。”石墨烯,神奇在哪?文丨崔赫翾 瞭望智库观察员本文由瞭望智库综编。1撕出来的石墨烯石墨烯是目前发现的最薄、最坚硬,导热、导电性能最好的一种新型纳米材料,它的热传导能力是金刚石的两倍以上,机械强度比钢铁强200倍,导电性比银和铜还强,被称为“黑金”以及“新材料之王”。作为碳材料家族的新成员,石墨烯与石墨、金刚石一样,都是碳的同素异形体。石墨烯本来就存在于自然界,只是难以剥离出单层结构,1毫米厚的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹可能就是数不清多少层的石墨烯。2022年2月17日,北京石墨烯技术研究院展厅内展示的石墨烯原料。图|视觉中国1987年,法国《矿物化学》杂志的一篇论文中首先出现“graphene”(石墨烯的英文名称)一词,用于描述单层的石墨片层。不过,这个概念在提出后并没有引起多少人关注石墨烯本身,而是多用于描述日本科学家饭岛澄男发现的碳纳米管。在当时,石墨烯之所以没能获得足够的关注,是因为早在70多年前,理论研究就表明,完美的二维结构晶体无法在非绝对零度的环境中稳定存在。有理论认为,物质的熔点会随着其尺寸的减小而减小,当物质的尺寸达到原子级别时会变得很不稳定,倾向于分离成岛状结构或分解。石墨烯作为一种原子厚度级的二维晶体材料,显然违背了这个理论,许多科学家就止步了。不过,几十年来还有一些科学家在积极实验,寻求突破:1979年,科学家在真空条件下加热掺有碳的单晶镍时,在不同的温度下分别检测到了薄层墨片和较厚的石墨片的生成;1988年,科学家在利用蒙脱土片层间的二维罅隙制备高定向石墨的过程中,观察到了石墨烯的存在,但是当时所制备的石墨烯只能依附于模板而存在。直到2004年,英国曼彻斯特大学的两位科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)用一种非常简单的实验方法突破了科学家们的理论认知。他们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。就这样不断操作,薄片越来越薄,最后得到了仅由一层碳原子构成的薄片,这就是石墨烯。其实,实验室里用胶带粘石墨是常规操作。因为石墨是片状结构,需要用仪器观察石墨时,研究员往往会用胶带去除石墨表层,从而露出一个干净的表面。盖姆从这样的日常操作中,通过想象力完成了一个不可能的任务。2004年10月,他的研究小组在《科学》杂志上发表了这一研究成果,震撼了科学界。6年后,两位发现者就共同获得了2010年诺贝尔物理学奖。在科学家眼中,石墨烯超乎寻常的性能让几乎所有已知材料都难以望其项背。在力学性能力方面,石墨烯的抗拉伸强度值超过常规钢铁材料100倍;在传输电子能力方面,常温下石墨烯的电子迁移率超过本征半导体硅10倍;【注:本征半导体(intrinsic semiconductor)是指完全不含杂质且无晶格缺陷的纯净半导体,一般是指其导电能力主要由材料的本征激发决定的纯净半导体。】在热传导能方面,石墨烯的热传导率值超出热的良导体金属铜10倍;在光学透过性方面,单层石墨烯对太阳光的吸收率仅为,几乎是完全透明的。单原子层的特殊结构赋予了石墨烯极大的比表面积,单层石墨烯的理论比表面积可达2600平方米/克。盖姆说:“它是有史以来强度最大的物质,是我们所知道的最坚固的材料,它还是拉伸强度最好的晶体。当然,它的超强性能还不止这些,但这已经让人相当吃惊了。”2概念应用大放异彩2020年4月23日,中国科学院山西煤炭化学研究所内,研究人员研制石墨烯新能源材料。图|视觉中国近些年来,航空航天产业对复合材料的性能提出了更高的要求,而具有高强度、高导热、抗电磁干扰等性能的石墨烯应用前景广阔,可应用于大型微波暗室用吸波材料、飞行器与武器平台隐身、轻质复合材料、抗雷达干扰线缆、航空航天热管理系统、飞机轮胎、雷达电磁屏蔽等领域。在光伏产业中,石墨烯可以凭借其提高玻璃透光率与玻璃自清洁能力,达到进一步提升组件功率、提升组件发电能力的目的。就自清洁能力而言,常见的组件技术往往只具备超亲水或者光触媒效果,而将这两种技术完美融合在一起的只有石墨烯技术。在军工领域,添加了石墨烯的复合材料可以很大程度增强耐撞击性,可以应用在空投箱、子弹箱、装甲车辆上,替代钢铁部件;可以用于制造防弹头盔、防弹背心;还可以应用到登陆舰艇,从而满足轻量化、抗撞击、防弹的特殊要求。凭借电磁屏蔽性质,石墨烯也可以用来做隐形飞机、隐身材料……在生物医药领域,石墨烯的应用主要集中在生物传感器、药物载体、光线疗法及生物成像等方面。举个例子,人体能发射远红外光,而石墨烯具有超高的载流子迁移率,远红外光投射到它上面后产生的电子可以被迅速地采集。这样,戴上用石墨烯镜片制成的眼镜,就可以在夜里看清一切东西。此外,还可以采集使用者本身的血糖、脑电等生理数据。在电子信息领域,石墨烯潜在的应用主要集中在柔性显示和触摸屏、传感器、RFID、散热材料等领域。传统透明导电膜大都采用ITO材料,ITO含带毒性的稀有元素铟,而且价格昂贵,缺乏柔韧性。因此,不少厂商已在开发新型的透明导电膜。目前ITO的替代材料有金属网格、碳纳米管、纳米银线等,但它们均有不同程度的缺陷,这给石墨烯提供了足够的替代空间。盖姆在获得诺贝尔奖之后曾到访三星公司,当看到三星公司编制的石墨烯产品路线图的50个特殊性能应用的时候,他认为最接近合理市场价值的应用之一是其柔韧性极好的触摸屏。在环保领域,盖姆研究发现氧化石墨烯薄膜可屏蔽除水之外所有其他分子,由此发现石墨烯有望用于制备过滤器材料,从而在海水净化、污水处理等方面实现应用。不仅如此,科学家对石墨烯最终取代硅成为计算机芯片的基础材料,也持乐观态度。对于普通人的日常生活来说,盖姆曾经用塑料来类比过石墨烯,他认为石墨烯可以开发出种类繁多的材料,就好像塑料一样,未来可以应用到生活中的各个角落。科研人员也发现石墨烯可用做绷带、食品包装甚至抗菌T恤。还有一些科学家有着更远大的理想,他们将制造万英里长的太空电梯的梦想,也寄托在石墨烯上。3石墨烯产业“三大件”据统计,我国石墨矿储量占到世界总储量的75%,具备发展石墨烯产业的资源基础。2004年至2013年,我国石墨烯处于实验室研究阶段,研究的产品包括晶体管、调制器、导电管等。2021年6月19日,一条石墨烯生产线搬入哈尔滨新区。图|视觉中国2013年起,石墨烯商品开始出现。由于制备技术还不成熟,只有一些对石墨烯质量要求不高的产品实现商品化,如锂电池、石墨烯散热薄膜等,但这些产品下游需求不大,主要替代一些传统材料。在此期间,2012年工信部发布《新材料产业“十二五”发展规划》,规划中的前沿新材料就包括石墨烯。此后,我国又进一步明晰了石墨烯未来十年发展目标——电动汽车锂电池用石墨烯基电极材料:较现有材料充电时间缩短50%以上,续航里程提高1倍以上; 海洋工程等用石墨烯基防腐蚀涂料:较传统防腐蚀涂料寿命提高1倍以上。 柔性电子用石墨烯膜:性价比超过ITO,且具有优异柔性,可广泛应用于柔性电子领域; 光电领域用石墨烯基高性能热界面材料:石墨烯基散热材料较现有产品性能提高2倍以上。 整体突破石墨烯的规模制备技术:石墨烯粉体的分散技术,石墨烯基电极材料的复合技术。2016年,科技部印发《“十三五”材料领域科技创新专项规划》,提出要发展单层薄层石墨烯粉体,高品质大面积石墨烯薄膜工业制备技术,柔性电子器件大面积制备技术,石墨烯粉体高效分散、复合与应用技术,高催化活性纳米碳基材料与应用技术。从这一年起,我国石墨烯企业数量快速增长,仅当年全国新增注册石墨烯相关企业数量就达704家,同比增长113%,其中多以研发为主,有实质性业务收入的企业数量仅为125家。截至2020年6月底,我国在工商部门注册的、营业范围包括石墨烯相关业务的企业已经达到了16800家。全国成立石墨烯产业园29个,石墨烯研究院54家,石墨烯产业创新中心8个,石墨烯联盟12个,分布在21个省市。“国外更多关注真正体现石墨烯新材料特性的未来型技术研发,而中国则非常重视近期的实用性产品的开发。” 中国科学院院士、北京石墨烯研究院院长刘忠范说。刘忠范还介绍,目前,中国石墨烯产业有“三大件”,约占总体产业的90%:一是新能源,将石墨烯用作锂离子电池的导电添加剂,使电池充电速度更快,电容量也有提升;二是添加进防腐涂料,节省防腐涂料中较贵的锌的含量,同时提升防腐性能;三是大健康领域,比如利用其导热性能制作眼罩、护膝等理疗产品。4防止炒作过热石墨烯一经发现就在世界各国备受追捧,在资本市场更是追逐的焦点,这也导致了五花八门的石墨烯概念和应用被炒作过热。比如,上周科学家刚刚发表一篇关于石墨烯离子筛性能的文章,本周资本市场就会联想到海水淡化的市值,相关股票随即暴涨。很多企业号称的石墨烯新品,只是往产品里面加入了少量石墨烯,提高了相关性能,石墨烯扮演的多是添加剂的角色,新品也很难能被认为是真正的石墨烯产品。2018年的《先进材料》上曾发表一篇文章,作者之一是石墨烯诺贝尔奖得主康斯坦丁·诺沃肖洛夫。这篇文章中,研究者们分析了来自美洲、亚洲和欧洲60家公司的粉体石墨烯样品,发现大多数公司的样品中石墨烯含量低于10%,而且没有一家样品中石墨烯的含量超过50%。此外,石墨烯的极强导电性、强度、透光性和导热性等特性,只是单原子厚度石墨烯的微观性能,而当下伪石墨烯概念炒作,将石墨烯的微观性能夸大为宏观性能。比如,石墨烯的厚度只有纳米,即使是1毫米厚的钢板,也是石墨烯厚度的200多万倍。即使石墨烯强度较高,也要几千层石墨烯叠加在一起才能承受1毫米钢板所能承受的力量。严格意义上讲,只有单层石墨片才是真正的石墨烯,但从应用的角度讲,大家的共识是,10层以下可称为石墨烯。石墨烯一旦叠加大约超过10层,就会丧失大多数独有特性,重新变成石墨,更不要提几千层。中国石墨烯产业技术创新战略联盟标准委员会主任戴石峰曾指出,一些企业把石墨烯神化,将其宣传为万能材料,个别企业甚至将石墨当石墨烯来售卖,这对产业的发展极为不利。学术界对石墨烯的共识是,目前石墨烯材料的成本过高且技术方面不完善,若要大规模实现工业化应用尚存在一定的困难。在现在常见的制备方法中,氧化石墨还原法是最常用的方法,但这种方法常常会带来大量的废酸、废水。比如用浓硫酸加上高锰酸钾去煮石墨,生产1公斤石墨烯需要耗费50公斤浓硫酸、3公斤高锰酸钾和1吨水。而化学气相沉积法(CVD),是将乙烯或乙炔等气体导入到一个反应腔内,让这些气体在高温下分解,经过冷却后,碳原子就沉积在基底表面形成石墨烯。虽然CVD能满足规模化制备大面积、高质量的石墨烯要求,但成本较高、工艺复杂。而由于制备成本一直居高不下,石墨烯价格一度高达5000元/克,比黄金还贵十几倍,这也阻碍了石墨烯下游市场的产业化步伐。石墨烯未来会如何?中国石墨烯产业技术创新战略联盟秘书长李义春认为,“业界虽然有争议,但科技创新,什么事情都可能发生,我们要有开放的心态。”参考资料:1.石墨烯:神奇材料看这里!丨经济日报,2020-10-212.新材料之王“石墨烯”究竟是什么?丨杨杰,中国科学院物理研究所3.专访|诺奖得主盖姆谈三维世界中的二维石墨烯:材料革命来了丨澎湃新闻,2022-2-194.神奇材料石墨烯——2010 年度诺贝尔物理学奖得主安德烈·盖姆访谈录丨世界科学,2010-125.石墨烯利好政策频现,理性发展未来可期丨新材料产业,2017-106.石墨烯的这十年丨百科知识,2014-127.石墨烯发展年度报告:我国石墨烯产业仍处在概念导入期丨新华社,2017-07-06库叔福利库叔的赠书活动一直都在!中信出版集团为库叔提供15本《宇宙小史》赠予热心读者。我们的目光永远望向太空,我们的征途是星辰大海。本书用通俗的语言,通过大量类比,准确地解释了人类是如何通过天文观测和物理推论认识到宇宙中的各种物质组成及其演化过程的。请大家在文章下评论,点赞最高的前3名(数量超过50)将得到赠书。

  • 索引序列
  • 石墨烯性能研究论文
  • 石墨烯研究论文
  • 石墨烯研究论文2000字
  • 石墨烯的研究发展论文
  • 石墨烯对航空的研究论文
  • 返回顶部