首页 > 学术论文知识库 > 三草酸根和铁酸钾毕业论文

三草酸根和铁酸钾毕业论文

发布时间:

三草酸根和铁酸钾毕业论文

A、同时MnO 4 - 被转化成Mn 2+ ,锰元素化合价由+7→+2,化合价降低被还原,作氧化剂,故A错误;B、需要配制成250mL溶液,必须使用到250容量瓶和胶头滴管,故B错误;C、高锰酸钾得到电子等于C 2 O 4 2- 失去的电子,n 得 =××(7-2)=;C 2 O 4 2- 全部转化成CO 2 ,化合价变化+3→+4,根据电子守恒 n(C 2 O 4 2- )= (2-1)×2 =;250mL原溶液C 2 O 4 2- 的物质的量为×10=,故n[K 3 Fe(C 2 O 4 ) 3 ]=× 1 3 =,三草酸合铁酸钾晶体中结晶水的质量为:×(g),故n(H 2 O)= 18g.mo l -1 =,故C错误;D、根据C项计算结果, 3 Fe(C 2 O 4 ) 3 中还有 2 O,结晶水数目为3,故该晶体的化学式为K 3 Fe(C 2 O 4 ) 3 ?3H 2 O,故D正确;故选D.

因为温度高时它的溶解度大,若不趁热过滤则会滤出三草酸根合铁酸钾晶体。趁热过滤,化学实验固液分离的一种操作。与“趁热过滤”有一定的区别。趁热过滤指将温度较高的固液混合物直接使用常规过滤操作进行过滤;热过滤指使用区别于常规过滤的仪器、保持固液混合物温度在一定范围内的过滤过程。如果溶液中的溶质在温度下降时容易析出大量晶体,而又不希望它在过滤过程中留在滤纸上,这时就要进行热过滤。三草酸合铁(Ⅲ)酸钾是制备负载型活性铁催化剂的主要原料,也是一些有机反应很好的催化剂,因而具有工业生产价值。合成三草酸合铁(Ⅲ)酸钾的工艺路线有多种。例如可以铁为原料制得硫酸亚铁铵,加草酸钾制得草酸亚铁后经氧化制得三草酸合铁(Ⅲ)酸钾;或以硫酸铁与草酸钾为原料直接合成三草酸合铁(Ⅲ)酸钾,亦可以三氯化铁与草酸钾直接合成三草酸合铁(Ⅲ)酸钾。本实验采用硫酸亚铁加草酸钾形成草酸亚铁经氧化结晶得三草酸合铁(Ⅲ)酸钾。

【三草酸合铁酸钾】(potaxxium trioxalatoferrate) ,又称草酸铁钾、乙二酸铁钾,三草酸合铁(Ⅲ)酸钾 、草酸高铁钾 化学式`K_3[Fe(C_2O_4)3]\cdot 3H_2O`,分子量.绿色单斜晶体.比重.加热至100℃时失去全部结晶水,230℃时分解.溶于水,不溶于乙醇.性状:亮绿色单斜晶体,易溶于水,难溶于醇,对光敏感,加热至100℃开始失去结晶水,温度更高开始分解,水溶液中光照能释放出氧气.将光照射其水溶液,生成相应的亚铁离子和碳酸.由铁盐与草酸钾溶液作用而得.用途:摄影、电镀业、化学试剂、有机合成、科研.用于测定光量.

影响三草酸根合铁酸钾产率的因素:1、温度:①FeC2O4·2H2O 在冷水中的溶解度较热水中大,所以用冷水洗涤 FeC2O4·2H2O 晶体损失较大; ②H2O2氧化Fe2+过程温度需保持在40℃,温度过高H2O2分解、过低氧化速率过低都会影响Fe2+的氧化结果,氧化不完全,Fe2+ 会留在 FeC2O4·2H2O 是而降低 Fe3+ 产率。2、酸度:①用蒸馏水溶解摩尔盐,并加热,这会导致 Fe2+ 过早氧化而不能进入 FeC2O4·2H2O 沉淀,造成损失,所以要用溶解酸性水溶解摩尔盐;② 在第二步加入饱和草酸溶液时,草酸的加入量会影响溶液的 pH 值,pH 过低,生成 K2C2O4 副反应严重,pH 过高,Fe(OH)3 溶解不充分,导致产率下降。从以上分析可知,实验过程中,严格控制温度和酸度,是提高产率的关键。

锰酸钾的研究论文

1、陈卫,李圭白,邹浩春,高锰酸钾复合药剂去除太湖水中蓝藻的试验研究,哈尔滨建筑大学学报,2001,34(3):67-692、陈卫,李圭白,邹浩春,高锰酸钾复合药剂去除太湖水中色度的试验研究,,哈尔滨建筑大学学报,2001,34(6):68-693、吴慧芳,陈卫,城市降雨径流水质污染探讨,中国给水排水,2002,18(12):25-284、邓风,陈卫,南京居住区雨水利用方案探讨,中国给水排水,2003,19(5):97-995、邓风,陈卫,城市雨水的物化处理技术,中国给水排水,2003,19(10):97-986、邓风,陈卫,南京市住宅小区雨水回用方案技术经济分析,城市环境与城市生态,2003,16(6):104-1067、陈卫,城市水系统良性循环的节水减污技术关键,水资源保护,2004,20(1):40-448、Chen Wei, Zheng Xingcan, Study on Removal Including of Pollutants Blue-green Algae in Tai Lake And Its Influencing Factor with PPC,Attending WEFTEC'2004(77th Annual Technical exhibition and Conference), and Board Meeting of Water Envrionment Federation, New Orleans USA,、郑晓英,陈卫,好氧颗粒污泥特质及其处理难降解物质废水的应用研究,水资源保护,2005,21(3):36-418、陈卫,郑天柱,城市达标污水处置技术,水资源保护,2005,21(4):22-269、宋佩娣,陈卫,水厂混凝剂投加量杯罐试验的合理工况研究,中国给水排水,2005,21(12)47-4910、孙敏,陈卫,居住区污水再生回用技术经济分析,给水排水,2005,31(9):76-7911、郑兴灿,陈卫,林涛,江浙平原河网地区城市雨污水再生利用策略及技术路线,首届城市水景观和水环境治理国际研讨会,扬州,2005,512、Chen Wei, Zheng Xingcan, Considerations on Water Reuse Issue in China Plain Brooky Region,IWA Specialty Conference of “Wastewater Reclamation & Reuse for Sustainability (WRRS2005)”,Koera,200513、Sun Wenquan, Chen Wei, Study of the influence of large water conservancy projects on circumjacent environment and ecosystem in China,IWA International Conference on Water Conservation Management in Coastal Area,Qingdao, China ,、夏琼琼,陈卫,饮用水生物强化过滤处理效能及其影响因子研究,河海大学学报,2006,34(1):41-4515、陈卫,宋佩娣,污水系统中导致硫化氢中毒的影响因素与控制措施,给水排水,2006,32(1):15-1916、陈卫,李圭白,邹浩春,PPC强化混凝除藻的影响因子研究,河海大学学报,2006,34(2):141-14317、林涛,陈卫,王磊磊,饮用水活性炭除微污染技术的生物安全性研究,哈尔滨工业大学学报,2006,38(12):2194-219818、邹琳,陈卫,饮用水处理絮凝动力学模型研究与应用,河海大学学报,2006,34(5):496-50119、夏琼琼, 陈卫, 顾丽等. 水厂过滤工艺的生物强化技术研究[J]. 中国给水排水, 2006, 22 (增刊): 、赵金辉,陈卫,高速公路降雨径流污染特征及其污染控制,环境污染治理技术与设备,2006,7(11):66-7021、Lin Tao, Chen Wei. Drinking Water Biotic Security on Micro-polluted Water Treatment by Activated Carbon Process,2006Xi’ an Interational Conference of Architecture and Technology. 200622、夏琼琼,陈卫,郑兴灿等. 饮用水生物过滤工艺中微量污染物的生物降解模型及适用性分析. 给水排水, 2007, 33(2): 、李红瑛,陈卫,A/Q-MBR处理低浓度生活污水的试验研究,中国给水排水,2007,23(3):96-9824、陆健,陈卫,基于BP神经网络的供水管网分时段宏观模型研究,中国给水排水,2007,23(3):99-10125、许航,陈卫,程士俊,气提式接触氧化法处理生活污水的研究,中国给水排水,2007,23(5):90-9626、陈卫,郑志侠,林涛,许航,邹琳,构建多元化控制体系防治巢湖水污染. 水资源保护,2007,23(2):、李红岩,陈卫,杨金虎等. 周期循环式生物反应器系统处理生活小区污水研究. 给水排水, 2007,33(5):、赵金辉,陈卫,林涛,臭氧高级氧化技术在饮用水安全保障中的作用,给水排水,2007,33(6):117-12129、C. Wei, Z. Xingcan and L. Tao, Considerations on the issue of water reuse in eastern China plain brooky regions, Water Science & Technology,2007,55 (1-2):387–395 (SCI、EI ,)30、CHEN Wei, LIN Tao, WANG Lei-lei, Drinking water biotic safety of particles and bacteria attached to fines in activated carbon process, Frontiers of Environmental Science & Engineering in China,2007,1(3):280-285 (doi:)31、周克梅、陈卫、单国平等,南京长江水源地污染预测及应对措施研究[J],给水排水,33(8):36-3932、周克梅、陈卫、林涛等,南京长江水源突发性污染应急水处理技术应用研究[J],给水排水,33(9):13-1633、林涛,陈卫,王磊磊,活性炭工艺出水中颗粒物粒径分布规律及影响因素研究,第十一届海峡两岸环境保护学术研讨会,哈尔滨,、辛玉婷,陈卫,孙敏. 淡水养殖污染负荷估算方法刍议[J]. 水资源保护,2007,23(6):、安巧霞,陈卫,塔里木灌区的面源污染现状及对策[J],新疆环境保护,2007,29(4):17~19.36、陈卫,邹琳,汪德爟,水处理絮凝动力学试验与数值模拟研究,解放军理工大学学报[J],2008,9(3):279-285 (EI:083011401914)37、陈卫,王磊磊,林涛,活性炭深度处理技术的化学安全性及影响因素研究,中国工程科学[J],2008,10(5):32-3738、邹琳,陈卫,汪德爟,水处理絮凝过程动力学的分形模型研究,河海大学学报[J],2008,36(2):165-16946、赵金辉,陈卫,饮用水TiO2光催化消毒机理及应用研究进展,青岛理工大学学报[J],2008,29(1):79-8339、卜兆宇,陈卫,夏琼琼,饮用水生物强化过滤工艺生物膜特性研究,供水技术[J],2008,2(1):11-1540、许航、陈卫、李为兵等.常规-超滤膜组合工艺净化湖泊水研究,中国给水排水[J],2008,24(15):58-6241、LIN Tao,CHEN Wei. Inactivation of Zooplankton and Influence on water quality security of Disinfection Byproduct with Current Potential Disinfectant of Chlorine and Chloramines. 12th APCChE, ISBN: 978-7-5611-4285-1, Vol(2), 光盘,文章编号213742、龚延风,陈卫主编,《建筑消防技术》,科学出版社,200243、陈卫,张金松主编,《城市水系统运营与管理》,中国建筑工业出版社,2005

实验人:XXX实验日期:XXXX年XX月XX日1、实验目的:实验室用高锰酸钾制取和收集氧气2、实验仪器和药品:大试管,酒精灯,铁架台,铁夹,集气瓶,水槽,毛玻璃片,导管,橡皮管,单口塞,高锰酸钾。3、实验步骤:(1)组装:把药品装入试管,盖上单口塞,连上导管,铁夹夹住试管管口1/3处,试管底部略微上倾,水槽装一半水,集气瓶装满水用毛玻璃片盖住(不留气泡)并倒置于水槽中,把导管伸入集气瓶。(2)点燃酒精灯,先不收集气体(要把装置内空气排尽),过一会之后收集气体至集气瓶中水排尽。4、氧气的检验和性质的研究把带火星的木条放在集气瓶口,木条复燃,说明氧气集满,并推知氧气助燃。应该可以了

物理方法:不停地用试管刷刷洗--注意不要捅破就行。化学方法:加入硫酸或盐酸稍微加热后洗净----注意加热时不要过热,试管口不要对着人。终极方法:实在洗不掉,放在实验室垃圾回收桶内。

把试管放到盐酸和草酸的混合溶液中一泡就很干净了,我洗几百只都是这样洗的。

低品位铝土矿草酸除铁研究论文

第一步溶解:将铝土矿溶于NaOH(aq) Al�6�0O�6�1+ 2NaOH ==== 2NaAlO�6�0(偏铝酸钠)+ H�6�0O 第二步过滤:除去残渣氧化亚铁(FeO)。即可达到除铁功效。

氧化铝生产在什么情况下必须用碳分

我还推荐一本书:《氧化铝生产工艺》 这里有下载希望对你有帮住。。下面罗列所有氧化铝的工艺,仅供参考1、半透明氧化铝烧结体与其生产2、醇铝水解法制备高纯超细氧化铝粉体技术3、一水硬铝石型铝土矿精矿生产氧化铝方法4、利用高岭岩(土)生产超纯氧化铝/工艺5、一种球形氧化铝颗粒/制备方法6、热解生产/氧化铝7、一种形态松散/纳米、亚微米级高纯氧化铝/制备方法8、烧结法生产氧化铝提高熟料氧化铝溶出率/方法9、半透明氧化铝烧结体与其制备方法10、水合氧化铝/制备方法11、氧化铝中空纤维膜制备方法12、一种氧化铝吸附剂/制备方法13、溶胶-凝胶氧化铝磨粒14、一种高比表面积氧化铝15、一种氧化铝-氧化锆纤维/制备方法16、氧化铝/生产方法17、一种氧化铝载体/制备方法18、一种γ-氧化铝载体与其制备方法19、高纯纳米级氧化铝/制备方法20、一种作催化剂载体用/纳米级氧化铝与其制备方法21、高温下保持高比表面氧化铝与其制备方法22、烧结法氧化铝生产过程中赤泥分离方法23、一种氧化铝载体与其制备方法24、多孔高氧化铝熔融铸造耐火物与其制造方法25、复合氧化铝/制备方法26、综合利用煤矸石生产氧化铝和电解铝27、高纯氧化铝/制备方法28、一种氧化铝与其制备方法29、一种高烧结活性氧化铝粉体/制备方法30、一种制造高纯超细氧化铝粉/方法31、氧化铝生产烧结法赤泥分离方法32、工业化用层析氧化铝33、超纯纳米级氧化铝粉体/制备方法34、一水型铝土矿石灰拜耳法生产氧化铝工艺35、α-氧化铝细粉与其制造方法36、γ-氧化铝/制备方法37、一种高纯氧化铝填料/制作方法与在转化炉中/应用38、一种生产含有少量氧化钠/氧化铝/方法39、一种氧化铝生产过程中补碱/方法40、一种一水型铝土矿生产氧化铝/母液处理方法41、用于氧化铝生产过程中加入石灰/方法42、用铝电解废弃物制取再生氟化盐、氧化铝/装置43、醇铝气相法制取纳米高纯氧化铝/方法44、一种生产氧化铝工艺过程/补碱方法45、一种拜尔法生产氧化铝/方法46、拜尔法联合生产氧化铝和铝酸钙水泥/方法47、含铁铝土矿生产氧化铝工艺48、一种活性氧化铝/制备方法49、球形氧化铝颗粒与其生产方法50、氧化铝颗粒与其生产方法51、氧化铝粉末52、一种Fe基氧化铝复合材料铝电解惰性阳极与其制备方法53、高热稳定性氧化铝与其制备方法54、用浮选法生产再生氧化铝/工艺55、一种生产超微细氧化铝粉/方法56、一种生产氧化铝/粗液脱硅方法57、α-氧化铝粉末与其制造方法58、纳米氧化铝材料/制造方法59、一种利用粉煤灰制备氧化铝联产水泥熟料/方法60、纳米氧化铝浆组合物与其制备方法61、利用生物发酵废气CO2生产氢氧化铝/工艺62、溶胶、凝胶法制备超细氧化铝工艺方法63、一种烧结法生产砂状氧化铝/方法64、一种连续碳分生产砂状氧化铝/方法65、α-氧化铝纳米粉/制备方法66、细粒状活性氧化铝/制备方法67、利用富铝废渣制备氢氧化铝与氧化铝/方法68、砂状氧化铝分解新工艺69、氧化铝生产分解分级新工艺70、电镀氧化铝/新工艺71、含铝酸钙/物料提取氧化铝工艺72、利用铝型材厂工业污泥制备活性氧化铝/方法73、烧结法氧化铝生产工艺/熟料制备方法74、一种耐高温高比表面氧化铝/制备方法75、以磷化铝制备活性氧化铝/方法76、用工业氢氧化铝生产高纯超细氧化铝/方法77、两组份烧结法氧化铝制备工艺78、消除种分周期性细化/砂状氧化铝生产方法79、α-氧化铝粉末/制备方法80、利用铝型材厂工业污泥制备氧化铝/方法81、一种氧化硅-氧化铝与其制备方法82、一种拜耳法种分生产砂状氧化铝/方法83、用废铝灰生产氧化铝/方法84、一种生产氧化铝新工艺85、一种联合法生产氧化铝降低拜耳法精液αk/方法86、一种球形高纯氧化铝/制备方法87、一种晶种分解生产砂状氧化铝/方法88、一种制备高纯超细活性氧化铝/方法89、γ-氧化铝微球/生产方法90、火成法制备/表面改性氧化铝91、一种氧化铝生产烧结法赤泥分离方法92、一种混联法氧化铝生产拜耳法溶出矿浆稀释方法93、一种中孔氧化铝/制备方法94、一种涂层用活性纳米氧化铝/制备方法95、由工业废料制备纳米氧化铝粉体/方法96、高纯氧化铝粉体/制备方法97、一种从高硅铝土矿中提取氧化铝/方法98、超细活性氧化铝/制备方法99、一种制备小粒径氧化铝粉/方法100、从铝基含镍废渣中回收氧化铝/方法101、烧结法氧化铝生产中高浓度溶出液/生产方法102、一种有序中孔氧化铝/制备方法103、一种纳米氧化铝与其制备方法104、一种用煤矸石生产氧化铝/方法105、一种从粉煤灰中提取氧化铝/方法106、一种制备高纯氧化铝过程中/屏蔽除铁方法107、制备α-氧化铝粉末/方法108、改性氧化铝组合物与其制备方法109、反浮选铝土矿精矿生产氧化铝/方法110、一种氧化铝生产/补碱方法111、一种氧化铝/生产方法112、用于生产α-氧化铝粉末/方法113、一种氧化铝纳米粉体/制备方法114、耐高温/高比表面积复合氧化铝粉体与其制造方法115、一种含添加剂/氧化铝116、制备α-氧化铝粉末/方法117、超细氢氧化铝/制备方法118、与合成氨厂生产相结合/纳米氧化铝粉体/制备方法119、一种处理氧化铝粉体/方法120、一种生产氧化铝/方法121、一种红色氧化铝粉体/制备方法122、一水硬铝石型铝土矿溶出后加矿增浓生产氧化铝/方法123、拜尓法生产氧化铝中预脱硅/方法124、提高氧化铝生产中溶出液Rp/方法125、氧化铝生产中赤泥除砂与排粗/方法126、氧化铝生产中碳酸盐/排除方法127、氧化铝生产溶出后加矿工艺128、用高铝炉渣生产氧化铝/工艺过程方法129、低浓度溶液种分生产粉状氧化铝方法130、低浓度种子分解生产砂状氧化铝/方法131、生产低苏打氧化铝/方法、其装置和氧化铝132、对生产三水氧化铝/拜耳法/改进,该改进涉与铝酸盐溶液与不溶残渣/分离133、一种提高拜耳法生产氧化铝循环效率/方法134、低温制备α-氧化铝细粉/方法135、一种制备氧化铝/方法136、稀硝酸浸渍和煅烧法再生废活性氧化铝/方法137、板状氧化铝颗粒/制备方法138、一种氧化铝纳米纤维/制备方法139、一种高纯纳米氧化铝/连续化制备工艺140、拜耳法氧化铝生产赤泥分离方法141、一种拜耳法生产氧化铝中/苛化工艺142、两段分解生产砂状氧化铝/热交换工艺与其设备143、一种高比表面积高热稳定性氧化铝/制备方法144、一种由粉煤灰制取氧化铝/方法145、一种氧化铝生产溶出系统/清洗卸料方法146、一种氧化铝/生产方法147、载银活性氧化铝抗菌剂与其制备方法148、制备α-氧化铝细粒/方法149、一种氧化铝生产中/化灰方法150、一种提高联合法氧化铝生产回收率方法151、一种烧结法碳分母液浸取钙硅渣回收氧化铝方法152、烧结法种分生产砂状氧化铝/方法153、氧化铝生产中石灰/消化方法154、微粒α氧化铝155、一种液-液萃取降低氧化铝生产精液αk/方法156、制备纳米级氧化铝弥散铁粉/方法157、阶层多孔γ-氧化铝与其制备方法和用途158、一种球形含硅氧化铝与其制备方法159、一种纤维状纳米氧化铝粉体/制备方法160、一种具有粒子内介孔结构/γ-氧化铝纳米粉体/制备方法161、两种浓度精液生产高强度氧化铝/方法162、一种拜尔法生产氧化铝/方法163、一种拜耳法种分生产氧化铝/方法164、铝废渣废灰用于改善一水硬铝石拜耳法生产氧化铝工艺165、两段分解生产砂状氧化铝/成品与种子分级工艺166、氧化铝自粉化熟料与其制备方法167、一种混和型铝土矿生产氧化铝/方法168、片状α-氧化铝晶体和其制备方法169、氧化铝回收170、一种由低铝硅比/含铝矿物制备氧化铝/方法171、一种提取氧化铝/方法172、煤矸石中提取氢氧化铝或氧化铝与其废渣生产水泥/方法173、一种从高铝粉煤灰提取氧化铝与其废渣生产水泥/方法174、从粉煤灰中提取氧化铝与利用废渣生产水泥/方法175、一种氧化铝晶须/制备方法176、一种直接利用煤粉煅烧氧化铝熟料/装置与其方法177、一种气相法纳米氧化铝颗粒/制备方法178、一种新型γ-氧化铝催化剂与其制作工艺179、一种改性氧化铝/生产方法180、一种利用粉煤灰生产二氧化硅和氧化铝/方法181、一种制取多孔氧化铝膜/强烈阳极氧化法182、一种用含铝污泥制备氧化铝/方法183、一种制备有序介孔氧化铝/方法184、利用高铝粉煤灰制取氧化铝和白炭黑清洁生产工艺185、氧化铝烧结体186、一种改进/串联法生产氧化铝/方法187、一种柠檬酸浸出粘土矿生产氧化铝/方法188、一种核壳结构磁性微球形氧化铝与其制备方法189、透明/多晶氧化铝190、新型粉煤灰提取氧化铝工艺191、一种拜耳法生产氧化铝/配钙方法192、一种中低品位铝土矿生产氧化铝/方法193、一种氧化铝生产过程中赤泥/分离方法194、一种从粘土矿中提取氧化铝/方法195、一种从粉煤灰中提取氧化铝/方法196、一种从低品位铝土矿中提取氧化铝/方法197、一种从红柱石矿中提取氧化铝/方法198、一种纳米氧化铝空心球/制备方法199、一种并联法生产氧化铝/工艺方法200、一种混联法生产氧化铝/方法201、混联法生产氧化铝过程中排盐过滤机滤饼/处理方法202、混联法氧化铝生产中过滤机硅渣/处理方法203、一种氧化铝熟料窑进料烧结方法204、提高氧化铝工艺性能/进料处理方法205、用于改进氧化铝工艺特性/进料处理206、氧化铝粒子

溶于碱后虑出沉淀通CO2将得到的沉淀灼烧得到氧化铝 熔化后电解

苯甲酸和山梨酸检测论文

【食品与营养科学】说了这么一句话:随着人民生活水平的提高,生活节奏的加快,食品消费结构的变化,促进了我国食品工业的快速发展,要求食品方便化,多样化,营养化,风味化和高级化,为了达到这些要求就离不开食品添加剂。论文这件事儿,是得你自己好好思考的~

食品安全问题绐终是广大消费者所关心的根本问题,人工合成食品添加剂的使用直接影响食品的安全性,也直接关系到消费者的身体健康.为指导消费,让消费者了解国内市场上销售的部分食品中含有人工合成甜味剂(糖清钠,甜蜜素)和防腐剂(苯甲酸钠,山梨酸钾)等食品添加剂的使用情况,正确认识食品添加剂,正确选择和食用含食品添加剂的食品,中国消费者协会在北京市场上购买了果冻,八宝粥,饮料,蜜饯,糖果,口香糖,无糖食品,酱莱等8大类,103个样品,委托中国进出口商品检验技术研究所,依照国家标准对样本进行测试,具体检测项目为糖精钠,甜蜜素等两种人工合成甜味剂,苯甲酸钠,山梨酸钾等两种防腐剂,以及食品的细菌总数,大肠菌群,金黄色葡萄球菌等卫生指标.这是中国消费者协会继200,2001年之后第三次对食品添加剂使用情况进行广泛测试. 本次测试结果显示,糖精钠,甜蜜素,苯甲酸钠,山梨酸钾这四种食品添加剂被广泛使用,103种样本,有87个含有甜味剂或防腐剂.但样本的细菌总数,大肠菌群,金黄色葡萄球菌等卫生指标情况较好.只有4个样本的细菌总数超标,其他样本没有发现存在微生物方面的问题. 本次测试发现,样本中食品添加剂的使用主要存在以下几方面问题: 1>甜味剂超范围,超限量使用问题依然严重 我国GB2760《食品添加剂使用卫生标准》中规定了食品添加剂的使用范围和使用限量,在标准中没有提及的食品种类,表示国家尚未批准在该类食品中使用某种添加剂.通过对此次测试结果的分析,几类食品样本中近50%的样本存在甜味剂和防腐剂超范围,超限量使用的情况.果脯蜜饯类20个样本中有17个样本存在超限量使用甜味剂现象,其中有14个样本糖精钠使用超标,占果脯蜜饯样本的70%;9个酱莱样本中有4个样本的甜味剂超标;44个饮料类样本中有7个样本甜味剂超标,均为甜蜜素超限量使用;果冻,糖果,口香糖和八宝粥样本中未发现超量使用的问题,但八宝粥中存在甜味剂超范围使用现象.具体情况如下: 蜜饯类食品中,有70%的样本糖精钠测试结果高于国家规定的使用限量,糖精钠最高含量超出允许限量12倍之多.有40%的蜜饯样本甜蜜素测试结果高于国家规定使用限量,检测出的最高含量是国家允许添加量的倍. 酱莱类食品有1/3的样本糖精钠含量超出国家标准限量值.有1个样本的甜蜜素含量高达,是国家使用限量值的倍.酱莱中还有2个样本的苯甲酸钠含量高于限量值,其中1个样本的苯甲酸钠量达到,超出国家允许限量4倍多. 在国家标准中八宝粥没有被允许使用糖精钠这一甜味剂.但测试的7个八宝粥样本中,都检测含有少量的糖精钠成分. 2>使用甜味剂或防腐剂没有明确标注或标注错误 国家标准GB7718《食品标签通用标准》中规定:食品添加剂应使用GB2760规定的产品名称和种类名称,甜味剂,防腐剂,着色剂应标明具体名称.本次检测出含有甜味剂或防腐剂的样本,发现部分样本没有按照国家标准的规定作出明确标注,同时还发现有些产品作了错误标注,如检测出含有苯甲酸钠,但标签标注却是山梨酸钾.标签标注问题较多的样本集中在蜜饯类和酱莱类食品.全部103个样本中,使用了防腐剂或甜味剂而没有标注或标注错误的共计67样次. 20个蜜饯样本中均检出含有糖精钠,有19个样本没有标注,只有1个样本进行了标注.11个样本没有标注含有的防腐剂苯甲酸钠,另有3个样本标注的防腐剂与实际检测完全不符,检测含有"苯甲酸钠",标签却标注为"山梨酸钾". 9个酱莱样本都没有标注出所含有的糖精钠,2个样本没有标注含有的甜蜜精,7个样本没有标注防腐剂或者防腐剂标注不全,如含有两种防腐剂只标注出一种. 44个饮料类样本中,有的样本没有明确标出其含有的甜味剂或防腐剂. 3>无糖食品中同样含有甜味剂 本次测试的样本中有14个是无糖食品.无糖食品是指不含蔗糖和淀粉糖.但必须含有糖醇等一类食糖替代品,我国提倡使用对健康有益的糖醇和低聚糖等食糖替代品,但无糖食品尚无国家标准或行业标准可循,各生产企业均按照企业标准进行生产.测试结果发现有5个产品中存在糖精钠,2个样本含有甜蜜素,3个样本同时含有糖精钠和甜蜜素,糖精钠含量最高达,同时甜蜜素的含量为.鉴于无糖食品的受用者一般为糖尿病者等特殊人群,那么,产品的宣传说明对消费者的指导意义更为重要,但有的产品包装上对无糖食品的宣传和介绍违反国家相关规定,宣传其具有降糖疗效.《广告法》规定:"食品,洒类,化妆品广告内容必须符合卫生许可的事项,并不得使用医疗用语或者易与药品混淆的用语."因此,消费者在选择和食用无糖食品时,不但要仔细阅读配料表,了解该产品添加何种甜味剂作为糖类替代品,还要认识到无糖食品只是一种食品,绝不能替代药物的治疗作用,更不能相信无糖食品有关降糖功效等医疗用语的宣传. 4>有些食品儿童不宜吃 果冻,饮料,蜜饯,糖果等都是儿童非常喜爱的食品,这次测试样本中果冻的质量普遍较好,其次是饮料样本中的果汁饮料和乳酸菌饮料,但蜜饯类食品样本中普遍存在问题,添加剂使用过量,该标注的添加剂没有标注等,儿童不宜食用这类食品. 食品中过量的添加剂会对儿童的生长发育和身心健康造成不利影响,儿童尤其是婴幼儿的免疫系统发育尚不成熟,肝脏的解毒能力较弱,极容易对食品中的添加剂产生过敏反应.目前世界一些发达国家对于儿童食品的安全问题相当关注,都在不断完善有关法规制度来保障儿童的健康安全. 联合国粮农组织及世界卫生组织(FAO/WHO)所属的食品添加剂专家委员会(JECFA)规定了食品添加剂的日许量(ADI值).ADI值的定义为:依据人体体重,终身摄入一种食品添加剂而无显著健康危害的每日允许摄入量的估计值,它是国内外评价食品添加剂安全性的首要和最终依据.糖精钠,甜蜜素,苯甲酸钠,山梨酸钾这四种食品添加剂的ADI值分别为5MG/KG,11MG/KG,5MG/KG,25MG/KG(单位MG/KG为每天每公斤体重允许摄入的毫克数).这一数值对于生产加工安全放心的儿童食品具有重要的参考价值. 5>糖精钠在食品中使用依然普遍 糖精钠属于非营养型人工合成甜味剂,其稀溶液的甜度是蔗糖的300~500倍,后味微苦,与蔗糖相同甜度的重量所产生的热量不能蔗糖产生热量的2%,在食品中的应用相当广泛. 因为20世纪70年代有人发现糖精钠含量达到5%~时,用来喂养的动物的膀胱癌发病率与糖精钠的摄入量明显相关,所以美国食品药物管理局曾提出禁止使用糖精钠.但也有学者认为上述实验与实际饮食中的摄入量有极大的差异,而且流行病学研究并未发现糖精钠的使用与膀胱癌的关联.联合国食品法典委员会规定了糖精钠的使用限量,同时对其使用范围加以限制.我国有关部门也曾为关于糖精钠等高倍甜味剂的生产使用下发通知,要求生产企业严格按照国家标准在规定范围内限量使用. 本次测试的103个样本中,有57个样本含有糖精钠,占受检样本量的,其中19个样本的糖精钠含量超过国家标准限量值,其余38个样本中的糖精钠国家尚未批准使用. 通过本次对一百余种食品中甜味剂和防腐剂的测试,我们发现人工合成食品添加剂的使用情况不容乐观,因此,特向广大消费者提示: 1.蜜饯类食品大量使用甜味剂,普遍使用防腐剂,而且多数没有在标签中明确标注所使用的添加剂,问题较多,质量不稳定.消费者应适量,适度食用蜜饯食品,尤其是话梅,陈皮类蜜饯,其甜味剂含量较高.特别是儿童,孕妇等人群不宜食用蜜饯类食品. 2.在我国,果汁(味)饮料国家规定其防腐剂的限量高于含气的碳酸饮料,这样可能会导致果汁(味)饮料中防腐剂的含量比碳酸饮料要高,儿童饮用果汁(味)饮料要适量. 3.对于无糖食品等特殊食品,消费者购买时要仔细查看其标签中的内容,尤其是配料表,不要相信其宣传的疗效功能,因为食品不是药品,这种宣传本身就是违法宣传. 4.建议家长给孩子购买零食时应谨慎选择,现市场上销售的儿童食品中,大部分含有食品添加剂,有些食品中食品添加剂使用超范围,超限量,这样的食品儿童经常食用对健康非常不利.有些油炸食品,膨化食品,也是造成肥胖儿的原因之一. 5.消费者购买食品时应选择品牌信誉度较高的产品,并尽量到正规超市,商场购买,以保证所选食品的安全性,保证自身健康. 我国对于食品添加剂的使用范围,使用限量经及如何标注等都在相关标准中作出了规定,但从企业得到的反馈情况看,企业对食品添加剂的使用范围及使用限量理解比较透彻,而对于标签标注问题,认为只要不超过限量值,标注与否并不重要.还有些企业对标签标准理解不透彻,认为只要不是企业作为配料主动添加的添加剂,可不标注.因此,中消协呼吁企业按标准逐步规范产品的标签标注,诚信生产经营,维护消费者知情权;呼吁国家有关主管部门应加大国家标准的宣贯力度,加强监督和检查,更好的维护广大消费者的权益,推动我国食品行业健康发展.

苯甲酸、山梨酸在食品中都是作为防腐剂使用的,由于它们对人体具有一定的危害作用,它们的用量必须严格控制,因此测定它们的含量是十分必要的。一般样品经酸化后,山梨酸、苯甲酸用乙醚提取浓缩后,用附氢火焰离子化检测器的气相色谱仪进行分离测定,与标准系列比较定量,就可以测定它们的含量。仪器、设备第 1 页气相色谱仪:具氢火焰离子化检测器。容量瓶等玻璃仪器。试剂乙醚。石油醚:沸程30~60℃。盐酸。无水硫酸钠。山梨酸、苯甲酸标准溶液: 精密称取山梨酸、苯甲酸各,置于100ml容量瓶中,用石油醚-乙醚(3:1)混合溶剂溶解后并稀释至刻度。此溶液每毫升相当于2mg山梨酸或苯甲酸。第 2 页山梨酸、苯甲酸标准使用液:吸取适量的山梨酸、苯甲酸标准溶液,以石油醚-乙醚(3:1)混合溶剂稀释至每毫升相当于50、100、150、200、25Oμg山梨酸或苯甲酸。操作步骤样品提取:称取事先混合均匀的样品,置于25ml带塞量筒中,加 6N盐酸酸化,用15、10ml乙醚提取两次,每次振摇1min,将上层醚提取液吸入另一个25ml带塞量筒中,合并乙醚提取液。用3ml4%氯化钠酸性溶液洗涤两次,静止15min,用滴管将乙醚层通过无水硫酸钠滤入25ml容量瓶中。加乙醚至刻度,混匀。准确吸取5mL乙醚提取液于5mL带塞刻度试管中,置40℃水浴上挥干,加入2ml石油醚-乙醚(3:1)混合溶剂溶解残渣,备用。第 3 页色谱条件:色谱柱:玻璃柱,内径3mm,长2m,内装涂以5%DEGS+1%H3PO4固定液的60~80目Chromosorb W AW。气流速度:载气,氮气,50ml/min(氮气和空气、氢气之比按各仪器型号不同选择各自的最佳比例条件。)温度:进样口 230℃;检测器230℃;柱温170℃。测定:进样2μL标准系列中各浓度标准使用液于气相色谱仪中,可测得不同浓度山梨酸,苯甲酸的峰高,以浓度为横坐标,相应的峰高值为纵坐标,绘制标准曲线。同时进样2μL样品溶液,测得峰高与标准曲线比较定量。第 4 页计算式中:X2──样品中山梨酸或苯甲酸的含量,g/kg;A3——测定用样品液中山梨酸或苯甲酸的含量,μg;V3——加入石油醚—乙醚(3:1)混合溶剂的体积,mL;V4─—测定时进样的体积,μL;m2──样品的质量,g;5─—测定时吸取乙醚提取液的体积,mL;25──样品乙醚提取液的总体积,mL。由测得苯甲酸的量乘以,即为样品中苯甲酸钠的含量

山梨酸钾的检测的外文论文

添加剂在食品领域立下的功劳可不能因几个“害群之马”被统统抹煞。食品添加剂可以起到提高食品质量和营养价值,改善食品感观性质,防止食品腐败变质,延长食品保藏期,便于食品加工和提高原料利用率等作用。 例如,我们家家户户用的酱油,为了防止夏天发霉,必须添加防腐剂苯甲酸钠。大家熟知的名牌饮料可乐等,为了防止变质也添加了防腐剂苯甲酸钠;为了在常温下保存水果 和蔬菜,可以采用含仲丁胺的气雾保存,或用有防腐功能的保鲜涂膜保存;肉肠为了保证其保质期,必须添加防腐剂山梨酸钾及异维生素C等抗氧剂……有些添加剂还已经被保健食品和药物采用。例如着色剂红曲、甜味剂甘草甜和木糖醇,均被列入了2002年的药物名单。 防腐剂是食品添加剂中的一种,不添加防腐剂,食品会很快霉变,腐烂。花生等食品中产生的黄曲霉,肉类中产生的芽孢杆菌毒性都很大,不使用防腐剂,就更容易对人体造成危害。我国目前允许使用的防腐剂有苯甲酸、山梨酸、乳酸 链球菌素、二氧化硫、焦亚硫酸钾、钠等13种。苯甲酸和山梨酸在饮料中常用。 苯甲酸进入人体后,在生物转化过程中,形成葡萄糖苷酸,并全部从尿中排出体外,不在人体内蓄积。苯甲酸是已知防腐剂中比较安全的一种。山梨酸是一种不饱和 脂肪酸,在体内可以直接参与脂肪代谢,最后被氧化为二氧化碳和水,因此几乎没有毒性,是各国普遍使用的一种较安全的防腐剂。 市场上的一些食品的外包装上注明“本产品不含有任何食品添加剂”的字样其实都不够真实。事实上,所有食品都含有食品添加剂,不含有食品添加剂是做不到的,也是不真实的。某些厂家之所以这样标识,主要是迎合消费者对食品添加剂的一些误解,是一种误导消费的行为。

食品添加剂及食品安全摘要: 食品是指各种供人食用或者饮用的成品和原料,以及按照传统既是食品又是药品的物品,但不包括以治疗为目的的物品。食品添加剂是食品生产中的重要原料,因此本文将重点介绍食品添加剂的作用以及使用中存在的问题和对策并介绍我国食品安全现状及相应的问题。关键词: 食品添加剂 问题 对策 食品安全 现状随着人民生活水平的提高,生活节奏的加快,食品消费结构的变化,促进了我国食品工业的快速发展,要求食品方便化,多样化,营养化,风味化和高级化,为了达到这些要求就离不开食品添加剂(Food Additive)。一、食品添加剂(一)⒈ 定义:食品添加剂是指,为了改善食品品质和色香味以及防腐和加工工艺的需要而加入的食品中的天然或者化学合成物质。⒉分类:食品添加剂按其原料和生产方法可以分为化学合成添加剂和天然食品添加剂。一般说来除了化学合成的添加剂外,其余的都可以归为天然食品添加剂,主要来自植物,动物,酶法生产和微生物菌体生产。世界各地至今没有统一的食品添加剂分类标准,我国是按食品添加剂的主要功能分类的。可以分为21大类:酸度调节剂,着色剂,乳化剂,防腐剂,甜味剂,抗氧化剂等。⒊ 特点:品种繁多,销量大,变化迅速,日新月异。(二)主要品种介绍⒈ 防腐剂(Preservatives)防腐剂是抑制微生物活动,使食品在生产,运输,储藏和销售过程中减少因腐败而造成经济损失的添加剂。在我国允许使用的主要有山梨酸钾及其盐类,对羟基苯甲酸脂,丙酸及其盐类。⒉ 乳化剂食品乳化剂是食品加工中使互不相溶的液体(加油和水)形成稳定乳浊液的添加剂。在食品添加剂中乳化剂用量约占1/2,是食品工业中用量最大的添加剂。常用的是大豆磷脂和脂肪酸多元醇脂及其衍生物。⒊ 酸性调节剂为了得到色香味俱佳的食品,离不开食品调味剂。调味剂一般分为咸味剂,酸味剂,甜味机,香料,辣味剂,鲜味剂,清凉剂等。酸味剂也称酸性调节剂,在食品中添加酸味剂,可以给人爽快的刺激,起增进食欲的作用,并有一定的防腐作用。一般分为无机酸和有机酸。食品中常用的无机酸是磷酸,常用的有机酸有:醋酸,柠檬酸,酒酸,苹果酸,抗坏血酸,乳酸,葡萄糖酸等。柠檬酸是功能最多,用途最广的酸味剂。磷酸在饮料工业中可以代替柠檬酸和苹果酸,特别是不宜使用柠檬酸的非水果型饮料中作酸味剂且用量少价格低。⒋ 鲜味剂鲜味剂也称呈味剂或风味增加剂。主要是增强食品风味,使之呈现鲜味感的一些物质。味精是人们最常用的鲜味剂。主要成分是L-谷氨酸钠。⒌甜味剂甜味剂是指能赋予食品甜味的调味剂。常用的有糖精钠,甜蜜素,阿斯巴甜,安赛蜜等。价格便宜,等甜条件下,价格比蔗糖便宜,故应用广泛。⒍着色剂着色剂又称食用色素。在现代食品工业中是装点食品的重要添加剂。我国允许使用的食用合成色素均已列入GB2760-1996中,共有13个品种,它们是:苋菜红及苋菜红铝沉淀,日落黄,亮蓝等。1994年我国正式宣布中国食品添加剂发展方向是“天然,营养,多功能”。应此到目前为止,我国政府批准允许使用的60种食用着色剂中,有47种是天然色素。从上面的叙述中可以知道,食品添加剂在食品工业中占有的地位是多么地重要。但是近年来,国际,国内食品安全事件不断发展,引起了消费者的极大不安,我国的食品安全形式也不容乐观,对食品添加剂的管理和控制也应该更加严格。二、我国食品添加剂使用中存在的问题及对策(一)问题:在我国食品行业中存在一些严重的超范围,超限量等使用添加剂的问题。⒈ 超范围使用的品种主要是合成色素,防腐剂和甜味剂等品种。应用的食品主要是肉制品(合成色素,苯甲酸防腐剂),豆制品(苯甲酸防腐剂),炒货(石蜡,矿物油等),乳制品(山梨酸防腐剂,二氧化钛白色素,以纳他霉素作防霉剂),葡萄酒(合成色素及甜味素)。⒉ 超限量使用食品添加剂最突出在面粉处理剂,防腐剂和甜味剂⑴ 面粉中过氧化苯甲酰和溴甲酸使用严重。过氧化苯甲酰主要是起增白作用,溴甲酸主要是增筋作用,是氧化剂和面包改良剂。⑵ 甜味剂,防腐剂:在一些小企业生产的乳饮料,果汁饮料中尤其严重,有些企业产品中甚至全部使用甜味剂(主要是糖精钠和甜蜜素)或仅使用少部分白砂糖。这些产品主要消费对象为儿童,危害极大。① 蜜饯:蜜饯是有我国传统特色的小食品,蜜饯类滥用添加剂的现象十分严重,若管理不好,会造成“小食品,大危害”,其严重性是不容忽视的。(糖精钠,甜蜜素,人工合成色素,苯甲酸,山梨酸防腐剂)② 冷饮,果冻等:(糖精钠,甜蜜素)③ 酱腌菜:(苯甲酸钠防腐剂,糖精钠和甜蜜素)⒊ 标识不明确部分企业在使用食品添加剂特别是合成色素,防腐剂和甜味剂等品种时,故意在食品标签下不标注,损害了消费者的权益,特别是部分食品如蜜饯,冷饮,果冻,酱腌菜,乳制品等。(一) 原因及对策之所以会出现食品添加剂滥用,是由于我国在这方面的法律法规不健全,处罚乏力;政府监督覆盖还存在薄弱面;企业主的法律意识薄弱,道德诚信淡漠;企业管理混乱,技术低下;企业主见利忘义,偷梁换柱等。为了保证食品质量和安全,我国已正式实施食品质量安全准入制度(QS标志)。这对于加强从源头管理,规范市场将起到很大的作用,也将对合法使用食品添加剂起到促进作用。针对食品添加剂使用中暴露的问题和产生的原因,建议采取以下措施:⒈ 完善立法,加大惩罚力度,保证我国食品安全。⒉ 完善食品添加剂管理法规和标准体系,建立现代化信息平台。⒊ 加强对中小城市,问题食品的质量监督,加强舆论监督。⒋ 加强检验方法的研究和普及,开展危险性评估。⒌ 加强对食品添加剂相关法规的宣传,科学知识的普及。⒍ 加强对食品行业,特别是传统食品行业健康发展的指导。“民以食为天”,随着都市化进程加快,生态平衡系统的逐年破坏,尤其是环境卫生和人类环境恶化,加之食品和水供应减少和其他人为因素,食品安全的形式已经变得非常严峻。山西1998年假酒事件;2001年瘦肉精事件;2005年苏丹红事件等,让人们再次意识到了加强食品安全的重要意义。三、食品安全问题现状分析⒈ 农药污染常见的是有机氯农药和有机磷农药污染。有机氯农药是中国最早大规模使用的农药。近年来的调查检验结果表明,有机氯农药在各类食品中的残留正在逐步降低和消除,但在许多食品中的残留依然存在。中国食品中有机氯农药残留水平,虽然较70 年代有了明显的下降,但仍远高于世界发达国家。这是由于有机氯农药性质稳定,不易降解和其高脂溶性,其影响至今尚未完全消除。有机磷农药由于其防治对象多,应用范围广,在环境中降解快,残毒低等特点,是中国目前使用量最大的农药。由于农民缺乏对农药残留特性和规律的认识,在某些农作物上使用禁用农药是造成食品中农药污染的根本原因。⒉ 环境污染环境污染对人类健康最突出的影响表现在由环境污染引起的食品污染对人类健康的威胁。我国环境污染相当严重。据1998 年中国质量公报,我国七大水系、湖泊、水库、部地区地下水和近岸海域已受到不同程度的污染,在污染水体中生长的生物:水藻、鱼虾、贝、蟹等被污染后, 有害物质通过食物链的富集、浓缩,最后到达食物链的顶端——人体,从而引起人类的急性或慢性中毒,甚至祸害子孙后代。⒊ 兽药及饲料添加剂造成的动物性食品污染随着集约化畜牧业的发展,兽药的作用范围也在扩大,有的药物如抗生素、磺胺药、激素等广泛使用。从而 使动物性食品中兽药的残留问题越来越严重。⒋ 食品添加剂污染长期(或超量)使用食品添加剂,会给人产带来危害。其主要表现在:致癌、产生遗传毒性和在人体中残留,破坏新陈代谢等。⒌ 假冒伪劣食品中的危害物假冒伪劣食品、假酒、假农药等,近年来不断发生大规模的使人触目惊心的中毒事件。例如:1998 年江西赣州发生的食用工业猪肉中毒事件及山西朔州发生的毒酒事件,均有数百名群众中毒,震惊全国。据国家卫生部透露,仅1 9 9 8 年1 月至10 月,卫生部共收到食物中毒报告48 起,中毒人数53133 人,其中死亡83 人。⒍ 病原微生物及寄生虫污染致病微生物是导致食品安全的最大问题,其危害居食源性疾病之首。据2000 年卫生部收到的食品中毒事件报告,细菌性食物中毒人数最多,占食物中毒人数的。有害生物体来源非常广泛,首先来自于生物链的源头——种养殖业。种植业中有机肥的搜集、堆制、施用如忽视严格的卫生管理将会使病原菌、寄生虫及虫卵进入农田环境、养殖场及水体,进而进入人类食物链。沙门氏菌、金黄色葡萄球菌、致病性大肠杆菌、李斯特杆菌、产气荚膜梭菌、肉毒梭菌、耐热耐酸菌、许多霉菌及其毒素污染以及弓形虫、旋毛虫、寄生虫虫卵等污染食品均可造成严重的食品安全隐患。中国入世后的食品安全形势相当严峻。为此,尽快地建立健全我国食品安全评价与检品生产或供应厂商把以终产品检验为主的安全控制意识转变为测体系,建立国际共同关注的食品污染物残留快速检测方法和全程控制的新的安全控制理念,从而确保食品安全,与国际监控体系以及食品安全工作网络,制订与国际接轨的各项标管理体系和认证体系接轨。准,是目前我国食品安全工作的当务之急。具体应从以下几个方面研究和实施。①加强政府对食品安全监管力度②化学危害因子安全检测方法的建立和规范化③生物危害因子安全检测方法的建立和规范化④安全监控体系的建立和制度化⑤安全评价方法的建立和标准化⑥安全限量的制订和标准化⑦食品安全法规制定和保障体系建立参考书目:1.《食品科技》2003. Vol24. —《食品添加剂使用中存在的问题及对策》 于江虹2.《食品科技》2004. Vol25. —《食用着色剂发展趋势》 阎炳宗3.《食品科学》2003. Vol24. —《食品风险分析及防范措施》 张胜帮4.《食品科学》2005. Vol26. —《我国食品安全问题产生的原因及对策》 张新联

【食品与营养科学】说了这么一句话:随着人民生活水平的提高,生活节奏的加快,食品消费结构的变化,促进了我国食品工业的快速发展,要求食品方便化,多样化,营养化,风味化和高级化,为了达到这些要求就离不开食品添加剂。论文这件事儿,是得你自己好好思考的~

有两种检测山梨酸的方法:

1、山梨酸钾与高氯酸反应生成高氯酸钾白色沉淀。

2、山梨酸钾用水溶解后,加入与水不相溶的乙醚,用盐酸标准溶液滴定。由于在滴定过程中反应生成的山梨酸在水中溶解度小,而在乙醚中的溶解度大,这样可以将滴定生成的山梨酸不断萃取到有机相中,从而降低山梨酸的离解,使滴定反应进行完全。

/"target="_blank"title="点击查看大图"class="ikqb_img_alink">/"esrc=""/>

扩展资料

山梨酸(钾)能有效地抑制霉菌,酵母菌和好氧性细菌的活性,还能防止肉毒杆菌、葡萄球菌、沙门氏菌等有害微生物的生长和繁殖,但对厌氧性芽孢菌与嗜酸乳杆菌等有益微生物几乎无效。

其抑止发育的作用比杀菌作用更强,从而达到有效地延长食品的保存时间,并保持原有食品的风味。其防腐效果是同类产品苯甲酸钠的5-10倍。

参考资料:/山梨酸钾/8957530?fr=aladdin"target="_blank"title="只支持选中一个链接时生效">百度百科-山梨酸钾

  • 索引序列
  • 三草酸根和铁酸钾毕业论文
  • 锰酸钾的研究论文
  • 低品位铝土矿草酸除铁研究论文
  • 苯甲酸和山梨酸检测论文
  • 山梨酸钾的检测的外文论文
  • 返回顶部