首页 > 学术论文知识库 > 纳米碳酸钙的最新研究进展论文

纳米碳酸钙的最新研究进展论文

发布时间:

纳米碳酸钙的最新研究进展论文

纳米技术的用途如下: 一、衣: 1.在纺织和化纤制品中添加纳米微粒,可除味杀菌; 2.在化纤布中加入少量金属纳米微粒,可消除静电现象。 二、食: 1.利用纳米材料,冰箱可以抗菌; 2.使用纳米材料制作无菌餐具、无菌食品包装用品; 3.利用纳米粉末,使废水彻底变清水,完全达到饮用标准; 4.制作纳米食品,色香味俱全,有益健康。 三、住: 1.纳米技术的运用,使墙面涂料的耐洗刷性提高10倍; 2.玻璃和瓷砖表面加涂纳米薄层,可制成自洁玻璃和自洁瓷砖,无需擦洗; 3.含有纳米微粒的建筑材料可吸收对人体有害的紫外线。 四、行: 1.纳米材料可以提高和改进交通工具的性能指标; 2.纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,极大提高发动机效率、工作寿命和可靠性; 3.纳米卫星可随时向驾驶人员提供交通信息,帮助其安全驾驶。查看全部27个回答纳米涂层的价格是多少?纳米涂层的价格防静电防污,疏水疏油材料,高科技高品质更专业纳米涂层的价格,疏水疏油涂层,超亲水防污涂层自清洁涂层,易清洁涂层,防结冰涂层...专业表面涂层处理解决方案提供者。广州碧然环保有限公司广告 纳米涂层 北京信为兢创科技有限公司 专业氟化学纳米涂层用于手机模组 IC 电容器 传感器等精密电子部件的防潮防水防腐蚀。纳米涂层疏水疏油,厚度1um,高柔韧性耐弯折,室温1min固化成膜。北京信为兢创科技有..广告 相关问题全部生活中哪些东西运用了纳米技术?29 浏览15862020-03-26纳米材料在现实生活中已有一些什么应用目前是纳米碳酸钙主导纳米粉体市场。纳米碳酸钙由于原料廉价、生产技术相对成熟,目前已经成为纳米粉体材料市场主导产品,占据了纳米新材料总体市场规模的约30%。纳米氧化锌、纳米氧化硅、纳米氧化钛等产品制备工艺和市场应用也逐步走向成熟,初步实现了产业化生产,目前已成为纳米粉体市场的重要组成部分。1 浏览269生活中有哪些纳米技术?纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。3 浏览102020-04-09生活中有什么是纳米技术?纳米技术在生活中的应用体现在衣食住行。 1、衣 在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。 2、食 利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米食品色香味俱全,还有益健康。 3、住 纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。 4、行 纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。 扩展资料: 纳米材料是80年代中期发展起来的新型材料,它比负氧离子先进50年。由于纳米微粒(1-100nm)的独特结构状态,使其产生了小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应等,从而使纳米材料表现出光、电、热、磁、吸收、反射、吸附、催化以及生物活性等特殊功能。 纳米材料具有许多独特功能,而且用量少,但却赋予材料意想不到的高性能,附加值甚高。纳米复合高分子材料、纳米抗菌、保鲜、除臭材料等等,由于纳米材料的尺寸小,比血液中的红血球小一千多倍,比细菌小几十倍,气体通过其扩散的速度比常规材料快几千倍。纳米颗粒与生物细胞膜的化物作用很强,极易进入细胞内。92 浏览2342020-03-24生活中有哪些纳米材料?在现实生活中,纳米技术有着广泛的用途。 1、超微传感器传感器是纳米微粒最有前途的应用领域之一。纳米微粒的特点如大比;表面积、高活性特异物性、极微小性等与传:感器所要求的多功能、微型化、高速化相互对应。另外,作为传感器材料,还要求功能广、灵敏度高、响应速度快、检测范围宽、选择性好、耐负荷性高、稳定可靠,纳米微粒能较好地符合上述要求。 2、催化剂在化学工业中,将纳米微粒用做催化剂,是纳米材料大显身手的又一方面。如超细硼粉、高铬酸铵粉可以作为炸药有效催化剂;超细的铂粉、碳化钨粉是高效的氢化催化剂;超细银粉可以作为乙烯氧化的催化剂;超细的镍粉、银粉的轻烧结体作为化学电池、燃料电池和光化学电池中的电极可以增大与液相或气体之间的接触面积,增加电池效率,有利于小型化。 超细微粒的轻烧结体可以生成微孔过滤器,作为吸附氢气的储藏材料。还可作为陶瓷的着色剂,用于工艺美术中。 3、医学、生物工程尺寸小于10纳米的超细微粒可以在血管中自由移动,在目前的微型机器人世界里,最小的可以注入人的血管,它一步行走的距离仅为5纳米,机器人进行全身健康检查和治疗,包括疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可以吞噬病毒,杀死癌细胞。这些神话般的成果,可以使人类在肉眼看不见的微观世界里享用那取之不尽的财富。 4、电子工业量子元件主要是通过控制电子波动的相位来进行工作,因此它能够实现更高的响应速度和更低的电力消耗。另外,量子元件还可以使元件的体积大大缩小,使电路大为简化,因此,量子元件的兴起将导致一场电子技术的革命。目前,风靡全球的因特网,如果把利用纳米技术制造的微型机电系统设置在网络中,它们就会互相传递信息,并执行处理任务。不久的将来,它将操纵~飞机、开展健康监测,并为地震、飞机零 件故障和桥梁裂缝等发出警报。那时,因特网亦相形见绌。 5、“会呼吸”的纳米面料。 纳米是一种基于纳米材料的化学处理技术,纳米布料是用一种特殊的物理和化学处理技术将纳米原料融入面料纤维中,从而在普通面料上形成保护层,增加和提升面料的防水、 防油、防污、透气、抑菌、环保、固色等功能,可广泛应用于服装、家用纺织品以及工业用纺织品。

AbstractCalcium carbonate is one of the most important inorganic products, however, the nano calcium carbonate is a new nanometer inorganic powder material. This paper analyzed the production process of nanometer calcium carbonate and its subsequent modification. There are **figures, **charts and **: nanometer calcium carbonate limestone modification

Calcium carbonate is one of the most important inorganic products. The nano calcium carbonate as a new nanometer inorganic powder material. This paper analyzed the production process of modified nanometer calcium carbonate and paper maps, tables, : nanometer calcium ,carbonate limestone, modified

碳酸钙研究现状论文

山东碳酸钙行业发展稳步前进。根据查询相关公开信息,截止于2022年碳酸钙产品在塑料、橡胶、涂料、造纸等行业的需求量将会急剧增加,碳酸钙产业具有旺盛的发展前景。

生物是具有动能的生命体,也是一个物体的集合,而个体生物指的是生物体,与非生物相对。如果我们写一篇生物 毕业 论文要怎样来拟定题目呢?下面我给大家带来2021生物毕业论文题目有哪些,希望能帮助到大家!

生物教学论文题目

1、本地珍稀濒危植物生存现状及保护对策

2、中学生物实验的教学策略

3、如何上好一节生物课

4、中学生生物实验能力的培养

5、激活生物课堂的教学策略

6、中学生物课堂教学中存在的问题及对策

7、中学生物教学中的创新 教育

8、本地生物入侵的现状及其防控对策

9、论生物多样性与生态系统稳定性的关系

10、室内环境对人体健康的影响

11、糖尿病研究进展研究及策略

12、心血管病研究进展研究及策略

13、 儿童 糖尿病的现状调查研究

14、结合当地遗传病例调查谈谈对遗传病的认识及如何优生

15、“3+X”理科综合高考试题分析

16、中学生物教学中的差生转化教育

17、中学生物学实验教学与学生创新能力的培养

18、在当前中学学科分配体制下谈谈如何转变学生学习生物学的观念

19、中学生物教学中学生科学素养的提高

20、直观教学在中学生物学教学中的应用

21、中学生物学实验教学的准备策略

22、编制中学生物测验试题的原则与 方法

23、浅析生态意识的产生及其培养途径

24、生物入侵的危害及防治对策

25、城镇化建设对生态环境的影响

26、生态旅游的可持续发展-以当地旅游区为例

27、城市的生态环境问题与可持续发展

28、农村的生态环境问题及其保护对策-以当地农村为例

29、全球气候变化与低碳生活

30、大学与高中生物学教育的内容与方法衔接的初步研究

31、国内、国外高中生物教材的比较研究

32、中学生物实验教学模式探索

33、河北版初中生物实验教材动态分析研究 “

34、幼师生物学教材改进思路与建议

35、中学生物学探究性学习的课堂评价体系研究及实践

36、中学生物双语教材设计编写原则探索与研究

37、信息技术应用于初中生物课研究性学习的教学模式构想

38、生物学课堂教学中学生创新能力培养的研究与实践

39、中学生物学教学中的课程创生研究初探

40、信息技术与中学生物学教学的整合

41、中学生物学情境教学研究

42、游戏活动在高中生物学教学中的实践与思考

43、合作学习在高中生物教学中的实践性研究

44、尝试教学法在高中生物教学中的应用与研究

45、生物科学探究模式的研究与实践

46、生物课堂教学引导学生探究性学习的实践与探索

47、白城市中学生物师资队伍结构现状的调查及优化对策

48、结合高中生物教学开展环境教育的研究

49、让人文回归初中生物教育

50、课程结构的变革与高中生物新课程结构的研究

微生物毕业论文题目

1、脲解型微生物诱导碳酸钙沉积研究

2、马铃薯连作对根际土壤微生物生理类群的影响

3、“食品微生物学”实验教学体系的改革与实践

4、病原微生物对人体健康的危害及检测

5、贺兰山东麓荒漠微生物结皮发育过程研究

6、原代鸡胚成纤维细胞中的污染微生物分析

7、油脂降解微生物的筛选及代谢能力影响因素研究

8、深海微生物硝化作用驱动的化能自养固碳过程与机制研究进展

9、地膜降解物对土壤微生物群落结构和多样性的影响

10、微生物酶技术在食品加工与检测中的应用

11、草莓不同生育时期根区微生物多样性及动态变化

12、台湾林檎叶片浸提液对致腐微生物的抑制效果

13、细胞、微生物及其相关培养技术

14、食品微生物学实验模块化教学体系的构建

15、有机无机缓释复合肥对土壤微生物量碳、氮和群落结构的影响

16、东北传统豆酱发酵过程中微生物的多样性

17、不同 教学方法 在微生物学教学中的比较研究

18、环境微生物实验教学体系改革和管理

19、食品微生物学课堂教学改革与实践

20、应用型大学微生物学课程教学改革

21、关于有机磷农药的微生物降解技术研究探讨

22、外源汞添加对土壤微生物区系的影响

23、论研讨式教学在《食品微生物学》课程教学中的应用

24、采煤塌陷复垦区先锋植物根际微生物数量的变化

25、微生物实验室培养基的质量控制

26、食品微生物学双语教学模式的探索与实践

27、土壤微生物总活性研究方法进展

28、浅水湖泊沉积物中水生植物残体降解过程及微生物群落变化

29、应用型本科院校微生物实验模块化教学的探索与实践

30、外源生物炭对黑土土壤微生物功能多样性的影响

31、浅谈土壤微生物对环境胁迫的响应机制

32、秸秆还田深度对土壤微生物碳氮的影响

33、水质微生物学检验实验模块的教学探索与实践

34、高师院校微生物学课程探究式教学实践与思考

35、5种江西特色盆景植物根际微生物群落特征比较研究

36、生物工程专业《微生物学》双语教学探索

37、浅谈林学专业《微生物学》课程的重要性和教学改革

38、兽医微生物学教学实习的改革与实践

39、利用微生物学原理处理城市生活垃圾

40、高级微生物学课程教学改革探索

41、案例教学在微生物学中的应用

42、淡水湖泊微生物硝化反硝化过程与影响因素研究

43、微生物法修复水污染技术研究进展

44、玉米栽培模式对暗棕壤微生物学特性及养分状况的影响

45、浅谈案例教学在微生物学教学中的应用

46、环境工程微生物学实验教学改革

47、微生物在多孔介质中的迁移机制及影响因素

48、地方性高校《动物微生物学》教学体系的优化

49、微生物技术修复水污染的发展

50、浑河底泥微生物群落的季节性变化特征

生物制药毕业论文题目

1、生物制药产业化影响因素及作用机理研究

2、现代生物技术管理的企业策略与集群发展研究

3、现代生物技术的知识产权保护及企业的相关策略研究

4、武汉华龙生物制药的营销策略研究

5、我国生物制药产业竞争力研究

6、生物制药产业创新联盟知识协同研究

7、亮菌口服液液体深层发酵工艺的研究

8、基于生命周期的生物制药企业之融资策略研究

9、B医药企业的营销策略研究

10、财务风险预警模型效果比较研究

11、基于财务视角的生物制药上市公司成长性评价研究

12、生物制药上市公司杠杆效应的实证研究

13、九阳生物人力资源战略研究

14、以生物制药为例的高新技术企业税收优惠效应的实证分析

15、我国海洋生物制药技术产业化政策研究

16、生物制药企业财务风险预警问题研究

17、中国制药产业价值链特征研究

18、医药制造业技术创新投入对产出绩效影响的实证研究

19、基于项目管理理论的高职技能型人才培养创新工程应用研究

20、我国生物制药业上市公司会计政策选择研究

21、WS生物制药公司员工培训管理研究

22、科兴公司绩效管理体系研究与设计

23、我国生物制药企业研发投入与绩效的实证分析

24、企业混合所有制模式选择与绩效研究

25、AMP生物制药公司竞争战略研究

26、基于因子分析法的生物制药企业业绩评价研究

27、DBZY公司财务能力测评及提升对策研究

28、汽车行业上市公司的盈利能力分析

29、生物制药企业专利权评估方法研究

30、专利制度对我国生物制药产业发展的影响

31、生物制药企业价值评估中的收益法探究

32、CDZZ药业有限公司知识产权管理策略研究

33、基于开放式创新的云南生物制药产业产学研合作机制与模式研究

34、基于开放式创新的云南生物制药产业吸收能力的影响因素研究

35、引入非财务指标的生物制药企业估值研究

36、私募股权融资在科技初创企业的应用

37、艺普生物制药教育公司发展战略研究

38、海王生物工程有限公司财务成长性分析

39、基于EVA的安科生物企业价值评估研究

40、基于自由现金流的上海莱士企业价值评估研究

2021生物毕业论文题目相关 文章 :

★ 优秀论文题目大全2021

2021毕业论文题目怎么定

★ 生物制药毕业论文开题报告范文

★ 大学生论文题目大全2021

★ 大学生论文题目参考2021

★ 优秀论文题目2021

★ 生物类学术论文(2)

★ 生物技术论文范文

★ 毕业论文题目来源

★ 毕业论文题目怎么选

郑水林

(中国矿业大学(北京) 化学与环境工程学院,北京 100083)

摘要 本文综述了中国重质碳酸钙的生产、应用现状;重点总结了重质碳酸钙粉碎、分级和表面改性技术现状和进展;并对其市场、技术发展趋势进行了展望。

关键词 重质碳酸钙;生产;应用;加工技术。

作者简介:郑水林,男,(1956—),中国矿业大学(北京)化学与环境工程学院教授,博士生导师;长期从事非金属矿物选矿和深加工的教学与研究。E-mail:。

中国重质碳酸钙的规模化生产始于20世纪80年代初期,最初的生产厂家大多集中于浙江的富阳和建德地区。经过20多年的发展,生产规模已从最初的年产几万吨增大到2006年的逾500×104t。主要生产地区已从浙江建德、富阳扩展到安徽、广东、广西、四川、湖南、江苏、山东、湖北、江西、辽宁、吉林、黑龙江等地;生产企业由最初的几家增加至目前的300余家;产品品种从最初的“双飞粉”(200目)、“三飞粉”(325目)发展到400目(<38μm)、600目(d97=20μm)、800目(d97=16μm)、1250目(d97=10μm)和2500目(d97=5μm),以及d80≤2μm、d90≤2μm、d97≤2μm等产品;产品已能基本满足国内塑料、造纸、橡胶、涂料、油墨、日化、饲料等应用领域的要求。其发展速度和发展规模已超过轻质碳酸钙。

一、生产与应用

2006年国内重质碳酸钙的总产量达到约510×104t,较上年增长10%以上,其中1250目(d97=10μm)以上的超细重质碳酸钙约200×104t,约占总产量的40%。主要应用领域是塑料、造纸、橡胶、涂料、油墨、胶粘剂、日化等,其中推动重质碳酸钙产量持续快速增长的主要因素是造纸、塑料制品工业需求的显著增长。

塑料制品是重质碳酸钙第一大消费市场,2006年消费量达到约200×104t;特别值得一提的是,2006年活性碳酸钙的产量显著增长,在塑料型材、各种管道、塑料薄膜、电缆等用途中广泛使用超细活性碳酸钙[1]。造纸行业是碳酸钙需求增长最快的行业之一,该领域2006年消费非金属矿物填料和颜料约500×104t,其中重质碳酸钙约190×104t,比上年增长15%左右;其中约有90×104t左右的重质碳酸钙用作造纸填料,其余用作纸张的涂料[2]。2006年重质碳酸钙在涂料和油墨中的消费量约25×104t[3];橡胶消费量约15×104t;牙膏消费量约30×104t;其他约40×104t。2006年,国内碳酸钙出口量达到120878 t,比2005年(74281 t)增加46597 t,增长62%。

二、加工技术

(一)粉碎分级

国内重质碳酸钙的生产工艺主要有干法和湿法两种。

1.干法

干法工艺设备主要是球磨机、辊磨机(包括滚轮磨、环辊磨、雷蒙磨等)、振动磨等。其中球磨机与精细分级机组合不仅可以加工d975~10μm的超细粉体,而且可以根据用户要求在325~2500目之间进行调节。这种重质碳酸钙加工工艺的特点是连续闭路生产、多段分级、循环负荷大(300%~500%)、单机生产能力较大,是国内外大型超细重质碳酸钙生产厂的首选工艺设备。辊磨机主要用于加工200~1000目的细粉,配置精细分级机后可加工出1250目以上的超细粉产品[4]。

环辊磨是近两年在超细重质碳酸钙领域广泛应用的一种中小型超细粉碎设备。其特点是工艺简单,粉碎比大,单位产品能耗较低。给料粒度≤20mm;内设分级装置,产品细度可以在d978~20μm之间调节;单机产量600~1800 t/h;能耗(d97=10μm)≤100 kW·h/t。

滚轮磨的特点是单机生产能力大,用于方解石生产GCC产量可达5~10 t/h;而且内置分级机,产品细度可以在d978~30μm之间调节。

在重质碳酸钙的生产中,特别是在超细重质碳酸钙的生产,精细分级设备是必须的工艺设备之一。其目的是:①控制产品细度及其粒度分布。②将合格的细粒级产品及时分出,防止其过磨,提高粉碎作业的效率;后一点对于球磨机来说是至关重要的。正是因为有了精细分级机及时地将合格细粒级产品分出,显著提高了球磨机的研磨粉碎效率,才有球磨机在该领域的广泛应用。

目前我国主要的工业型分级机有QF-5A型微细分级机、FQZ型超细分级机、MSS型精细分级机、ATP单轮分级机、ATP型多轮分级机。这些分级机基本上都与粉磨机配套使用,其分级粒径可以在d973~20μm的范围内调节。依分级机规格或尺寸的不同,单机生产能力从数百千克/时到5000 kg/h。

自1985年以来,干法分级技术取得了显著进展。1985年最先进的精细分级机的产品细度d97<10μm;1992年,d97<6μm;2000年,d97<μm;2002年,d97<μm,生产能力(d97≤10μm,GCC)。1985年单机生产能力500 kg/h;1990年,1000 kg/h;1995年,2000 kg/h;2000年,4000 kg/h;2005年,7000 kg/h。国产的大型精细分级机有LHB型涡轮式精细分级机组、FJW500×6超细分级机。

2.湿法

中国重质碳酸钙湿法生产工艺1993年以后才陆续投入生产,主要用于生产d60≤2μm、d90≤2μm及d97≤2μm的造纸涂料级产品;研磨设备主要是搅拌磨、砂磨机和研磨剥片机等[5]。

在2000年之前,该领域主要使用国产80~500 L的BP型研磨剥片机及其他搅拌磨机。2002年前后随着国内造纸工业对超细碳酸钙浆料需求量的快速增长,开始在工业上应用1500 L搅拌磨;2003年采用3000 L立式搅拌磨;2005年采用3500~5000 L搅拌磨。单机生产能力(d90≤2μm折干量)由1995年的300 kg/h、2000年的500 kg/h、2003年大于等于1000 kg/h发展到2005年大于等于2000 kg/h;能耗在1995年为250 kW·h/t,2000年为180 kW·h/t,2003年为120 kW·h/t,2005年为90 kW·h/t。

目前国内超细碳酸钙浆料加工领域应用的3000 L以上大型立式搅拌磨有CYM型、LXJM型、MB-5000L。

超细碳酸钙浆料加工技术的重要进展还体现在产品细度和黏度方面:生产的高品质专用面涂级细磨碳酸钙GCC,浆料固含量75%~78%;黏度小于350MPa·s;最大粒度3~5μm,-2μm含量≥97%,1μm含量≥75%;平均粒径~μm。

(二)表面改性

重质碳酸钙是目前高聚物基复合材料中用量最大的无机填料。碳酸钙填料的主要优点是原料来源广泛、价格便宜、无毒性。据统计,塑料制品工业中约70%的无机填料是碳酸钙,包括轻质或沉淀碳酸钙(PCC)和重质或细磨碳酸钙(GCC)。由于碳酸钙填料为无机粉体,与有机高分子的相容性差,直接添加到高分子材料中难以均匀分散,还会影响材料的加工性能和力学性能,因此一般在填充高分子材料之前要对其进行表面改性处理。目前表面改性技术已成为碳酸钙(包括轻质碳酸钙和重质碳酸钙)最重要和必须的深加工技术之一,每年生产的各种不同细度的活性碳酸钙粉体达到150×104t以上[6]。

1.表面改性方法

目前碳酸钙的表面改性方法主要是化学包覆,辅之以机械力化学;使用的表面改性剂包括硬脂酸(盐),钛酸酯偶联剂,铝酸酯偶联剂等。表面改性工艺有干法和湿法两种。

硬脂酸(盐)是碳酸钙最常用的表面改性剂。其改性工艺可以采用干法或湿法。一般湿法工艺要使用硬脂酸盐,如硬脂酸钠。除了硬脂酸(盐)外、其他脂肪酸(酯)、如磷酸盐和磺酸盐等也可用于碳酸钙的表面改性。用一种特殊结构的多聚膦酸酯(ADDP)对碳酸钙进行表面改性后,碳酸钙粒子表面疏水亲油,在油中的平均团聚粒径减小;将改性的碳酸钙填充于PVC塑料体系可显著改善塑料的加工性能和力学性能。据报道,混合使用硬脂酸和十二烷基苯磺酸钠对轻质碳酸钙进行表面处理,可以提高表面改性的效果。

用钛酸酯偶联剂处理后的重质碳酸钙,与聚合物分子有较好的相容性。同时,由于钛酸酯偶联剂能在碳酸钙分子和聚合物分子之间形成分子架桥,增强了有机高聚物或树脂与碳酸钙之间的相互作用,可提高热塑料填充复合材料的力学性能,如冲击强度、拉伸强度、弯曲强度以及伸长率等。

铝酸酯偶联剂也已广泛应用于重质碳酸钙的表面处理和填充塑料制品,如PVC、PP、PE及填充母粒等制品的加工中。经铝酸酯处理后的碳酸钙可使CaCO3、液体石蜡混合体系的黏度显著下降,改性后的碳酸钙在有机介质中的分散性良好。此外,表面改性活化后的重质碳酸钙可显著提高CaCO3、PP(聚丙烯)共混体系的力学性能,如冲击强度、韧性等。

采用聚合物对重质碳酸钙进行表面改性,可以改进重质碳酸钙在有机或无机相(体系)中的稳定性。这些聚合物包括低聚物、高聚物和水溶性高分子,如聚甲基丙烯酸甲酯(PMMA)、聚乙二醇、聚乙烯醇、聚马来酸、聚丙烯酸、烷氧基苯乙烯-苯乙烯磺酸的共聚物、聚丙烯、聚乙烯等。

聚合物表面包覆改性碳酸钙的工艺可分为两种,一是先将聚合物单体吸附在碳酸钙表面,然后引发其聚合,从而在其表面形成聚合物包覆层;二是将聚合物溶解在适当溶剂中,然后对碳酸钙进行表面改性,当聚合物逐渐吸附在碳酸钙颗粒表面上时排除溶剂形成包膜。这些聚合物定向吸附在碳酸钙颗粒表面,形成物理、化学吸附层,可阻止碳酸钙粒子团聚,改善分散性,使碳酸钙在应用中具有较好的分散稳定性。

利用超细粉碎过程的机械力化学作用也可对碳酸钙粉体进行表面改性。碳酸钙在超细粉碎过程中,由于机械力的作用,一方面粒度变细;与此同时,一部分机械能积聚在颗粒内部,引起表面结构和性质的变化,使碳酸钙表面与表面改性剂的作用增强。因此,在超细粉碎过程中添加表面改性剂和助剂可在超细粉碎过程中同时完成碳酸钙的表面化学包覆改性。

2.表面改性设备

重质碳酸钙的表面改性设备可分为干法和湿法两类。目前常用的干法表面改性设备有SLG型连续粉体表面改性机、高速加热混合机、PSC型粉体表面改性机(图1)以及涡流磨等。其中SLG型连续粉体表面改性机、PSC型粉体表面改性机、涡流磨等是连续式粉体表面改性设备;高速加热混合机是间歇式的表面改性设备。常用的湿法表面改性设备为可控温反应罐和反应釜。

目前在超细碳酸钙干法连续表面改性中,SLG型连续粉体表面改性机占主导地位,它是国内具有自主知识产权的连续式表面改性设备。目前已有100 余台设备在超细碳酸钙粉体的表面改性中应用,年生产超细轻质和重质碳酸钙粉体约80×104t[6]。

三、发展趋势

重质碳酸钙的主要原料是方解石、大理石、白垩、优质石灰石等,原料较丰富、市场价格较低;产品是应用范围较广、用量较大的非金属矿物粉体材料。相对低廉的价格、广泛的适用性,决定其在无机填料和颜料市场具有良好的发展前景。随着国内造纸、塑料、涂料、油墨、橡胶工业的快速发展,预计在“十一五”期间国内重质碳酸钙的年平均需求量将以每年10%左右的速度增长,2010年将达到850×104t左右,生产能力将达到900×104t左右,出口量将达到30×104t。

在加工技术方面,提高粉碎和分级效率、降低能耗和磨耗、优化表面改性效果和降低改性成本将是主要发展趋势。

图1 干法表面改性设备

1—给料装置;2—给药装置;3—SLG型连续粉体改性机;4—旋风集料器;5—除尘器

由于用户需求量的增加,为了供应质量稳定的产品,现有粉碎设备及其配套的精细分级设备大型化将是未来重质碳酸钙粉碎加工技术的主要发展趋势。为了降低能耗,除了设备需要大型化外,还将改进现有粉碎和分级设备,提高粉碎、分级设备的效率;为了降低磨耗,除了优化粉碎工艺,还将改进与物料接触的设备的材质。

优化表面改性效果将主要从表面改性方法、改性设备和改性剂配方三个方面着手:①根据粉体的制备工艺和表面改性剂的种类选择,改善碳酸钙粉体和表面改性剂在改性过程中的分散性及相互接触或作用机会的均等性的表面改性方法和工艺;②选择能使粉体和表面改性剂在改性过程中良好分散及相互接触或作用机会的均等的表面改性设备;③根据树脂基料种类和应用要求选择表面改性剂及改性助剂。

降低表面改性成本将主要从表面改性剂、表面改性能耗、表面改性工艺几个方面着手。表面改性剂是碳酸钙表面改性作业的主要成本构成因素之一,为了减少表面改性剂的用量,将提高表面改性剂的分散性,使其尽可能在碳酸钙颗粒表面单层包覆。表面改性大多是需要加热的作业,要消耗电能和热能。为了降低改性过程的能耗,除了简化工艺外,还将改进表面改性设备或装置。改性过程中粉体物料的损失不仅增加了改性产品的生产成本,而且污染车间环境。为此,将尽可能采用连续、密闭的表面改性设备,并尽量减少粉体物料的输送环节和缩短输送距离。

四、结语

2006年国内重质碳酸钙的产量约510×104t,较上年增长10%以上;其中1250目(d97=10μm)以上的超细重质碳酸钙约200×104t,占总产量的40%左右。

塑料制品是重质碳酸钙第一大消费市场,2006年消费量达到约200×104t;造纸行业是重质碳酸钙需求增长最快的行业之一,该领域2006年消费量约190×104t;2006年涂料、油墨、橡胶、牙膏等领域消费重质碳酸钙约110×104t;国内碳酸钙2006年出口量120878 t。

2000年以来,国内重质碳酸钙粉碎分级技术取得了显著进步。大型重质碳酸钙生产厂主要采用球磨与分级组合工艺和滚轮磨生产工艺,中小型超细重质碳酸钙生产厂主要采用辊磨机;湿法超细碳酸钙浆料主要采用3000 L以上的大型搅拌磨机。

表面改性是重质碳酸钙最主要的加工技术之一。目前主要采用表面有机包覆改性方法,主要采用硬脂酸盐、铝酸酯偶联剂、钛酸酯偶联剂等表面改性剂,主要改性设备为SLG型连续粉体表面改性机、高速加热搅拌机、涡旋磨等。

在“十一五”期间,预计国内重质碳酸钙的年平均需求量将以每年10%左右的速度增长,2010年将达到850×104t左右,生产能力将达到900×104t左右,出口量将达到30×104t。

提高粉碎和分级效率、降低能耗和磨耗、优化表面改性效果和降低改性成本将是主要发展趋势。

参考文献

[1]刘英俊.碳酸钙在塑料中应用的若干问题.中国非金属矿工业导刊,2007(3),3-7

[2]宋宝祥,王妍,宋光.造纸非金属矿物材料消费现状与发展趋势.中国非金属矿工业导刊,2007(1),10-14

[3]周铭,侯翠红.碳酸钙在涂料中的研究现状与发展趋势.中国非金属矿工业导刊,2006(2),3-6

[4]郑水林,祖占良.非金属矿物粉碎加工技术现状.中国非金属矿工业导刊,2006(增),3-8

[5]郑水林.非金属矿物材料.北京:化学工业出版社,2007,92-130

[6]郑水林.碳酸钙粉体表面改性技术现状与发展趋势.中国非金属矿工业导刊,2007(2),3-6

Production and Development of Ground Calcium Carbonate in China

Zheng Shuilin

(School of Chemical and Environmental Engineering,China University of Mining and Technology(Beijing Campus),Beijing 100083,China)

Abstract:The production and application of ground calcium carbonate,especially the grinding technology and equipments,classification technology and equipment,surface-modification technology used for production of ground calcium carbonate in China have been the development trends of market and processing technology of ground calcium carbonate have been prospected.

Key word:ground calcium carbonate,production,application,processing technology.

纳米材料的研究进展论文

纳米材料的研究内容及进展一、① 天然纳米材料, ② 纳米磁性材料 ,③ 纳米陶瓷材料 ,④ 纳米传感器 ,⑤ 纳米倾斜功能材料,⑥ 纳米半导体材料,⑦ 纳米催化材料,⑧ 医疗上的应用 ,⑨ 纳米计算机二、进展

我觉得~~你还是自己去看下(纳米技术)吧~自己找下这样的论文多参考参考

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!

纳米材料综述

【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。

【关键词】 纳米、纳米技术、纳米材料、纳米结构

1 引言

著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]

2 纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料

纳米材料的概念

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

4 纳米材料的应用

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

5 纳米材料的前景

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

6 结束语

纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。

参考文献

[1]孙红庆.科技天地―计划与市场探索[M],2001/05

[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.

[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.

纳米材料与应用

摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。

关键词 :纳米材料 性能 应用

纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。

按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。

悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。

纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。

纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。

来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。

通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。

应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。

纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。

常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。

由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。

参考文献:

[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)

[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)

石材碳酸钙环境研究论文

大理石是地壳中原有的岩石经过地壳内高温高压作用形成的变质岩,地壳的内力作用促使原来的各类岩石发生质的变化的过程。质的变化是指原来岩石的结构、构造和矿物成分的改变,经过质变形成的新的岩石类型称为变质岩。

大理石成分

大理石成分碳酸钙(CaCO₃)。大理石主要由方解石和白云石组成,主要成分为碳酸钙(CaCO₃),因产于中国云南大理而得名。大理石由石灰岩、白云质灰岩、白云岩等碳酸盐岩石经区域变质作用和接触变质作用形成,大理岩主要用作雕刻和建筑材料,常用于建造纪念碑、铺砌地面、墙面、雕刻栏杆等。

大理石主要由方解石、石灰石、蛇纹石和白云石组成,其主要成分以碳酸钙为主,约占50%以上。其他还有碳酸镁、氧化钙、氧化锰及二氧化硅等。大理石一般性质比较软,这是相对于花岗石而言的。

当然,你没必要去理会这个,因为这个地质年代都是按亿来计算的,在我们有生之年,这个质变都是有限的一种变化。大理石地板砖以华美的外观以及非常实用的特点吸引了消费者的目光。与其他建筑石材不同的是,每一块的大理石地板砖纹理都是不同的,纹理清晰弯曲的大理石,光滑细腻,亮丽清新,像是带给大家一次又一次的视觉盛宴,装在居室生活里,可以把居室衬托得更加地典雅大方。

然石材中毛细孔的存在,为水泥砂浆水化后产生的碱、盐等水溶液的析出提供了通道天然石材一般主要由硅酸盐和碳酸盐矿物组成,这些石材结晶相对较粗,内部有许许多多毛细管,花岗岩细孔率为 ,大理石细孔率为 , 水可以通过这些石材中的毛细管浸入面传到另外一面。 加之天然石材特别是大理石的主要化学成分是碳酸钙,当受到大气中硫化物的和水汽形成的酸雨长期作用下,其表层起化学变化即转化为石膏,使其很快失去光泽,并变得疏松多孔,内部在二氧化碳和雨水形成弱酸侵蚀下形成更多的细孔,加速了水泥砂浆水化后产生的碱、盐等水溶液的析出

纳米碳管的研究论文方向

《先进材料》。德国有关碳纳米管研究论文的主要合作目标是《先进材料》,因此主要发表在《先进材料》期刊上的。德国有关碳纳米管研究论文是碳纳米管用于高能量密度和功率密度机械储能知识的论文。

前景很好,特别是复合材料这块!碳纳米管本身我就不介绍了。推荐关于碳纳米管的两本书:朱宏伟等著 《碳纳米管》 机械工业出版社 成会明.纳米碳管.北京:化学工业出版社当然,由于碳纳米管的研究还是一个新兴的学科,所以图书良莠不齐,也比较多。但是碳纳米管的最新动态主要还得看相关论文,特别是外文论文。网上也有很多资料(太多,百度也可以搜到,不一一列举):Iijima S. Helical microtubules of graphitic carbon. Nature邱桂花等 聚合物-碳纳米管复合材料研究进展 高分子材料科学与工程王 彪等 碳纳米管/ 聚合物纳米复合材料研究进展 高分子通报 李学峰等 聚合物碳纳米管的研究进展 合成材料于老化应用 孟 涛等 碳纳米管在聚合物基复合材料中的应用 华北工学院学报 李 伟等 碳纳米管在高分子材料力学和电学改性中的应用进展 工程塑料应用 高晓晴等 碳纳米管/碳复合材料的研究 宇航材料工艺 惠聪网化工行业频道 聚合物纳米复合材料发展现状 肖素芳等 碳纳米管的功能化研究进展 分析化学评述与进展 潘春旭 碳纳米管简介

  • 索引序列
  • 纳米碳酸钙的最新研究进展论文
  • 碳酸钙研究现状论文
  • 纳米材料的研究进展论文
  • 石材碳酸钙环境研究论文
  • 纳米碳管的研究论文方向
  • 返回顶部