小麦的营养还是比较高的,那么小麦的营养成分及价值是什么呢? 小麦富含淀粉、蛋白质、脂肪、矿物质、钙、铁、硫胺素、核黄素、烟酸及维生素A等。因品种和环境条件不同,营养成分的差别较大。从蛋白质的含量看,生长在大陆性干旱气候区的麦粒质硬而透明,含蛋白质较高,达14~20%,面筋强而有弹性,适宜烤面包;生于潮湿条件下的麦粒含蛋白质8~10%,麦粒软,面筋差,可见地理气候对产物形成过程的影响是十分重要的。 小麦不仅是供人营养的食物,也是供人治病的药物。《本草再新》把它的功能归纳为四种:养心,益肾,和血,健脾。《医林纂要》又概括了它的四大用途:除烦、止血、利小便,润肺燥。对于更年期妇女,食用未精制的小麦还能缓解更年期综合症。
小麦的主要成分有哪些 小麦 的营养成分列表 (每100克中含) 成分名称 含量 成分名称 含量 成分名称 含量 可食部 100 水分(克) 10 能量(千卡) 317能量(千焦) 1326 蛋白质(克) 脂肪(克) 碳水化合物(克) 膳食纤维(克) 胆固醇(毫克) 0 灰份(克) 维生素A(毫克) 0 胡萝卜素(毫克) 0 视黄醇(毫克) 0 硫胺素(微克) 核黄素(毫克) 尼克酸(毫克) 4 维生素C(毫克) 0 维生素E(T)毫克 a-E (β-γ)-E δ-E 钙(毫克) 34 磷(毫克) 325 钾(毫克) 289 钠(毫克) 镁(毫克) 4 铁(毫克) 锌(毫克) 硒(微克) 铜(毫克) 锰(毫克) 碘(毫克) 0 小麦和大米的主要成分是什么? 5分 1、淀粉:大米中含淀粉62%~86%,麦子中含淀粉57%~75%。 2、蛋白质:大米中蛋白质含量为6%-9%之间,小麦蛋白质含量在9%~15%之间。 3、脂类:大米中脂类含量约,小麦粒中脂类含量约。 4、水分:大米和小麦中的水分含量基本在13%-16%之间。 小麦皮的主要成分是什么 小麦的种皮就是麸皮,表皮部分成分主要是纤维素、矿物质、白色的物质还有维生素、油脂、蛋白、糖类、蛋白。 小麦的籽粒麦壳成分就是纤维素和少量矿物质 小麦里面有什么成分``? 小麦的 成分 (1)小麦蛋白质的组成 小麦中所含蛋白质主要可分为麦白蛋白(清蛋白质类:Albumin)、球蛋白(Globulin)、麦胶蛋白(麸蛋白:Gliadin)、麦谷蛋白(Glutenin)等四种。前两者易溶于水而流失,后两者不溶于水。这两种蛋白与其他动、植物蛋白不同,最大特点是能互相粘聚在一起成为面筋(Gluten),因此也称面筋蛋白。麦谷蛋白和麦胶蛋白占小麦中蛋白质含量的80%左右。 表2-2 小麦中的主要蛋白质组成 蛋白质名称 春小麦 冬小麦 溶解性 麦胶蛋白(Gliadin) 麦谷蛋白(Glutenin) 麦白蛋白(Albumin) 麦球蛋白(Globulin) 可溶于70%酒精 不溶解 溶于水 溶于水 (2)小麦蛋白质所含的氨基酸 小麦蛋白质的肽链由氨基酸缩合而成。仅面筋蛋白中就有18种氨基酸。小麦蛋白质中主要氨基酸组成及其中必需氨基酸和其他农产品的比较如表2-3所示。 表2-3 小麦及其他农产品蛋白质的氨基酸组成 单位:% 氨基酸 小麦 玉米 大米 鸡蛋 面筋蛋白 白蛋白 球蛋白 丙氨酸(Alanine) 精氨酸(Arginine) 天门冬氨酸(Asperity Acid) 半胱氨酸(Cysteine) 谷氨酸(Glutamic Acid) 甘氨酸(Glycine) 组氨酸(Histidine) 异亮氨酸(Isoleucine) 亮氨酸(Leucine) 赖氨酸(Lysine) 蛋氨酸(Methionine) 苯丙氨酸(Phenylalanine) 脯氨酸(Proline) 丝氨酸(Serine) 苏氨酸(Threonine) 色氨酸(Tryptophan) 酷氨酸(Tyrosine) 缬氨酸(Valine) 2、碳水化合物(Carbohydrate) (1)可溶性碳水化合物 (2)粗纤维(Crude Fiber) 3、脂肪(Oil and Fat) 小麦的脂肪主要存在于胚芽和糊粉层中,含量很少,只有1%—2%,这虽是营养成分,但多由不饱和脂肪酸组成,很易氧化酸败使面粉或饼干等制品变味。 4、矿物质(Ash or Mineral Matter) 小麦或面粉中的矿物质(钙、钠、磷、铁等)主要以盐类而存在。 5、维生素(Vitamin) 小麦胚芽中含有丰富的维生素E。小麦中维生素B1、维生素B2、维生素B5较多,还含有少量的维生素A,微量的维生素C,但不含维生素D。 四、小麦及面粉中的各种成分的性质 1、水分 经过干燥成为商品的小麦水分与当地的气温、溼度有关,大约在8%—18%之间。我国小麦则在11%-13%。水分太高会降低小麦的贮藏性,引起变质。而且,水分高的小麦了民会给制粉带来困难。 2、蛋白......>> 小麦皮是什么营养成分 面粉是我国大部分北方地区的主食,小麦富含蛋白质、脂肪、碳水化合物和纤维素。每100克小麦粉(标准粉)含水分12克,蛋白质克,脂肪克,碳水化合物克,钙38毫克,磷268毫克,铁毫克,维生素毫克,维生素毫克,尼克酸毫克,可供热量千卡。中医认为,小麦性味甘凉,有养心益肾,健脾厚肠,除热止渴的功效。治失眠:神志不安等症:小麦100克(去壳)、甘草30克、大枣15个与水同煎汤饮。治虚汗症:用陈小麦煎汤饮。 小麦含有哪些营养成分 详细 小麦 的营养成分列表 (每100克中含) 成分名称 含量 可食部 100 水分(克) 10 能量(千卡) 317 能量(千焦) 1326 蛋白质(克) 脂肪(克) 碳水化合物(克) 膳食纤维(克) 胆固醇(毫克) 0 灰份(克) 维生素A(毫克) 0 胡萝卜素(毫克) 0 视黄醇(毫克) 0 硫胺素(微克) 核黄素(毫克) 尼克酸(毫克) 4 维生素C(毫克) 0 维生素E(T)(毫克) a-E (β-γ)-E δ-E 钙(毫克) 34 磷(毫克) 325 钾(毫克) 289 钠(毫克) 镁(毫克) 4 铁(毫克) 锌(毫克) 硒(微克) 铜(毫克) 锰(毫克) 碘(毫克) 0 不去麸皮的麦仁的营养价值高。
荞麦和小麦成分上的区别:
1、成分不同
荞麦含有蛋白质、脂肪、淀粉、纤维素;而小麦含水、蛋白质、脂肪、碳水化合物、膳食纤维。
2、成分含量不同
荞麦其籽粒含蛋白质~、脂肪~、淀粉~、纤维素~。日本学者研究报导:荞麦的营养效价指标为80~92(小麦为70,大米为50)。
小麦其籽粒含水10%,蛋白质、脂肪、碳水化合物、膳食纤维。
3、卡路里和大量营养素
每杯荞麦提供583卡路里,一杯坚硬,红色,冬小麦的热量为628卡路里,这是美国最常见的。荞麦有23克蛋白质和6克脂肪,小麦有24克蛋白质和每杯3克脂肪。小麦几乎没有饱和脂肪,荞麦只有1克,两颗粒都没有胆固醇。这两种谷物都含有高碳水化合物,每杯含122至136克。
4、膳食纤维
荞麦每杯提供17克膳食纤维,红硬冬小麦有23克。膳食纤维可能会降低心脏病的风险,因为它会降低血液中的低密度脂蛋白胆固醇水平,良好的来源是蔬菜,水果,豆类,坚果和全谷物。根据美国卫生和人类服务部的“2010年饮食指南”,尝试为您每吃一千卡路里获得至少14克膳食纤维。
5、维他命
荞麦和全麦红麦都含有维生素B,包括烟酸,叶酸,硫胺和泛酸。这些维生素对于能量代谢和心脏健康至关重要。根据美国卫生和人类服务部的“2010年饮食指南”,强化的精制谷物,例如由小麦制成的强化白面粉,在您的饮食中可能很重要,因为它们提供额外的硫胺素,烟酸,核黄素和叶酸。
6、小麦中的矿物质
荞麦具有782毫克钾,小麦每杯有697毫克钾,两种谷物天然几乎不含钠。酵母面包可能是您饮食中常见的小麦来源,钠含量很高。
高钠,低钾饮食可能导致高血压,并增加心脏病和中风的风险。镁是健康血压的另一个重要矿物,一杯荞麦有393毫克,小麦有242毫克。荞麦有3毫克铁,小麦有6毫克,而每日价值18毫克的铁。
参考资料来源:百度百科-荞麦
参考资料来源:百度百科-小麦
找到以下这么多,有用的话留邮箱。1 泡沫陶瓷材料的研究进展 ,靳洪允,陶瓷科学与艺术, 2005 查看全文 2 泡沫陶瓷的研究进展 ,焦方方、朱广燕,陶瓷, 2007 查看全文 3 泡沫陶瓷材料制备方法及应用的研究进展 ,董毅峰、王雪瑶、李志宏、刘石、刘长春,陶瓷, 2007 查看全文 4 有机泡沫浸渍法制备SiC泡沫陶瓷的研究进展 ,赵东亮、张玉军、张兰,陶瓷, 2006 查看全文 5 泡沫陶瓷的研究进展 ,靳洪允,佛山陶瓷, 2005 查看全文 6 泡沫陶瓷材料的研究进展 ,靳洪允,现代技术陶瓷, 2005 查看全文
品 名:超导陶瓷拼音:chao1dao3tao2ci2英文名称:superconductivity ceramics说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。奇异的超导陶瓷1973年,人们发现了超导合金――铌锗合金,其临界超导温度为,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。
具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=)起,直到1986年以前,人们发现的最高的 Tc才达到(Nb3Ge,1973)。1986年瑞士物理学家.米勒和联邦德国物理学家.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为。电工中实际应用的主要是铌和铅(Pb,Tc=),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为,Hc为特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=,Hc=特;Nb-60Ti,Tc=,Hc=12特()。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=,Hc=特();Nb-70Ti-5Ta的性能是,Tc=,Hc=特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=,Hc=特。其他重要的超导化合物还有V3Ga,Tc=,Hc=24特;Nb3Al,Tc=,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为,锌为,铝为,铅为。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T
什么的当前最新研究成果什么什么的当前最新研究成果什么的目前,关于机器学习的最新研究成果有:1. 深度强化学习:深度强化学习是一种基于机器学习的技术,它可以自动学习复杂的控制策略,从而解决复杂的问题。2. 自然语言处理:自然语言处理是一种机器学习技术,它可以帮助机器理解自然语言,从而实现自动化文本分析和推理。3. 图像识别:图像识别是一种机器学习技术,它可以帮助机器自动识别图像中的物体,从而实现自动图像分类和检测。4. 自动机器翻译:自动机器翻译是一种机器学习技术,它可以帮助机器自动翻译文本,从而实现自动化文本翻译。5. 智能客服:智能客服是一种机器学习技术,它可以帮助机器自动回答客户的问题,从而实现自动化客服服务。
在高科技的当前最新成功研发出一种聚电解质限域的流体忆阻器研究成果。由中国科学院化学研究所(中科院化学所)、中国科学院大学、湘潭大学及北京师范大学等研究人员组成的合作团队,最新成功研发出一种聚电解质限域的流体忆阻器,并利用单个器件在国际上首次实现了神经化学信号到电信号转导的模拟。这项大脑领域重要研究将有望推动人类对大脑“化学语言”的读取和交互,为发展神经智能传感、类脑智能器件和神经感觉假肢等提供新的思路。该成果论文1月13日在国际著名学术期刊《科学》(Science)上发表。
生物技术的主要作用是通过农业和医药的进步,提高我国人民的健康保障,生物技术在我国的健康保障中作出了极大的贡献。下面是我整理了关于生物科技论文2000字 范文 ,欢迎阅读!生物科技论文2000字范文篇一:《谈谈生物高科技的发展》 摘要:生物技术的主要作用是通过农业和医药的进步,提高我国人民的健康保障。生物技术有着诱人的前景,是我国经济发展的希望所寄,它不仅能成为重要的生财之道,而且可能成为二十一世纪的经济支柱,对人类做出重大贡献。 关键词:生物 高科技 发展 中国是一个发展中国家,农业是我国发展国民经济的基础,它为人民提供生活的基本需要。生物技术的主要作用是通过农业和医药的进步,提高我国人民的健康保障。从这一意义上来说,我国发展生物技术的目标应不同于发达国家,应有自己的特色。 1、政策与策略 (1)生物技术应置于我国高科技发展计划之首,因为,生物技术的进步可以改造农业,包括谷物,肥料和家畜。 (2)优先发展农业包括农林牧渔,其次是医药卫生、轻工与食品领域内的生物技术新产品。研究的重点要向农业倾斜。生物技术的发展应尽快形成高技术生产体系。研究项目应是有限目标,优先发展一批国内急需、技术成熟、经济效益和社会效益显著、国内有一定基础和条件的生物技术新产品。 (3)采用现代生物技术,加速传统产业的技术改造,以提高技术水平和产量,改进产品质量,增加品种,减少环境污染。为此,在农业方面,我们应采用新技术与传统技术相结合的 方法 ,加强优良品种的选育;在医药、轻工业方面,积极采用遗传工程、酶工程和发酵工程新技术,改革传统的生产工艺,以提高产量,增加效益。 (4)大力加强生物技术的开发工作。例如,大力研制新型发酵设备,它既可用于细菌培养,也可用于哺乳动物细胞培养;生产蛋白和核酸的纯化仪器和监测分析仪器等,以促进科研成果迅速转化为生产力。 (5)重视生物技术以及有关领域的基础研究。开展基础研究,可以为改进现有技术和发展新技术提供理论基础,也是消化吸收国外先进技术和培养人才的重要条件。要保持这一政策的连续性和稳定性。 (6)发展和健全必要的生物技术配套基础设施。例如建立限制性内切酶和其他修饰酶、同位素、蛋白质分离纯化和细胞培养介质的生产和供应系统,以及建立细胞库、基因库以及生物技术信息库。 (7)加强生物技术的国际学术交流,技术合作和技术引进。建立一批国家重点实验室,配备先进仪器,向国内外科学家开放。从发达国家引进先进的关键性技术应当是成熟的技术,同时又是国内国民经济建设所急需的技术。 (8)开展生物技术的立法工作。这是为了防止在发展生物技术的过程中可能带来的副作用,特别是操作重组DNA。 2、预测与展望 从生物发展趋势及其潜在能力考虑,我国如果在人才培养、研究开发及经费的筹措方面能以合理安排,我国的生物技术将会在原有发酵工业基础上形成一个崭新的工业体系,在农业上也将会取得较大效益。 生理活性物质的生产 作为医药品而大量需要的生长素、胰岛素、干扰素等肽类物质和乙肝疫苗、尿激酶等,目前在我国还是从动物或人体组织中提取精制的,多数不能实现批量生产,成本高,售价昂贵。应用生物技术生产此类药品的研究已见成效,将为人类带来福因。 酶制剂的生产 随着酶催化技术的开发和固定化酶反应器技术的应用,酶制剂的生产将会有较大发展。目前,世界酶制剂总产量中60%是蛋白酶,主要用于洗涤剂、制革和乳品加工。我国酶制剂的种类和数量都还不多,有些酶的应用市场也还没有打开。诊断、医药和试剂用酶在我国酶制剂消费比例中大约占10%左右,这方面的发展潜力很大,尤其是酶诊断盒的开发,有可能形成新的产业。 抗生素的生产 我国抗生素工厂生产抗生素的种类有五、六十种。但是,抗生素的品种结构极不合理。今后,将可能把重点研究开发工作放在β―内酰胺类抗生素的研制上。农用抗生素是抗生素工业的一大分支。在国外仅被用作饲料添加剂的抗生素就有18种之多,伴随我国饲料工业的大发展,农用抗生素将会作为新的产业门类被人们重视起来。 氨基酸、有机酸和多糖的生产 用生物技术生产的氨基酸有18种,世界上除半数用于食品、医药外,一半是作为饲料添加剂。赖氨酸、色氨酸、蛋氨酸的需求量将会逐年增加。我国在饲料用氨基酸的开发方面起步晚,大力开发饲料用赖氨酸、色氨酸、蛋氨酸的生产将是今后的重点任务。与此同时,也要大力开发 其它 医用氨基酸。 为了提高氨基酸产率,用基因工程和细胞融合技术培养新菌种的工作今后会有所加强。以固定化酶或固定化细胞技术生产氨基酸有可能在工业上得到应用。 有机酸和微生物多糖的生产,在今后会有新的发展。尤其用微生物生产的黄杆菌胶,普鲁兰和环状糊精等多糖因其在石油工业和食品工业上有较大用途,很可能被开辟为一个新的产业。 单细胞蛋白工业 单细胞蛋白这一技术领域因为同废物的处理与再利用和提供人类需要的蛋白质食品有关,所以受到人们的重视。我国单细胞蛋白的生产包括面包酵母,药用酵母和饲用酵母几方面。 现在以糖蜜和多种工业废水为原料的单细胞蛋白生产都取得了技术的突破。不久将出现以糖蜜、味精废液、酒精废液等生产单细胞蛋白的企业群。我国的单细胞蛋白工业一定会发展起来。 农牧业生产 生物技术在农牧业生产方面,已经和将继续显示它的重要作用。我国在应用组织培养快速繁殖、用基因工程和细胞融合育种以及胚胎移植等方面取得了一定成果和进展,并已培育出一些优良的动植物新品种。今后在用生物新技术培育高产优质或抗逆(包括抗旱、抗盐碱、抗除莠剂)作物新品种及动物良种的工作还会不断加强,构建高效固氮生物体系,培育高效固氨微生物菌株定会取得新的进展。动物胚胎的移植和分割技术也会在良种繁殖上得到广泛应用。用杂交瘤制备的单克隆抗体,用于作物、畜、禽和鱼类疾病的快速论断也将逐步得到推广和普及。 此外,用生物技术保护环境、净化工业废水,以自然界的废物及生物量为原料生产能源燃料,采用细菌浸矿开采与提炼有色金属,尤其在基础化学领域内应用生物技术制造有用产物方面都已取得一些成果和提出一批新的研究课题,并展示出美好的前景。 3、结语 总之,生物技术有着诱人的前景,是我国经济发展的希望所寄,它不仅能成为重要的生财之道,而且可能成为二十一世纪的经济支柱,对人类做出重大贡献。 生物科技论文2000字范文篇二:《当代蚕桑生物科技发展现状综述》 摘要:近50年来,我国蚕桑科学技术迅速发展,在分子生物学基础理论研究、蚕丝蛋白生物材料开发及应用、家蚕基因工程技术、家蚕性别控制与专养雄蚕技术、昆虫激素在蚕业上的应用、家蚕变态发育的人为调控、家蚕营养生理与人工饲料研究、蚕体作为生产重组蛋白的生物反应器、桑树栽培与遗传育种新技术开发和蚕桑生物资源综合利用等方面有了长足的进步,极大地促进了蚕业生产向深度与广度拓展。蚕桑生物科技发展与国计民生息息相关,蚕桑生物科技的发展,必将推动我国养蚕业的发展,为广大蚕农增加收益,带动丝绸业及其相关产业的发展,推进蚕桑生物科学的发展,也为生物科普 教育 提供丰富的资源,使传统蚕桑业焕发生机活力。 回顾中国蚕业科学的发展历程,展望世界蚕业科技发展趋势,可以更加深刻地理解:蚕业科学是为蚕丝生产有关产业(栽桑、养蚕、制种、制丝)提供方法与原理的应用科学。面向未来,蚕业科学研究的重要任务是进一步提高蚕业生产中的科技含量,使养蚕业从劳动密集型迅速向知识密集型转变,而这个转变很大程度上依赖于蚕桑生物学基础研究的进展与应用技术的开发创新。 1 蚕丝分子生物学基础理论研究 丝蛋白分子结构与丝蛋白基因表达调控机制的进一步阐明,将为增产蚕丝、改进丝质提供分子生物学理论基础。飘逸润滑的桑蚕丝衣服是许多人的最爱,但让人苦恼的是,桑蚕丝很娇气,不耐穿,打理起来也格外麻烦。2014年11月,我国西南大学科学家培育重组基因蚕宝宝首次吐出了人工合成蚕丝蛋白。在家蚕16 425个基因中,有一个叫做Fib-H基因,它是控制丝蛋白产生的关键基因。研究者在家蚕的生殖细胞中“剪切”掉了其中的Fib-H基因,没有Fib-H基因的家蚕丝腺,叫做“空丝腺”。研究人员将事先设计好、与Fib-H基因类似的人工丝蛋白基因,显微注射到被敲除Fib-H基因的蚕卵中,人工丝蛋白基因转移成功的蚕卵发育成“蚕宝宝”后,吐出的丝中就含有人工合成丝蛋白。通过对蚕丝纤维的人为改良和重新设计,以后桑蚕丝可能会像棉质衣服一样,既保持桑蚕丝的舒适感,又像棉质衣服一样耐穿、好打理。 2 家蚕丝蛋白生物材料新功能的开发及应用 家蚕丝蛋白是一种具有良好透气与透湿性、无毒、无刺激、与人体相容性强的生物材料。家蚕丝蛋白不仅可作为人造皮肤、血管、肌腱、韧带、骨骼和牙齿等人造组织材料,以及作为手术缝合线、隐形眼镜、角膜、抗血凝剂、药物控释材料、功能性细胞培养基质、固定化酶载体和生物传感器等生物医学材料还在环保新材料、化妆品、保健营养食品等日化和环保领域被广泛使用。随着家蚕基因组研究工作的重大进展,以及基因工程和生物技术的快速进步,家蚕丝蛋白的生物功能有望在军事、航天、医学、环保等领域得到更深、更广地开发和应用。 3 家蚕基因工程技术 桑蚕不仅是一种重要的经济昆虫,而且是研究真核生物基因表达调控的模式生物之一。将外源基因转移到桑蚕中以实现其在蚕体内的表达,最终是要将外源基因整合桑蚕染色体,这样才有可能稳定遗传,获得转基因蚕。目前关于桑蚕的转基因报道主要有:桑蚕品系间的基因转移,其他动物的基因转入桑蚕体内,以及桑蚕的基因转入其他动物。例如中国科学院研究员陆长德等利用“电穿孔”法,将荧光蛋白基因及蜘蛛拖牵丝基因注入蚕卵,获得了吐出荧光“蜘蛛丝”的转基因蚕。蜘蛛丝中的拖牵丝是强度十分高、弹性十分强的天然蛋白纤维,若制成防弹衣则“刀抢难入”,织出降落伞牢固耐用;产生荧光的蚕丝则可用以开发天然夜光衣及各种防伪标签等。 4 家蚕性别控制与专养雄蚕技术 雄蚕与雌蚕相比,具有诸多的优势,一是体质强健,容易 饲养 ;二是食桑量少,饲料效率高;三是出丝率高,茧丝品质优,可缥制高品位生丝。专养雄蚕比目前的雌雄蚕各半混养,可较大幅度提高蚕丝的产、质量和蚕业经济效益。因此,专养雄蚕被称为继一代杂交种利用之后最有价值的一项创新技术。性连锁平衡致死基因的应用已有很大进展,俄罗斯科学院斯特隆尼柯夫育成的桑蚕性连锁平衡致死系,在此基础上经转育改良培育出多个雄蚕品种,雄蚕率达,可实现专养雄蚕的目标。专养雄蚕将成为21世纪提高桑蚕产丝能力和改善丝工艺性状的重大突破口。 5 昆虫激素在蚕业上的应用 蜕皮激素(MH)、保幼激素(JH)以及保幼激素类似物(JHA)在调节桑蚕生长发育、增产蚕丝及生产超细纤度生丝方面,已取得较大进展。例如,应用保幼激素和蜕皮激素可提高夏秋茧的品质,并较好地解决桑叶的余缺问题。发现了几种抗保幼激素活性物质,成功地诱导出三眠蚕,开发出了超细纤度优质茧丝。此外,使用抗保幼激素,可以缩短蚕期,提高劳动生产力和经济效益。 6 家蚕变态发育的人为调控 家蚕变态发育的人为调控是蚕丝业科学的根本性问题之一,人为调节家蚕的变态与发育对蚕丝业的生产结构与整体生产效益有重大影响。由于家蚕是完全变态昆虫,蛹期很短,仅为2周,而蛾口茧不适合于缫丝,生产上必需在蛹化蛾之前完成鲜茧的收购和烘干工作。人们希望通过人为调节家蚕的变态与发育,延长蛹期,减轻鲜茧收购和烘干的工作压力及强度,甚至希望蛹期发育中止,实现鲜茧缫丝。利用基因工程技术,采用精子介导法将带有蝎毒素基因的载体导入蚕卵,在蛹期特异性表达,杀死蚕蛹。这样,不仅可以解决鲜茧收烘与蛹期过短之间的矛盾,使提高生丝品位成为可能,而且还可以大大节约烘茧所需的能源。 7 家蚕营养生理与人工饲料研究 家蚕属于植食性昆虫。家蚕除嗜食桑叶外,尚能取食桑科的柘,菊科的蒲公英、莴苣,榆科的野榆等。但桑叶以外的植物叶,很难使蚕健康地生长发育和繁殖后代。在过去40年桑蚕摄食行为与营养生理学研究基础上,对广食性蚕品种选育及低成本人工饲料设计获得了长足进步,这就有可能在不久的将来,用低成本人工饲料在全自动化的工厂内实现全年养蚕,从而促进养蚕业由劳动密集型产业向知识密集型转化。例如日本早在20世纪90年代就成功选育出了嗜食低成本线性规划设计饲料的多对广食性蚕品种,日本的其他现行品种也都经过了人工饲料适应性选育,均具备良好的摄食性。我国蚕业界自20世纪90年代以来,在人工饲料适应性蚕品种和广食性蚕品种的选育方面也做了不少研究。山东省农业大学林学院蚕学系,近几年也开展了人工饲料适应性蚕品种的选育工作,并初步选育出摄食性较好的杂交组合广食一号和广食性饲料(主要成分:桑叶粉30%、豆粕粉25%、其它有淀粉、防腐剂、维生素、无机盐等)。 8 蚕体作为生产重组蛋白的生物反应器 “家蚕生物反应器”,是指将带有目的基因的重组杆状病毒植入家蚕的蚕蛹体内进行培养,蚕蛹会主动对植入基因进行转录和翻译,自然生成对人类有用的生物活性物质,通过高新技术(如超低温冷冻、低温干燥、高速离心等),将生物活性成分萃取并制成相关剂型,以满足人类疾病的治疗、预防和保健需求。家蚕易于饲养,成本低廉,它1天内可合成3 169 mg外源蛋白;其血淋巴具有储存蛋白的能力,淋巴内含有蛋白分解酶的抑制物,对目的蛋白起到保护作用,且外源蛋白又很容易从家蚕体液中分离纯化出来;还可以将家蚕直接磨碎用作药物或食品添加剂。因此,用家蚕生物反应器生产有用蛋白具有很大的优越性。如用家蚕来生产皮肤生长因子、乙肝疫苗等有高附加价值的蛋白质。 9 桑树栽培与遗传育种新技术开发 桑杂交育种、诱变育种和多倍体育种都是改良桑树品种的有效方法,也是提高单位面积产丝量的重要途径,而细胞工程和基因工程的研究与应用,也将为桑树育种提供新的途径和方法。全世界26个桑种,分布在中国的至少有15个,目前我国保存的桑品种资源达2600份,已选育出适应不同环境条件、栽培技术、养蚕要求和其他用途的优良桑品种50多个,其中栽培面积最多的是鲁桑系的荷叶白、桐乡青、团头荷叶白、湖桑197,育2号等品种。桑树栽培主要采用低杆密植、立体栽培管理模式,提高了桑叶产量、质量。 10 蚕桑生物资源综合利用 我国由蚕桑副产品加工成的许多产品已进入工业生产阶段,如利用桑叶、桑葚果制作桑叶茶、桑葚膏、桑葚酒,提取植物醇、叶绿素、胡萝卜素等;利用蚕蛹制备蚕蛹蛋白粉和多肽,分离家蚕抗菌蛋白和诱导生产生物活性蛋白,生产蚕蛹氨基酸及氨基酸络合物,提取蚕蛹油与壳聚糖,开发蚕蛹蛋白纤维、蚕蛹虫草等;利用废丝研究开发出了丝素粉、丝素膏、丝素液、丝素洗面乳、洗发护发剂等美容健肤化妆品。不仅提高了蚕业生产的综合效益,同时也提高了蚕业产品附加值,转变蚕桑生产经营目的,做大做强蚕桑产业,让蚕桑更好地造福人类。 参考文献: [1] 王玉军,柳学广,徐世清.家蚕丝蛋白生物材料新功能的开发及应用[J].丝绸,2006(6):44-48. [2] 何克荣,夏建国,黄健辉.桑蚕的性别控制与专养雄蚕的研究[J].蚕学通报,1998(3):2-3. [3] 王晓娟,贡成良.转东亚钳蝎毒素基因对家蚕发育与生存率的影响[D].江苏:苏州大学,2010. [4] 徐欣,郭晓琪等.广食性蚕品种“广食一号”对不同人工饲料和不同龄期饲养的适应性及主要经济性状鉴定初报[J].中国蚕业,2013(3):37-41. [5] 王昌河,蒋平,曹林,郭聪.家蚕生物反应器的研究进展及开发前景[J].四川动物,2004(4):368-372. 生物科技论文2000字范文篇三:《试谈初中生物科技创新实践活动》 【摘 要】生物学科是现代科学技术的重要组成部分,因此,生物科技活动承担着培养青少年创新精神,创造能力及动手实践能力等任务,更是培养青少年热爱大自然,理解和关心生态保护,了解生物与农业、生物与医学、生物与工业及环境保护等的关系的首要途径,它还挖掘和培养生命科学领域的科技研究人才,为我国各项事业的发展筹备力量。生物科技创新实践活动具备科技创新实践活动的一切特点,在各学科的科技创新实践活动中占有较大比重。笔者运用行动研究法的计划、行动、观察、 反思 四个过程,对学生较为困惑的选题环节,采取集中培训、个案分析、跟踪调查等形式解决遇到的实际问题,并及时 总结 经验 和积累案例素材,取得了较好的效果。 【关键词】科技创新;实践活动;课题研究 当今世界。国家与国家之间的竞争十分激烈,其竞争的焦点集中在科学技术的竞争,而科学技术的竞争核心又是人才的竞争。衡量人才的标准是看其创新能力或创新才能,因此党中央提出,建设创新型国家,核心是创新人才的培养。 一、初中生物科技创新实践活动中相关概念的界定 生物学科是一门实验学科,注重人与自然的和谐发展,又和日常生活密切联系。生物科技创新实践活动在学校的开展,既可以给学生实践机会,锻炼他们的动手操作能力,增强社会责任感和 社会实践 能力,又可以培养学生科学的思维习惯和良好的合作精神。实现塑造人格、提高科学素养和创新能力的目标。 二、选题阶段的探索与实践 依据《全日制义务教育生物课程标准》“面向全体学生、提高生物科学素养、倡导探究学习”的理念,笔者充分利用所在学校现有教育环境条件,结合初中学生特点,探索和研究初中生物科技创新实践中的操作性方法,指导学生开展生物科技创新课题研究。解决在此活动中遇到的实际问题,以期为科技教育和广大一线科技活动教师提供一定的借鉴,并为科技创新实践活动积累一定实践路径和方法。 在开展科技创新实践活动前,笔者曾对学生作过问卷调查,学生认为选题环节是最为困惑的,选题难成了影响或制约“课题研究”开展的瓶颈。我决定运用行动研究法来解决问题。一般来说,行动研究包括计划、行动、观察、反思四个环节。 在制定总体实施计划时还要考虑行动步骤的计划。先进行第一轮行动,并进行监测,了解其效果,根据监测获得的资料,分析不足之处,在此基础上修改总体计划,尤其对下一轮的行动步骤作出调整。具体行动研究步骤如下: (1)拟解决的问题。经过知识的积累,学生已经挑选了一些课题,但选题过于盲目,不清楚哪些课题其他人已经做过,自己可以做什么样的课题,怎样把研究成果以科学的方式呈现出来。 (2)问题形成的原因分析。学生的课题主要来自于日常生活中,要在这种习以为常的现象中发现并提出问题,就需要学生仔细观察、积极思维,能从寻常现象中发现不寻常之处。 (3)设计对策及行动方案。利用科普讲座这个宣传阵地,发挥典型案例的辐射功能,激发学生关注身边的人和事,从生活中选题,指导学生确定课题研究方向。 (4)行动反思。从上交的课题名单中,我们发现科普讲座起了预期的作用。的选题来源于学生的生活。说明学生已经在有意识地关注生活。但存在的问题是选题角度、选题范围大小、研究的可行性等问题。 (5)新一轮行动研究方案。采取个别辅导的方法,具体问题具体分析,了解每个课题制定的出发点、研究计划等详细情况,帮助学生找准研究方向和角度及切入点,缩小研究范围,通过分解、细化、改进、综合,提炼出可行性强的研究课题。 (6)新一轮行动实施及监测。针对选题范围过大的课题,笔者采用的是分解、细化的方法。 (7)行动研究阶段性评价和总结。通过对比前后课题名称分析发现,修改后的课题名称更确切、具体,学生明确了研究方向、研究重点和切入点。教师也可从课题名称中迅速掌握课题的相关情况。 经过师生共同努力,我校科技创新实践活动小组共产生了24件作品,全部推荐参加了第五届鹤壁市青少年科技创新大赛,24件作品均荣获市级奖励。其中,一等奖4项、二等奖7项、三等奖13项。 三、开展活动的建议 (1)鼓励学生采用多种方式选题。生物科技创新实践活动研究课题的相关学科是非常丰富的,包括植物学、动物学、微生物学、生态学、环境学等。 (2)挖掘可利用的教育资源。我们应该因地制宜,深入挖掘教育资源,可以考虑学校和周围社区中哪些是可利用的资源,争取社会和家长的支持。 (3)提高生物教师的科研素质。生物教师要多参加各级科技活动的培训,多阅读科学研究方面书籍、报刊、杂志,多关注生活、关注社会,多收集相关案例,激发学生创新的兴趣。只有教师自己具备科学研究能力,才可能培养学生良好的科研素质。 参考文献: [1]黄祖荫编.中学生物科技活动资料[M].广东高等教育出版社,1994(8). [2]对生物活动课的认识和思考解玉嘉《中学生物教学》,1999年02期. [3]义务教育生物学课程标准修订组义务教育生物学课程标准(2011年版)[M].北京师范大学出版社,2012(2). 猜你喜欢: 1. 生物技术论文范文 2. 关于科技论文的范文 3. 生物科技论文范文1500字以上 4. 浅谈高中生物科技论文 5. 关于基因的科技论文范文1500字 6. 关于生物的科技论文范文
生命科学是通过分子遗传学为主的研究生命活动规律、生命的本质、生命的发育规律,以及各种生物之间和生物与环境之间相互关系的科学。下面是由我整理的生命科学学术论文,谢谢你的阅读。
有机化学与生命科学的关系
摘 要:有机化学在生命科学发展中起着理论基础,研究工具,阐明本质的重要作用,它们有着密切的关系。本文从有机化学的发展与生命科学,有机化学的主要研究成果与生命科学,有机化学研究的任务与生命科学,三个方面说明有机化学课程与生命科学中的关系。
关键词:有机化学;生命科学;关系
有机化学是生命科学的基础,有机化合物是构成生物体的主要物质,生物体中各种有机化合物的结构、性质以及它们在生物体内的的合成、分解、转化、代谢无不以有机化学为基础。有机化学产品正越来越多地应用于农业。如农药(杀虫剂、杀菌剂、除草剂)、植物生长调节剂、化肥、农膜等保证了农业生产;兽医药、饲料添加剂促进了畜牧业生产。要正确地使用,必须了解这些有机化合物的组成、性质和生理功能。但是,目前有些学校的生命科学专业越来约忽视有机化学课程,课时越来越少,这样对学生的进一步学习不利,比如生物化学、分子生物学等后续课程的学习。本文将从有机化学的发展与生命科学,有机化学的主要研究成果与生命科学,有机化学研究的任务与生命科学,三个方面说明有机化学课程与生命科学中的关系。希望能引起从事生命科学专业人对有机化学的重视。
1. 有机化学的发展与生命科学有密切的关系
有机化学就其最初的意义而言,是生物物质的化学。1807年,J. F. Yon Berzilius首先把从活细胞中获得的化合物命名为有机化合物。那时人们对生命现象的本质还没有认识,因而便赋予有机化合物一种神秘的色彩,许多化学家认为有机物是不可能用人工的方法合成的,它们是“生命力”所创造的。但是1828年,F. Wohler从无机物氰酸铵制得了尿素,否定了关于“生命力”的假说,可以说是化学家第一次干预了生命科学。
随后有机化学的发展主要集中在有机物的结构研究和合成方法上,较少关心它们的生物功能。尽管如此,许多化学家的研究成果还是成为了生命科学发展过程的里程碑。比如,19世纪中叶,I. Pasteur关于左旋和右旋酒石酸经典式的研究,导致70年代Vanthof和LeBel碳原子四面体构型学说的建立,它是生命分子结构不对称性的基础。E. Fischer对碳水化合物立体化学和肽合成化学的贡献是这两大类重要的生命分子化学的奠基石。20世纪50年代,A. Todd建立的核糖核酸(RNA)和脱氧核糖核酸(DNA)的化学结构,为Vatson-Crick DNA双螺旋结构的提出铺平了道路。60年代H. G. Khorana开创的磷酸二酯法合成寡核苷酸,不但证明了DNA上每三个碱基组成一个三联体密码子编码一个氨基酸从而提出了一套遗传密码,而且也开始了人工合成DNA的研究。化学家也将用化学小分子和化学工具研究生命体系。1985年H. Smith和K. Mullis发明了聚合酶链式反应(PCR)从而使分子生物学在技术上有了一个突破和飞跃。1988年SchrEiber在做靶向合成(TOS)天然产物FK506时发现FK506的结合蛋白FKBP12。1991年他们又利用小分子探针FK506和Cyclosporin发现他们可以抑制磷酸化酶神经组蛋白Calcineuin的活性。同时发现了可以生成FKBP-12-FK506神经组蛋白复合物和cyclophilin-cyclospolin-calcineulin的复合物。这些小分子同时与两个蛋白结合,而表现出的生物活性也是细胞内信号传导通路的分子基础。1992年,SchrEIber在美国《化学与工程新闻》发表了题为“用有机化学的原理探索细胞学”的论文,确信生命的过程就是生物体中化学变化过程[1-3]。
总之,有机化学理论上和实践上的成就为现代生物学的诞生和发展打下了坚实的基础。价键理论、构象学说、反应机理等成为解释生化反应的有力手段,蛋白质和核酸的组成和结构研究,顺序测定方法的建立,合成方法的创建,酶催化机制的研究,模拟酶的合成的化学模型的建立,小分子探针技术,单分子激发的技术,单分子操作的技术等重大成就,为现代生物学及生物技术开辟了道路。有机化学与生物问题的密切结合是推动生命科学发展的有力柱,也将人们对生命过程的了解提高到一个新的层次[4, 5]。
2. 一百多年来,有机化学的最高科学成果—— 诺贝尔化学奖综览
1901-2010年共110年,除去8年未授奖外,共授化学奖102项,其中有机化学方面得化学奖65项,占整个化学奖的。碳水化合物、光合作用得研究共8项;蛋白质、酶和核酸方面得研究共18项;甾族化合物、维生素和生物碱方面研究共8项;其它方面共31项。其中与生物相关的占34项。占有机化学的。由此可以看出有机化学与生命科学有着密不可分的关系。
3. 有机化学研究的任务与生命科学的关系
有机化学研究的主要任务是分离提纯、物理有机化学、合成。分离提纯即分离、提取自然界存在的各种有机物,测定它们的结构和性质,以便加以利用。物理有机化学是研究有机物结构与性质间的关系、反应经历的途径、影响反应的因素等,以便控制反应向我们需要的方向进行。合成是在确定了分子结构并对许多有机化合物的反应有相当了解的基础上,以由石油或煤焦油中取得的许多简单有机物为原料,通过各种反应,合成我们所需要的自然界存在的,或者自然界不存在的全新的有机物[6]。
有机化合物的分离提纯与生命科学
有机化学的分离提纯与生命科学的关系主要体现在两个方面,一是天然有机化学,二是分离与分析。
天然有机化学是研究动植物(包括海洋、陆地和微生物的次级代谢产物)及生物体内源性生理活性物质的有机化学。目的是希望发掘有生理活性的天然化合物,作为发展新药先导化合物,或者直接用于临床或为农业生产服务。天然有机化学的发展与国民经济有密切的联带关系,对于开发新型药物、新型农药至关重要。我国自然资源非常丰富,又有几千年传统防治疾病的经验积累,在我国大力发展天然有机化学的研究有着非常现实的意义。对内源性生理活性物质的发现及其生理活性研究,又开辟了天然有机化学研究的新领域。充分利用开发我国动植物资源包括海洋生物资源,努力开拓新的生理活性物质,为国民经济服务是天然有机化学的重要任务。
分离提纯和分析的紧密结合是有机分析的一大特点。在生命科学中也涉及到复杂系统的痕量或微量的有机物分离分析问题,比如生物活性物质的提取和分析等。气相色谱的发展是高效分离的突破口,而高效气相色谱和高效液相色谱是现代分离技术的基础。在气相色谱中新型高选择性的耐高温固定相(如手性固定相和异构体选择性分离的固定相)仍是比较活跃的研究领域。液相色谱中选择性色谱柱和选择性流动相
的应用发展是今后若干年中的主攻方面。细径柱的合理开发,多维色谱以及以色谱为主的系统分析网络将使复杂系统有机痕量物质的分离和分析跃上新的台阶。超临界流体色谱,包括毛细管柱超临界流体色谱是正在发展中的新技术。毛细管电泳是生命科学日益发展的情况下产生的新型的高效技术,在蛋白质和核酸的分离方面已显出极大的威力,是有很强发展活力的新领域。核磁共振波谱技术在谱仪性能和测量方法上有了巨大的进步,其中二维方法的发展已成为解决结构问题最主要的物理方法。NMR今后的发展趋势是如何得到更多的相关信息、简化图谱、提高检测灵敏度和发展三维核磁共振技术。质谱技术最突出的进步是新的解析电离技术的发展。随着接口技术的进步,联用技术的应用面更扩大,效果更为提高。这将使质谱成为生命科学中的一个崭新的研究手段。
物理有机化学与生命科学
物理有机化学主要是通过现代物理实验方法与理论计算方法研究有机分子结构及其物理、化学性能之间的关系,阐明有机化学的反应机理。生命科学中的物理有机化学研究,包括主——客体化学中的模拟酶催化反应,主体分子提供的微环境可控制反应,主体分子对客体分子的识别作用以及疏水亲脂作用等都是具有重要理论意义的研究领域。量子有机化学由静态向动态方向的发展是当前物理有机化学的重要组成,分子力学方法在有机分子结构与构象的研究方面有着非常乐观的发展前景。我国化学家蒋锡夔院士等发表了题为“物理有机化学前沿领域两个重要方面——有机分子簇集和自由基化学的研究”的论文,提出了可用物理有机化学方法解决生命科学的难题。
有机合成与生命科学
有机合成也与生命科学有着密切的关系。在与生命科学的联系中,金属有机化学和元素有机化学是最为活跃的领域之一。比如,有机磷化合物在农药、医药、萃取剂等方面以及有机合成化学中都有重要的应用。开展有生物活性的有机磷化合物的研究,在生命科学研究中也具有极为重要的意义。近年生物有机硅化合物以及有机硅化合物在有机合成中的应用有新的迅速发展。在基础和应用基础研究方面,硅烯、硅宾、硅的3d空轨道化学和多硅烷的研究是当今有机硅化学重要研究课题。有机硅化合物在有机合成中特别在天然有机物的合成中占有重要的地位。
无论从有机化学的发展、有机化学的研究成果和有机化学研究的任务来看,有机化学课程在生命科学中都起着理论基础,研究工具,阐明本质的重要作用。因此在生命科学中要加强有机化学的学习。
[参考文献]
[1]SchrEiber SL. Using the principle of organic chemistry ti explore cell New,1992,70:22~ 32.
[2]周晓俊,吴晖. 有机化学与生命科学. 云南师范大学学报,1998,18(1):93-96.
[3]张礼和. 从生物有机化学到化学生物学. 化学进展,2004,16(2):313-318.
[4]朱光美,杜灿屏. 试谈生物有机化学研究的现状与展望. 大学化学,(4):6-8.
[5]吴毓林,陈耀叠. 探索有机体的奥秘—谈世纪交替时代的有机化学. 中国科学院院刊,1995,10(10):215-219.
[6]汪小兰,有机化学(第四版),高等教育出版社,2005,1-2.
点击下页还有更多>>>生命科学学术论文
最近?现在艾滋病疫苗已经快要研发出来了!相信在过3~5年艾滋病可以被攻克的!兄弟!下面是我为你找的资料,时间是 2011年7月11日。澳大利亚研究人员发现艾滋病病毒抗体 或研发出疫苗广网北京5月8日消息 据中国之声《新闻纵横》报道,澳大利亚墨尔本大学目前宣布,该校研究人员在一些艾滋病病毒携带者身上识别出一种艾滋病病毒抗体,并且有望在此基础上研发出预防艾滋病的疫苗。研究人员在分析了100名艾滋病病毒携带者血液样本时发现,这些人感染艾滋病病毒之后体内便会产生一种抗体,这种抗体可以促使人体免疫系统找到并且攻击艾滋病病毒,从而使人不会发病。领导这项研究的墨尔本大学教授史蒂芬说,这种抗体并不能起到治疗艾滋病的效果,但是如果人们在感染艾滋病病毒前获得这种抗体,则可能遇到预防的效果。他们说他们下一步将在此基础上研发预防艾滋病的疫苗。
你好,艾滋病初期症状会出现发烧、头晕、无力、咽痛、关节疼痛、皮疹、全身浅表淋巴结肿大等类似"感冒"的症状,有些人还可发生腹泻。这种症状通常持续1-2周后就会消失,此后病人便转入无症状的潜伏期。一般性症状持续发烧、虚弱、盗汗、全身浅表淋巴结肿大,体重下降在三个月之内可达10%以上,最多可降低40%,病人消瘦特别明显。症状不是所有都会出现,有的只是一两种,有的可能会有六七种,因个人体质出现的症状也就大不相同,所以症状也不是代表感染了艾滋病的标准,最放心的还是去做一下检查吧,这样就不会疑神疑鬼了。别忘记采纳哦。
艾滋病药物在国内药店是没有出售的,要买一线的要自费这个很贵,一般去cdc就可以开抗病毒药物,一般是齐多拉定,舒拉明之类的,中药还在研发中,但中药可以调理身体,没有西药抗病毒来的有效,一切还是请听医生交代,不可以自行配药,这里面有很多副作用的问题,特别是抗病毒药物。2011年
自己去搜 蒋岩
着丝粒是染色体的重要组成部分,介导染色体与微管的连接,并维持染色体的完整性。在种属间远缘杂种中,通常只有来自双亲一方的 着 丝粒特异组蛋白 CENH3 (centromere-specific histone 3) 基因表达并形成功能蛋白,整合到染色体特定的区域,形成有功能的着丝粒。双亲着丝粒序列差异过大,可能引起受体物种CENH3蛋白不能正常整合到外源染色体上形成功能着丝粒区,导致外源染色体的丢失(Sanei et al. 2011)。近日,张学勇团队在小麦族着丝粒DNA序列研究中取得新进展。该团队在以往的研究中发现,着丝粒反转录转座子 CRW 和 Quinta 是小麦着丝粒DNA组成的核心序列,与CENH3蛋白向小麦染色体的整合密切相关(Liu et al . 2008; Li et al . 2013)。
远缘杂交是作物品种改良的重要育种方法,在过去的100年里,科学家将小麦与许多近缘种属植物进行了杂交,其中十倍体长穗偃麦草( Thinopyrum ponticum )是小麦育种中利用最成功的多年生物种,从其杂种后代中选育出多个易位系和新品种,并培育出部分双二倍体(Partial amphiploids, 也称八倍体小偃麦)。 但在很长一段时间,小麦和十倍体长穗偃麦草容易出品种的机制并不清楚,为了揭示十倍体长穗偃麦草容易产生易位系的原因,该团队与中国科学院遗传发育所李振声院士团队合作,以着丝粒为切入点进行了研究,取得以下主要结论。
1.小麦着丝粒关键序列 CRW 和 Quinta 的同源序列广泛存在于十倍体长穗偃麦草着丝粒区,但后者也有一些比较特异的着丝粒序列
十倍体长穗偃麦草基因组复杂,其着丝粒序列也不清楚。研究人员首先通过Southern杂交发现小麦着丝粒反转录转座子 CRW 和 Quinta 广泛存在于十倍体长穗偃麦草及可能的祖先种中,但在大麦中确极少(图1)。随后,通过筛选着丝粒区特异BAC和ChIP-seq技术分别对二倍体拟鹅观草(十倍体长穗偃麦草供体之一, St )和十倍体长穗偃麦草进行着丝粒分析。发现除 CRW 和 Quinta 外,还有三类反转录转座子( Abigail , Abia 和 CL135 )和卫星重复序列( CentSt )也是偃麦草着丝粒特异序列(图2、图3)。 图1. CRW (A)和 Quinta (B)在小麦、偃麦草及其近缘野生种中的分布(上标代表不同小麦族植物的基因组)
图 2 . 十倍体长穗偃麦草(A)、中国春(B)、小麦-十倍体长穗偃麦草部分双二倍体小偃693(C)和小偃784(D) ChIP-seq着丝粒相关序列富集图
2.八倍体小偃麦中着丝粒DNA序列处于快速进化之中
为了探究从长穗偃麦草到八倍体小偃麦中着丝粒是否发生变化,研究人员通过免疫染色和DNA原位杂交对20世纪70年代培育的小偃693和小偃784进行了着丝粒序列分析,发现在小偃693中, CentSt 、 Abigail 和 Abia 仍保持与CENH3蛋白的结合能力,而在小偃784中 CentSt 和 Abia 基本丧失了这种能力,说明在 新物种中着丝粒DNA发生着快速的变化和调整,着丝粒DNA序列组成并非是永恒不变的(图3)。
图3. CRW , Quinta , Abigail , CentSt , Abia 和 CL135 在十倍体长穗偃麦草、中国春、小偃693和小偃784细胞核中与CENH3的共定位分析
3 .研究进一步证实E和St是十倍体长穗偃麦草的两个基本基因组
十倍体长穗偃麦草的基本基因组组成是一个争论了很久的问题。 张学勇等(Zhang et al. 1996)在GISH、八倍体杂种F1染色体配对、同工酶及分子标记的分析的基础上,提出用 StStEeEbEx 作为其基本基因组组成,但陈勤等认为十倍体长穗偃麦草只有 St 基因组片段,而无完整的 St 基因组, 并用 JJJJsJs 表示( J≈E,S=St )(Chen et al. 1998)。 通过同一细胞的多重原位杂交分析,张学勇团队发现在十倍体长穗偃麦草中, St 基因组染色体富含 Abigail 和 CentSt ,而 E 基因组染色体富含 CRW 和 Quinta ,进一步说明以 StStEeEbEx作为十倍体长穗偃麦草的基因组更为合理,也说明着丝粒区域是多倍体中亚基因组分化的核心区域 (图4)。
图4. Abigail , Quinta , CentSt 和 CRW 在十倍体 长穗偃麦草基因组中的分布
2019年6月30日国际著名植物学刊物《 The Pant Journal 》以题为“ Plasticity in Triticeae centromere DNA sequences: a wheat × tall wheatgrass (decaploid) model ” 在线发表了上述研究成果()。 这项研究说明供体和受体着丝粒序列的同源性可能更有利于外源基因的成功转移,为今后远缘杂交育种中亲本的选择提供思路。 南京农业大学在读博士研究生赵静和中国农业科学院郝薇薇博士为共同第一作者,张学勇研究员为通讯作者。该研究得到了国家自然科学基金31371622的资助。
主要参考文献:
Chen, Q., Conner, ., Laroche, A. and Thomas, . (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome , 41 , 580-586.
Li, B., Choulet, F., Heng, Y., Hao, W., Paux, E., Liu, Z., Yue, W., Jin, W., Feuillet, C. and Zhang, X. (2013) Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J , 73 , 952-965.
Liu, Z., Yue, W., Li, D., Wang, ., Kong, X., Lu, K., Wang, G., Dong, Y., Jin, W. and Zhang, X. (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma , 117 , 445-456.
Sanei, M., Pickering, R., Kumke, K., Nasuda, S. and Houben, A. (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA , 108 , E498-505
Zhang, X., Dong, Y. and Wang, . (1996) Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum x Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome , 39 , 1062-1071.
当然有, 我们课题主要开展杂交小麦和小麦单倍体育种新技术的研究与应用及大麦新品种选育等工作。育成通过审定的杂交小麦品种3个,即云杂3号、云杂5号、云杂6号;常规小麦品种1个即云麦52号;不育系2个,其中不育系K78S获农业部植物新品种保护授权。至2012年,杂交小麦累计在省内外(包括越南)种植万亩。
“利用我们的成套技术,可使杂交小麦制种纯度达到%以上。”今年6月通过验收的一项河南省重大科技专项研究,宣告我国在杂交小麦优异亲本创育、强优势组合配制和规模化高效制种等一系列关键技术领域获重大突破。
该项目主持人、河南科技学院小麦中心主任、省杂交小麦工程技术研究中心主任茹振钢教授说:“现已选育出8个不育系、16个恢复系,可以根据不同麦区亲本需求,创制出多个强优势组合。”
几株异常小麦,选育出杂交小麦不育系
在世界三大粮食作物中,美国最早育成杂交玉米,我国袁隆平率先育成杂交水稻。对杂交小麦的研究,国际开始于上世纪20年代,中国开始于上世纪60年代,却迟迟未能获得重大突破。
从事小麦研究30多年,茹振钢曾培育出“百农64”“矮抗58”“百农4199”等常规小麦品种。其中,“矮抗58”以其高产、优质、抗病等特性,成为中国小麦播种面积第一大品种,获2013年度国家科技进步奖一等奖。而最让他魂牵梦绕的,还是在杂交小麦育种上为中国赢得话语权!
然而,要破解这道“世界难题”+“世纪难题”并非易事——
这主要有两方面的原因。一是父本母本基因越纯合,杂交优势越强。玉米、水稻的基因都是单一来源,是二倍染色体植物,容易纯合;小麦基因则有三个来源,是由原始小麦与两种草在上万年进化中自然杂交而成的六倍染色体,纯合难度无法想象。第二个原因,小麦和水稻一样都是雌雄同蕊,培育杂交优势品种,首先需要让母本不再自我授粉结实、“近亲结婚”;然后再给这些“靓妹”找到理想的“帅哥”。这就需要找到雄性不育系,让植株只具备“女性”性征。当年,袁隆平大海捞针般从海南岛发现了水稻的雄性败育类型野稗,才选育出杂交水稻的不育系。但是,小麦的“野稗”在哪里?
机遇总是垂青有准备的人!1998年,小麦扬花季节,在太行山下辉县的试验田里,茹振钢偶然发现五六株小麦明显异常。所有的小麦在自花授粉后颖壳都自动闭合、结籽了,而这几株小麦的颖壳却因为自花不育而一直张开着。“这也许就是我做梦都想找到的小麦的‘野稗’啊!杂交小麦的不育系就在这里!”这让茹振钢感到格外兴奋!
那一年,他从这几株异常的小麦植株上,仅仅收获了5粒种子。然而,就是这屈指可数的5粒种子,却要拉开改变世界的帷幕!
在对这些种子的繁殖、试验中,他发现长在温室中间的小麦植株不育率低,边缘的不育率高。他意识到,控制育性的基因对温度敏感,温度低则不育率高。
那么,是不是可以利用成熟期不同的多个品种,分别与不育株系杂交,从而培育出多个不育株系?
按照这样的科学设想,经过7年的不断探索、试验,2004年,茹振钢终于从繁杂的后代中选育出了一系列对光温敏感的不育系,把“半不育”变成了100%不育系(BNS),“啃掉”了杂交小麦研究中“最硬的那块骨头”。
全球“海选”恢复系,创制强优势组合
茹振钢培育出杂交小麦不育系的消息不胫而走,一直关注着杂交小麦研究的中科院遗传发育所研究员王斌、中国农业大学校长孙其信教授抱着极大兴趣,前去新乡实地考察。
从2004年到2006年,在小麦生长的每一个关键时刻,两位专家都同茹振钢一起,走进实验室,走进大田。年复一年近似苛刻的观察、质疑,他们最终认可了茹振钢的研究在黄淮麦区巨大的潜在价值。但是,在其它麦区也能适应吗?
在两位专家建议下,2006年10月4日,一个由河南科技学院与中国农大共同主持,山东农大、西北农大、河北农科院、湖南农大、四川农科院等单位顶级专家参与的联合攻关协议签订了。协议明确提出了一个为期10年、两个阶段的研究任务。就是利用茹振钢发明的小麦雄性不育育性转换系BNS新材料,在前5年主要研究BNS育性转换的生态区域及杂交小麦强势组合选配,后5年主要研究不育基因转育与杂交小麦成套推广技术。联合攻关组为此在河南、河北、山东、安徽、新疆建立了BNS型杂交小麦百亩高产示范基地11个,累计示范5000余亩。
在联合攻关期间,杂交小麦研究又先后被列入国家973计划和河南省重大科技专项,令人振奋的消息也不断传来!
BNS不育系无论是在黄淮麦区,还是在西南麦区、长江中下游麦区,都表现出低温完全不育,超过13摄氏度完全可育。更有科研意义的是,经过各地试配,找到了恢复力强的恢复系,尤其是山东农大高庆荣教授培育出的SN055525, 穗子大、茎秆坚韧、恢复性强,是直接可以利用的恢复源。在此基础上,他们跨越地缘,北至俄罗斯,南至智利,从海选到的200多个国内外优良小麦品种中,选择出杂交小麦亲本,“巧结良缘”。这些远缘的小麦杂交,创制出百强1201、杂优2号和THW09-1等3个BNS型杂交小麦强优势组合,较常规对照种增产15%—20%,平均亩产公斤,攻关田亩产达898公斤。其中2个杂交小麦新品种百强1201和THW09-1,已分别参加河南省预备试验和黄淮北片国家预备试验。
目前他们已选出8个不育系、16个恢复系。这些不育系与恢复系可随意配对,产生多个组合,需要优质小麦就配制优质小麦品种,需要大穗的就配制大穗的,需要多穗的就配制多穗的。孙其信表示,这是一项不仅在小麦主产区有极高的应用价值,而且可影响到其他区域的重要研究成果。
独创制种技术,杂交小麦走向“高铁时代”
两系法杂交小麦研究成功了,但如何生产出更多的杂交种,快速走向大田生产,仍有两大难题摆在茹振钢面前——
当时的制种产量已达316公斤/亩,但相对于日益提高的劳动力成本,产量仍然显得过低。这成了制约杂交小麦推广的一个瓶颈。此外,如何建立配套的两系杂交小麦防杂保纯技术和种子纯度快速检验技术,也是杂交小麦走向生产的必要条件。
最初,茹振钢按两行母本、一行父本的方法指导农民制种,但农民们嫌用工多,效益低;他又研究改进为父本母本按7∶3比例播种,但父本授粉后需要人工割除,劳动仍显繁杂。
面对实际操作中的困难,茹振钢两道难题一起解,独创制种技术,让杂交小麦育种走向“高铁时代”!
他发现了一种可以在父本授粉后自然死亡的“致死基因”,发明了专一性的基因调控剂来“弑父济母”。把这种基因引入父本后,再按∶比例,把母本父本充分掺匀,像大田生产一样混播。授粉后,喷洒这种基因调控剂,致敏感的父本枯萎。不仅再也不需要人工割除父本,减轻了劳动量;而且保证了种子纯度;还腾出空间,让有限的肥力集中供给母本生长,使制种产量从300多公斤提高到450公斤左右。
“现在,我们相当于掌握了杂交小麦的一个个‘元件’,根据需要把‘元件’组装起来,就能育出理想的优势小麦品种了!”茹振钢兴奋地说,“强优势BNS型杂交小麦组配与规模化高效制种技术研究”的成果,将把“工厂化”育种、制种变成现实,快速培育出一系列优良的杂交小麦品种!
科技部又将“小麦杂种优势利用技术与强优势杂交种创制”列入“十三五”国家重点研发计划,予以支持。
中国种子行业主要公司:隆平高科()、登海种业()、丰乐种业()、万向德农()、荃银高科()、苏垦农发()等
本文核心数据:小麦种业发展历程、制种面积、制种产量、需种量、发展趋势
国外小麦种业起步较早
小麦为我国三大粮食作物之一,为世界约40%人口的主粮。目前,我国小麦种子的自主率达100%。国外小麦种业起步较早,经历了抗病育种、植株矮化和品质改良三个阶段。19世纪80年代,英国、瑞典、荷兰等欧洲国家和加拿大、澳大利亚开始利用小麦杂交育种,主要目标是解决品种的条锈、叶锈等抗病性问题;植株矮化阶段,国际玉米小麦改良中心利用农林10号为矮源,育成一批同时具有抗倒伏、抗锈病、高产等突出优点的春小麦品种;品质改良阶段,英、美、加、澳等育种技术强国非常重视小麦品质改良,从谷物化学、品质检测、加工特性等方面助推品质育种发展。
我国小麦在大规模种植后,在各地形成了1万多个地方品种。20世纪20年代中期,我国引进国外品种300余份,从收集、引进、筛选、鉴定品种发展到杂交育种;之后我国陆续从国外引进小麦品种,对我国小麦育种工作起到推动作用;1972年前后,我国从国际玉米小麦改良中心引进了墨巴66、索罗拉64等春小麦品种除直接利用外,还广泛用作杂交亲本;2004年以来,我国对过去粮食增产导向进行种植结构调整,在不断提高单产以维持总产的同时,大力提高品质和生产效率;2017年,我国完成了对太谷核不育小麦显性细胞核雄性不育基因Ms2的克隆和功能解析,并逐渐形成了有效的轮回选择育种体系。
2020年冬小麦落实繁种面积1120万亩
2015-2020年,全国冬小麦落实繁种面积保持稳定。根据全国农技中心的调研数据,2020年,全国冬小麦落实繁种面积1120万亩,与2019年繁种收获面积持平,各主产区冬小麦长势好于常年,虽然条锈病、赤霉病等病虫害中等偏重发生的风险加大,但各地积极响应预警,开展综合防治,效果良好,进一步巩固了丰收基础。初步统计,2021年中国冬小麦制种面积达1074万亩。
我国冬小麦制种量保持在45亿公斤以上
2015年以来,我国冬小麦制种量保持在45亿公斤以上,2018年制种面积减少,冬小麦种子收获面积1128万亩,制种量41亿公斤,较2017年减少19%。2020年,全国冬小麦种子实际收获面积1114万亩,平均繁种单产441公斤/亩,实际收获种子49亿公斤,河北、安徽、山东等省受倒春寒天气影响,部分弱春性中早熟品种繁种产量有所下滑,其余省份小麦种子生产情况整体好于常年。初步统计,2021年冬小麦繁种产量超50亿公斤,种子质量良好。
据预测2022年冬小麦需种量达33-35亿公斤
从总需求看,据调度,尽管部分基地因灾减产,但根据2021年10月数据,冬小麦繁种收获仍超45亿公斤,超出需种量近10亿公斤。根据全国农技中心预测,2022年,全国冬小麦需种量达33-35亿公斤,春小麦需种量达亿公斤。
优质专用型、抗逆广适型、资源节约型品种或为重点发展方向
在加快生物组学、基因编辑、智能信息等新技术的创新和知识产权保护、全国优势小麦种业力量进行产学研结合、企业侧重于评价新品种的市场需求和生产应用的背景下,优质专用型、抗逆广适型、资源节约型品种或为重点发展方向。其中,针对小麦赤霉病、茎基腐病、穗发芽、倒春寒等极易造成重大生产隐患的灾害问题的技术攻关或为技术布局方向。
此外,通过突出优势产区和重点地区,优化品种和品质结构,布局合理、特点鲜明、效益显著的优质小麦优势种子产区将加快构建,小麦供种保障能力提升。
以上数据参考前瞻产业研究院《中国小麦种植行业市场前瞻与投资战略规划分析报告》