首页 > 学术论文知识库 > 数字图像处理边缘检测论文摘要

数字图像处理边缘检测论文摘要

发布时间:

数字图像处理边缘检测论文摘要

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

数字图像处理方面了解的了。

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理OK,帮你处理。

图像边缘检测论文知网

Canny边缘检测教程 Author: Bill Green (2002) 作者:比尔绿色( 2002 ) HOME EMAIL 主页 电子邮件 This tutorial assumes the reader: 本教程假定读者: (1) Knows how to develop source code to read raster data ( 1 )知道如何发展的源代码阅读栅格数据 (2) Has already read my Sobel edge detection tutorial ( 2 )已经阅读我Sobel边缘检测教程 This tutorial will teach you how to:本教程将教你如何: (1) Implement the Canny edge detection algorithm. ( 1 )实施Canny边缘检测算法。 INTRODUCTION 导言 Edges characterize boundaries and are therefore a problem of fundamental importance in image processing.边的特点,因此,边界问题,根本的重要性在图像处理中。 Edges in images are areas with strong intensity contrasts – a jump in intensity from one pixel to the next.在图像的边缘地区,强度强的反差-一个跳转的强度从一个像素的下一个。 Edge detecting an image significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. This was also stated in my Sobel and Laplace edge detection tutorial, but I just wanted reemphasize the point of why you would want to detect edges.边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么你会要检测的边缘。 The Canny edge detection algorithm is known to many as the optimal edge detector. Canny's intentions were to enhance the many edge detectors already out at the time he started his work.的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。坎尼的意图是要加强许多先进的探测器已经在的时候,他开始他的工作。 He was very successful in achieving his goal and his ideas and methods can be found in his paper, " A Computational Approach to Edge Detection ".他很成功地实现他的目标和他的思想和方法中可以找到他的论文“ 计算方法的边缘检测 ” 。 In his paper, he followed a list of criteria to improve current methods of edge detection.在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。 The first and most obvious is low error rate.第一个也是最明显的错误率低。 It is important that edges occuring in images should not be missed and that there be NO responses to non-edges.重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。 The second criterion is that the edge points be well localized. In other words, the distance between the edge pixels as found by the detector and the actual edge is to be at a minimum.第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。 A third criterion is to have only one response to a single edge.第三个标准是,只有一个回应单一优势。 This was implemented because the first 2 were not substantial enough to completely eliminate the possibility of multiple responses to an edge.这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 Based on these criteria, the canny edge detector first smoothes the image to eliminate and noise.根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。 It then finds the image gradient to highlight regions with high spatial derivatives.然后认定的形象,以突出地区梯度高空间衍生物。 The algorithm then tracks along these regions and suppresses any pixel that is not at the maximum (nonmaximum suppression).该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。 The gradient array is now further reduced by hysteresis.梯度阵列现在进一步减少滞后。 Hysteresis is used to track along the remaining pixels that have not been suppressed.磁滞用来追踪沿其余像素,但没有压制。 Hysteresis uses two thresholds and if the magnitude is below the first threshold, it is set to zero (made a nonedge).磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。 If the magnitude is above the high threshold, it is made an edge.如果是规模以上的高门槛,这是一个优势。 And if the magnitude is between the 2 thresholds, then it is set to zero unless there is a path from this pixel to a pixel with a gradient above T2.如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 Step 1 第1步 In order to implement the canny edge detector algorithm, a series of steps must be followed.为了落实Canny边缘检测算法,一系列步骤必须遵循。 The first step is to filter out any noise in the original image before trying to locate and detect any edges.第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。 And because the Gaussian filter can be computed using a simple mask, it is used exclusively in the Canny algorithm.而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。 Once a suitable mask has been calculated, the Gaussian smoothing can be performed using standard convolution methods.一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。 A convolution mask is usually much smaller than the actual image.阿卷积掩模通常远远小于实际的形象。 As a result, the mask is slid over the image, manipulating a square of pixels at a time. The larger the width of the Gaussian mask, the lower is the detector's sensitivity to noise .因此,该面具是下跌的形象,操纵一个正方形的像素上。 较大的宽度高斯面具,较低的是探测器的敏感性噪音 。 The localization error in the detected edges also increases slightly as the Gaussian width is increased.定位误差检测边缘也略有增加的高斯宽度增加。 The Gaussian mask used in my implementation is shown below.高斯遮罩使用我在执行下面显示。 Step 2 第2步 After smoothing the image and eliminating the noise, the next step is to find the edge strength by taking the gradient of the image.经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。 The Sobel operator performs a 2-D spatial gradient measurement on an image.的Sobel算子进行二维空间梯度测量的形象。 Then, the approximate absolute gradient magnitude (edge strength) at each point can be found.然后,大约绝对梯度幅度(边缘强度)各点可以找到。 The Sobel operator uses a pair of 3x3 convolution masks, one estimating the gradient in the x-direction (columns) and the other estimating the gradient in the y-direction (rows). Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。 They are shown below:它们如下所示: The magnitude, or EDGE STRENGTH, of the gradient is then approximated using the formula:的规模,或EDGE强度,梯度近似然后使用公式: |G| = |Gx| + |Gy| | G | = | GX的| + |戈瑞| Step 3 第3步 Finding the edge direction is trivial once the gradient in the x and y directions are known.寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。 However, you will generate an error whenever sumX is equal to zero.然而,你会产生错误时sumX等于零。 So in the code there has to be a restriction set whenever this takes place.因此,在代码中必须有一个限制规定只要发生。 Whenever the gradient in the x direction is equal to zero, the edge direction has to be equal to 90 degrees or 0 degrees, depending on what the value of the gradient in the y-direction is equal to.每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。 If GY has a value of zero, the edge direction will equal 0 degrees.如果青的值为零,边缘方向将等于0度。 Otherwise the edge direction will equal 90 degrees.否则边缘方向将等于90度。 The formula for finding the edge direction is just:公式为寻找边缘方向是: theta = invtan (Gy / Gx)论旨= invtan (戈瑞/ GX的) Step 4 第4步 Once the edge direction is known, the next step is to relate the edge direction to a direction that can be traced in an image.一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。 So if the pixels of a 5x5 image are aligned as follows:因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x x x x x x x x x x x a x x x x 1 x x x x x x x x x x x x x x x x x x x x x x Then, it can be seen by looking at pixel " a ", there are only four possible directions when describing the surrounding pixels - 0 degrees (in the horizontal direction), 45 degrees (along the positive diagonal), 90 degrees (in the vertical direction), or 135 degrees (along the negative diagonal).然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度 (水平方向) , 45度 (沿积极对角线) , 90度 (垂直方向) ,或135度 (沿负对角线) 。 So now the edge orientation has to be resolved into one of these four directions depending on which direction it is closest to (eg if the orientation angle is found to be 3 degrees, make it zero degrees).所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。 Think of this as taking a semicircle and dividing it into 5 regions.认为这是采取了半圆形和分裂成5个地区。 Therefore, any edge direction falling within the yellow range (0 to & to 180 degrees) is set to 0 degrees.因此,任何先进的方向范围内的黄色范围 ( 0至5月22日& 至180度)设置为0度。 Any edge direction falling in the green range ( to degrees) is set to 45 degrees. Any edge direction falling in the blue range ( to degrees) is set to 90 degrees.任何先进的方向下滑的绿色范围 ( 至度)设置为45度。任何优势的方向下滑的蓝色范围 ( 至度)设置为90度。 And finally, any edge direction falling within the red range ( to degrees) is set to 135 degrees.最后,任何先进的方向范围内的红色范围 ( 到度)设置为135度。 Step 5 第5步 After the edge directions are known, nonmaximum suppression now has to be applied. Nonmaximum suppression is used to trace along the edge in the edge direction and suppress any pixel value (sets it equal to 0) that is not considered to be an edge. This will give a thin line in the output image.在被称为边缘方向, nonmaximum抑制现在必须适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将给细线的输出图像。 Step 6 第6步 Finally, hysteresis is used as a means of eliminating streaking.最后,滞后是用来作为一种手段,消除条纹。 Streaking is the breaking up of an edge contour caused by the operator output fluctuating above and below the threshold.裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。 If a single threshold, T1 is applied to an image, and an edge has an average strength equal to T1, then due to noise, there will be instances where the edge dips below the threshold.如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将有情况下,边逢低低于阈值。 Equally it will also extend above the threshold making an edge look like a dashed line.同样它也将延长超过阈值决策的优势看起来像一个虚线。 To avoid this, hysteresis uses 2 thresholds, a high and a low.为了避免这种情况,滞后使用2的门槛,高和低。 Any pixel in the image that has a value greater than T1 is presumed to be an edge pixel, and is marked as such immediately.任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。 Then, any pixels that are connected to this edge pixel and that have a value greater than T2 are also selected as edge pixels.然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。 If you think of following an edge, you need a gradient of T2 to start but you don't stop till you hit a gradient below T1.如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。 You are visitor number: 你是第位访客人数:

摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处理硬件平台,DSP/BIOS为实时操作系统,利用CCS开发环境来构建应用程序;并通过摄像头提取视频序列,实现对边缘检测Sobel算子改进[1]。 关键词 DM642;Sobel算子;程序优化;图像边缘检测 1 引言 边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。图像边缘检测一直是图像处理中的热点和难点。 近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。随着DSP芯片处理技术的发展,尤其是在图像处理方面的提高如TMS320C6000系列,为实现高效的、实时的边缘检测提供了可能性[5]。在经典的边缘检测算法中,Sobel边缘检测算法因其计算量小、实现简单、处理速度快,并且所得的边缘光滑、连续等优点而得到广泛的应用。本文针对Sobel算法的性能,并借助于TMS320DM642处理芯片[3],对该边缘检测算法进行了改进和对程序的优化,满足实时性需求。2 Sobel边缘检测算法的改进 经典的Sobel图像边缘检测算法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个是检测垂直边缘,一个是检测水平边缘。算法的基本原理:由于图像边缘附近的亮度变化较大,所以可以把那些在邻域内,灰度变化超过某个适当阈值TH的像素点当作边缘点。Sobel算法的优点是计算简单,速度快。但由于只采用了两个方向模板,只能检测水平方向和垂直方向的边缘,因此,这种算法对于纹理较复杂的图像,其边缘检测效果欠佳;同时,经典Sobel算法认为,凡灰度新值大于或等于阈值的像素点都是边缘点。这种判定依据是欠合理的,会造成边缘点的误判,因为多噪声点的灰度新值也很大。 图像加权中值滤波 由于图像中的边缘和噪声在频域中均表现为高频成分,所以在边缘检测之前有必要先对图像进行一次滤波处理,减少噪声对边缘检测的影响。中值滤波是一种非线性信号的处理方法[2],在图像处理中,常用来保护边缘信息;保证滤波的效果。加权中值滤波,首先对每个窗口进行排序,取适当的比例,进行曲线拟合,拟合后的曲线斜率表征了此窗口的图像特征,再根据图像各部分特性适当的选择权重进行加权。 增加方向模板 除了水平和垂直两方向外,图像的边缘还有其它的方向,如135o和45o等,为了增加算子在某一像素点检测边缘的精度,可将方向模板由2个增加为8个即再在经典的方向模板的基础上增加6个方向模板,如图1所示。 边缘的定位及噪声的去除 通常物体的边缘是连续而光滑的,且边缘具有方向和幅度两个特征,而噪声是随机的。沿任一边缘点走向总能找到另一个边缘点,且这两个边缘点之间的灰度差和方向差相近。而噪声却不同,在一般情况下,沿任一噪声点很难找到与其灰度值和方差相似的噪声点[4]。基于这一思想,可以将噪声点和边缘点区分开来。对于一幅数字图像f(x,y),利用上述的8个方向模板Sobel算子对图像中的每个像素计算,取得其中的最大值作为该点的新值,而该最大值对应的模板所表示的方向为该像素点的方向。若|f(x,y)-f(x+i,y+j)|>TH2,对于任意i=0,1,-1;j=0,1,-1均成立,则可判断点(x,y)为噪声点。图2给出了图像边缘检测系统改进算法的软件流程图。图1 边缘检测8个方向模板图2 系统结构图3 基于TMS320DM642的图像处理的设计及算法优化 TMS320DM642功能模块及图像处理系统的硬件结构 DSP以高速数字信号处理为目标进行芯片设计,采用改进的哈佛结构(程序总线和数据总线分开)、内部具有硬件乘法器、应用流水线技术、具有良好的并行性和专门用于数字信号处理的指令及超长指令字结构(VLIW)等特点;能完成运算量大的实时数字图像处理工作。 TMS320DM642是TI公式最近推出的功能比较强大的TMS320C6x系列之一,是目前定点DSP领域里性能较高的一款[6]。其主频是600MHz,8个并行运算单元、专用硬件逻辑、片内存储器和片内外设电路等硬件,处理能力可达4800MIPS。DM642基于C64x内核,并在其基础上增加了很多外围设备和接口,因而在实际工程中的应用更为广泛和简便。本系统使用50 MHz晶体震荡器作为DSP的外部时钟输入,经过内部锁相环12倍频后产生600 MHz的工作频率。DM642采用了2级缓存结构(L1和L2),大幅度提高了程序的运行性能。片内64位的EMIF(External Memory Interface)接口可以与SDRAM、Flash等存储器件无缝连接,极大地方便了大量数据的搬移。更重要的是,作为一款专用视频处理芯片,DM642包括了3个专用的视频端口(VP0~VP2),用于接收和处理视频,提高了整个系统的性能。此外,DM642自带的EMAC口以及从EMIF 口扩展出来的ATA口,还为处理完成后产生的海量数据提供了存储通道。本系统是采用瑞泰公司开发的基于TI TMS320DM642 DSP芯片的评估开发板——ICETEK DM642 PCI。在ICETEK DM642 PCI评估板中将硬件平台分为五个部分,分别是视频采集、数据存储、图像处理、结果显示和电源管理。视频采集部分采用模拟PAL制摄像头,配合高精度视频A/D转换器得到数字图像。基于DSP的视频采集要求对视频信号具备采集,实时显示、对图像的处理和分析能力。视频A/D采样电路—SAA7115与视频端口0或1相连,实现视频的实时采集功能。视频D/A电路—SAA7105与视频口2相连,视频输出信号支持RGB、HD合成视频、PAL/NTSC复合视频和S端子视频信号。通过I2C总线对SAA7105的内部寄存器编程实现不同输出。 整个系统过程由三个部分组成:图像采集—边缘处理—输出显示,如图2所示。摄像头采集的视频信号经视频编码器SAA7115数字化,DM642通过I2C总线对SAA7115进行参数配置。在SAA7115内部进行一系列的处理和变换后形成的数字视频数据流,输入到核心处理单元DM642。经过DSP处理后的数字视频再经过SAA7105视频编码器进行D/A转换后在显示器上显示最终处理结果。 图像处理的软件设计和算法优化的实现 由于在改进Sobel边缘检测算子性能的同时,也相对增加了计算量,尤其是方向模板的增加,每个像素点均由原来的2次卷积运算增加为8次卷积运算,其实时性大大减弱。为了改进上述的不足,在深入研究处理系统和算法后,针对TMS320DM642的硬件结构特点,研究适合在TMS320DM642中高效运行的Sobel改进算法,满足实时处理的要求。整个程序的编写和调试按照C6000软件开发流程进行,流程分为:产生C代码、优化C代码和编写线性汇编程序3个阶段。使用的工具是TI的集成开发环境CCS。在CCS下,可对软件进行编辑、编译、调试、代码性能测试等工作。在使用C6000编译器开发和优化C代码时[7-8],对C代码中低效率和需要反复调用的函数需用线性汇编重新编写,再用汇编优化器优化。整个系统的控制以及数字图像处理是用C程序实现,大部分软件设计采用C程序实现,这无疑提高了程序的可读性和可移植性,而汇编程序主要是实现DM642的各部分初始化。其边缘检测优化算法在DM642中的实现步骤具体如下: S1:根据DM642的硬件结构要求和控制寄存器设置,初始化系统并编写实现边缘检测算法的C程序。 S2:借助CCS开发环境的优化工具如Profiler等产生.OUT文件。 S3:根据产生的附件文件如.MAP文件,分析优化结果及源程序结构,进一步改进源程序和优化方法。 S4:使用CCS中调试、链接、运行等工具,再生成.OUT可执行文件。 S5:运行程序,如果满足要求则停止;否则重复步骤S2~S4直至满足使用要求。4 实验结果 本文以Lena图像为例根据上述的硬件环境和算法实现的原理和方法,图4~图6分别给出了在该系统下采集的视频Lena图像及使用边缘检测算子和改进后处理的结果。由实验结果可以看出,在该系统下能实时完成视频图像的处理,并且给出的边缘检测算子能较好的消除噪声的影响,边缘轮廓清晰。该算法不仅能抑制图像中大部分噪声和虚假边缘,还保证了较高的边缘点位精度。图4 Lena原始图像 图5 传统Sobel算子 图6 改进Sobel算子5 总结 本文实现了在TMS320DM642评估板上用改进的Sobel算子对实时图像进行边缘检测,无延迟地得到边缘图像。边缘检测效果较好,既提高了图像检测的精度又满足了实时性的要求。从检测结果看,利用该改进后的算子在边缘精确定位、边缘提取都达到了很好的效果,且抗噪声能力强,并为目标跟踪、无接触式检测、自动驾驶、视频监控等领域的应用提供了坚实的基础。参考文献[1] 王磊等. 基于Sobel理论的边缘提取改善方法[J].中国图像图形学报,[2] 陈宏席. 基于保持平滑滤波的Sobel算子边缘检测.兰州交通大学学报,2006,25(1):86—90[3] 熊伟. 基于TMS320DM642的多路视频采集处理板卡硬件设计与实现[ M]. 国外电子元器件,2006[4] 朱立.一种具有抗噪声干扰的图像边缘提取算法的研究[J].电子技术应用.2004,25(1)[5] 刘松涛,周晓东.基于TMS320C6201的实时图像处理系统[J].计算机工程,2005(7):17—23[6] TI TMS320DM642 video/imaging fixed-point digital signal processor data manual,2003[7] TMS320C6x Optimizing C Compiler User’s Guide’ TEXAS INSTRUMENTS”,2002[8] TMS320C32x Optimizing C/C++ Compiler User's Guide,Texas Instruments Incorporated,2001

故称为多分辨率分析.进一步,设Qmf是Pmf与Pm+1f的差别信息,由于Vm+1=VmWm,则Pm+1f=Pmf+Qmf.(4)将一维多分辨率分析推广到二维源自: 一种基于数据融合和小波变换的图像边缘检... 《中国科学技术大学学报》 2001年 吴秀清,徐云翔,周蓉来源文章摘要:论文提出利用数据融合和小波变换进行图像边缘检测的一种方法 .此方法首先对同一地区的多谱段图像用小波变换进行融合预处理 ,然后直接采用小波变换系数动态地调整边缘判别的阈值 ,对融合图像进行边缘检测 .试验结果表明 ,此方法不仅能有效地抑制噪声 ,而且对具有多种边缘特征的图像均有良好的适应性 这一系列近似具有不同的分辨率,因而称为多分辨率分析.借鉴于金字塔算法,人们将连续小波理论推广到离散领域.从滤波器概念上讲,小波变换就是不断以两组正交的高通和低通溥波器对愉入信号f(t)进行滤波源自: 一种失真度可控的图像编码方法 《无线电通信技术》 1997年 徐佩霞,孙功宪来源文章摘要:提出一种基于小波变换和误差反馈的可选失真度的图像编码方法,适用于远程数据库查询和可变比特率图像分层传输。它通过小波变换把图像分解到不同分辨率上,然后用误差反馈的方法进行逐级补偿。由于所有前级分辨率的编码误差都可以得到补偿,因而可以恢复无失真的图像。 它对信号局部化分析是在许多不同尺度上进行的,因而又称为多分辨率分析〔2,3〕.小波分析的范围十分广泛,它包括:在数学领域的数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等源自: 反刍动物前胃舒缩应变的小波分析 《新疆农业大学学报》 2003年 刘后森,李志斌,魏俊智来源文章摘要:采用DASP小波分析模块,对反刍动物(绵羊、黄牛)的前胃各测点(瘤胃、网胃、网瓣口和瓣胃大弯)在4种生理状态下(采食、食后、反刍和正常)的舒缩应变时域曲线进行小波分解,给出不同频段谐波舒张和收缩应变幅值统计量,小波分析结果表明各测点在4种生理状态下主频与谱分析结果一致。 这种逐级分析方式称为多分辨率分析,是小波变换在实际工程应用中的一个重要方向.ξi通常为指数分布、对数正态分布、正态分布和Gamma分布等源自: 小波及混沌学习神经网络在短期电力负荷预... 《计算机工程与应用》 2003年 杨延西,刘丁,李琦,郑岗来源文章摘要:该文提出了采用小波和神经网络混合模型进行电力系统短期负荷预测方法。首先基于小波多分辨率分析方法将负荷序列分解成具有不同频率特征的序列。然后,根据分解后的各个分量的特点构造不同的神经网络模型对各分量分别进行预测。神经网络算法采用混沌学习算法,与传统BP算法相比,该算法利用混沌轨道的游动性使系统能够跳出局域极值的束缚而寻求全局最优点,这样克服了BP学习算法所存在的本质问题,可以加快网络学习速度和提高学习精度。最后对各分量预测信号进行重构得到最终预测结果。在构建网络模型时,该文考虑了气候因素的影响,并把它作为网络的一组输入点。实验结果表明基于这一方法的负荷预测系统具有较好的精度及稳定性。 再对LL(x,y)进行迭代分解,就得到二维图像f(x,y)的多级分解,或称为多分辨率分析.小波变换的结果是原始信号在一系列倍频程划分的频带上的多个高频带数据和一个低频带数据源自: 基于小波变换统计特征的图像压缩算法的研究 《生物医学工程学杂志》 2002年 吴宝明,侯文生,彭承琳来源文章摘要:图像能量的统计分布是图像压缩处理的重要依据。在研究小波子带图像统计特性的基础上 ,提出了一种新的基于小波子带图像统计特征和人眼视觉特性的图像量化编码算法。实验证明 ,该算法具有计算简单、压缩效率较高的特点 在这种意义下小波分析又可称为是多分辨率分析,它是傅立叶分析发展史上里程碑式的进展.它已经广泛应用于信号处理、地震勘探、天体识别、机械故障诊断与监控等科技领域源自: 心电图信号处理技术及小波变换方法 《大连轻工业学院学报》 2001年 张淑清,李昕,李长吾,王力来源文章摘要:给出了心电信号处理的两种方法。第一种方法是运用合成技术 ,它可以保证波形的完整 ,而且便于实现。第二种方法是运用小波分析。小波变换适用于分析非平稳信号 ,适宜于对心电图数据进行预处理和特征提取。本文应用Mallat算法对心电图信号进行了多尺度分解 这种由粗及精对事物进行多尺度分析的方法称为多分辨率分析.指纹图像的模式是类周期模式,不同区域中的脊线方向和脊线空间频率代表不同指纹图像的本质属性源自: 基于代数特征和几何特征的快速指纹识别 《浙江理工大学学报》 2005年 李小云,胡之惠来源文章摘要:对仅基于指纹几何特征的匹配方法进行取长补短,提出新的基于指纹代数特征和几何特征的分阶段匹配方法。实验证明该方法在保证较高识别率的同时,匹配时间缩短了。该算法有望发展成为一种实用、有效的指纹识别技术。 这种由粗及细对事物的分析就称为多分辨率分析.在时域中,尺度由大到小变化,对应的频域尺度由小到大变化,由低通滤波器可得到大尺度信息,即低频信息——信号轮廓信息,由高通滤波器可得到小尺度信息,即信号高频信息——噪声及突变信息源自: 基于小波变换的心电信号噪声处理 《西北工业大学学报》 2005年 张泾周,寿国法,戴冠中来源文章摘要:以小波变换的多分辨率分析为基础 ,通过对体表心电信号 ( ECG)及其噪声的分析 ,对 ECG信号中存在的基线漂移、工频干扰及肌电干扰等几种噪声 ,设计了不同的小波消噪算法 ;并利用MIT/BIH国际标准数据库中的 ECG信号和程序模拟所产生的 ECG信号 ,分别对算法进行了仿真与实验验证。结果表明 ,算法能有效地滤除 ECG信号检测中串入的几类主要噪声 ,失真度很小 ,可满足临床分析与诊断对 ECG波形的要求 其基本思路是将L ̄2(R)空间中的函数f看作逐级近似的极限每一个近似是f的一个光滑了的版本而相继近似的分辨率不同因此称为多分辨率分析.逐级近似的标架需要具有某些平移不变性更精确地说多分辨率分析由嵌套性、完备性、伸缩性、线性组合性等项要求组成(A) ̄1源自: 标准正交紧支集小波基与地震数据的分解和... 《大庆石油地质与开发》 1995年 杜丽英,吴永刚,徐果明来源文章摘要:本文讨论了Daubechies标准正交紧支集小波基,借助于多分辨率分析方法,建立了地震数据的分解和重建算法,并对实测地震数据进行了压缩和重建。 的这种嵌套结构通常被称为多分辨率分析,值得注意的是,子空间,.z不能由单个函数整数平移得到,这是多小波区别于传统小波的重要特征之一源自: 多小波的研究进展及其在电力系统中应用的... 《电力系统自动化》 2004年 刘志刚,何正友,钱清泉来源文章摘要:多小波可以同时具有对称性、正交性、短支撑性、高阶消失矩等性质,这是传统小波无法比拟的。通过引入最早的多小波,介绍了多小波的基本性质;详细讨论了目前多小波理论的研究现状,并对几种常用的多小波进行比较;深入讨论和分析了多小波的预处理问题,并进行了归类;结合电力系统领域,提出和探讨多小波理论在实际应用中存在的问题;最后对多小波今后的研究问题和在电力系统中的应用进行了展望。

Canny边缘检测教程 作者:比尔绿色( 2002 ) 主页电子邮件 本教程假定读者: ( 1 )知道如何发展的源代码阅读栅格数据 ( 2 )已经阅读我Sobel边缘检测教程 本教程将教你如何: ( 1 )实施Canny边缘检测算法。 导言 边的特点,因此,边界问题,根本的重要性在图像处理中。在图像的边缘地区,强度强的反差?猛增强度从一个像素的下一个。边缘检测的图像大大减少了大量的数据,并过滤掉无用的信息,同时保持重要的结构性能的形象。这也是我在索贝尔和拉普拉斯边缘检测教程,但我只是想再次强调这一点的,为什么您要检测的边缘。 的Canny边缘检测算法是众所周知的许多人视为最佳边缘检测。精明的意图是要加强许多边缘探测器已经在的时候,他开始了他的工作。他很成功地实现他的目标和他的思想和方法中可以找到他的论文“计算方法的边缘检测” 。在他的文件中,他遵循的标准清单,以改善目前的边缘检测方法。第一个也是最明显的错误率低。重要的是,发生在图像边缘不应错过的,没有任何反应,非边缘。第二个标准是,边缘点很好地本地化。换言之,之间的距离边缘像素作为探测器发现和实际边缘要在最低限度。第三个标准是,只有一个回应单一优势。这是第一次实施,因为并没有实质性的2足以完全消除的可能性,多反应的优势。 根据这些标准, Canny边缘检测器的第一个平滑的图像,以消除和噪音。然后认定的形象,以突出地区梯度高空间衍生物。该算法然后轨道沿着这些地区和抑制任何像素这不是在最高( nonmaximum制止) 。梯度阵列现在进一步减少滞后。磁滞用来追踪沿其余像素,但没有压制。磁滞使用两个阈值,如果规模低于第一道门槛,这是设置为零(发了nonedge ) 。如果是规模以上的高门槛,这是一个优势。如果震级之间的2阈值,那么它设置为零,除非有一条从这个像素一个像素的梯度上述时刻。 第1步 为了落实Canny边缘检测算法,一系列步骤必须遵循。第一步是筛选出任何噪音的原始图像在寻找和发现任何边缘。而且因为高斯滤波器可以用一个简单的计算面具,它是专门用于在Canny算法。一旦合适的面罩已计算,高斯平滑可以用标准的卷积方法。阿卷积掩模通常远远小于实际的形象。因此,该面具是下跌的形象,操纵一个正方形像素的时间。较大的宽度高斯面具,较低的是探测器的敏感性噪音。定位误差检测边缘也略有增加的高斯宽度增加。高斯遮罩使用我在执行下面显示。 第2步 经过平滑的形象,消除噪音,下一步就是要找到优势兵力,采取梯度的形象。的Sobel算子进行二维空间梯度测量的形象。然后,大约绝对梯度幅度(边缘强度)各点可以找到。 Sobel算子的使用对3x3卷积口罩,一个梯度估计在X方向(栏)和其他的梯度估计的Y方向(行) 。它们如下所示: 的规模,或EDGE强度,梯度近似然后使用公式: | G | = | GX的| + |戈瑞| 第3步 寻找边缘方向是小事,一旦梯度在X和Y方向是众所周知的。然而,你会产生错误时sumX等于零。因此,在代码中必须有一个限制规定只要发生。每当梯度在x方向等于零,边缘的方向,必须等于90度或0度,取决于什么的价值梯度的Y方向等于。如果青的值为零,边缘方向将等于0度。否则边缘方向将等于90度。公式为寻找边缘方向是: 论旨= invtan (戈瑞/ GX的) 第4步 一旦边缘方向众所周知,下一步是与边缘方向为方向,可以追溯到在一个图像。因此,如果一个5x5像素图像对齐如下: x x x x x x x x x x x x 1 x x x x x x x x x x x x 然后,可以看到看像素的“ A ” ,只有4个可能的方向时,描述了周围的像素- 0度(水平方向) , 45度(沿积极对角线) , 90度(垂直方向) ,或135度(沿负对角线) 。所以,现在的边缘方向已经得到解决纳入其中四个方向取决于哪个方向,它是最接近于(如角被发现有3度,使零摄氏度) 。认为这是采取了半圆形和分裂成5个地区。 因此,任何先进的方向范围内的黄色范围( 0至5月22日& 至180度)设置为0度。任何先进的方向下滑的绿色范围( 至度)设置为45度。任何先进的方向下滑的蓝色范围( 至度)设置为90度。最后,任何先进的方向范围内的红色范围( 到度)设置为135度。 第5步 在被称为边缘方向, nonmaximum制止目前适用。 Nonmaximum抑制是用来追踪沿边缘方向和制止任何像素值(套等于0 )这是不被认为是优势。这将让细线在输出图像。 第6步 最后,滞后是用来作为一种手段,消除条纹。裸奔是打破的边缘轮廓线的经营者造成的产量波动上面和下面的门槛。如果一个门槛, T1讯号适用于图像,并具有优势的平均强度相等的T1 ,然后由于噪声,将先进的情况下,逢低低于阈值。同样它也将延长超过阈值决策的优势看起来像一个虚线。为了避免这种情况,滞后使用2的门槛,高和低。任何像素的图像,其值大于表# t1推定为边缘像素,并标示为这种立即。然后,任何像素连接到这个边缘像素,并有一个值大于时刻还选定为边缘像素。如果您认为以下的优势,您需要一个梯度的时刻开始,但你不停止直到触及梯度低于表# t1 。

数字图像处理论文2000字

关于医学影像的论文范文

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!

前 言

数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。

1 关键技术在数字图像处理中的应用

医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。

图像获取

图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].

图像处理

在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。

图像识别与重建

在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。

2 医学影像中数字图像处理技术

数字图像处理技术的辅助治疗

当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].

提升放射治疗的疗效

在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。

加深对脑组织以其功能认识

脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。

实现了数字解剖功能

数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。

3 结 论

综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。

参考文献:

[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.

[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.

[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.

·GSM汽车防盗报警系统设计 (字数:15909,页数:46)·公交卡收费管理系统设计 (字数:13130,页数:34)·GSM数字通信机研究设计 (字数:17751,页数:48)·射频式计费卡系统设计与研究 (字数:13522,页数:36)·基于51单片机的超声波测距仪的设计分析 (字数:10545,页数:31)·全自动洗衣机模糊控制器的设计 (字数:16252,页数:41)·基于AT89C51的超声波测速系统 (字数:9584,页数:29 )·单相正弦波逆变电源 (字数:9589,页数:43 )·超声波液位计的设计 (字数:7532,页数:28 )·数字温度计 全套 (字数:7963,页数:24 )·基于数字图像处理的人民币纸币面向识别 (字数:6665,页数:21 )·基于单片机的饮水机温度控制系统 (字数:11411,页数:42)·基于单片机的湿度控制系统设计 (字数:10074,页数:33)·基于单片机的电子密码锁设计 (字数:7747,页数:32 )·基于单片机的电器遥控器的设计 (字数:10446,页数:31)·基于MCS-51的智能温度控制仪 (字数:8309,页数:30 )·基于DS18B20的多点测温系统 (字数:7853,页数:47 )·基于AT89S51单片机的汽车防撞系统的设计 (字数:8028,页数:27 )·基于DM6437的图像平滑算法的设计与实现 (字数:20706,页数:57)·基于单片机的语音录播放系统 (字数:9344,页数:28 )·铁路客车空调车厢内温度控制系统仿真 (字数:8614,页数:25 )·十字路口交通灯 (字数:8829,页数:28 )·基于单片机的脉冲燃烧热水炉控制器 (字数:6028,页数:27 )·基于单片机的火灾自动报警系统 (字数:8200,页数:27 )·基于AT89S52的智能人体健康电子秤的设计 (字数:7219,页数:27 )·基于AT89S52单片机的交通控制 (字数:653,页数:23 )·简单消防报警系统设计 (字数:5518,页数:21 )·基于时隙ALOHA的RFID防冲突算法和随机帧时隙防冲突算法的吞吐量研究 (字数:10395,页数:23)·汽车倒车防撞系统设计 (字数:25296,页数:47)·由AT89S51单片机控制实现的电子计时器系统 (字数:9135,页数:29 )·基于Freescale DT512的单片机闹钟设计 (字数:15400,页数:64)·智能温度报警系统的设计 (字数:11793,页数:36)·单片机温度控制系统 (字数:10581,页数:34)·单片机温度测量电路 (字数:13171,页数:41)· 环境噪声测试终端采集传输系统的设计 (字数:17921,页数:54)·基于MATLAB的直流电机控制的仿真 (字数:12001,页数:33)·基于Verilog的交通灯控制系统设计 (字数:6044,页数:18 )·基于AVR单片机的超声波距离测量系统 (字数:12946,页数:52)·基于XR-2206、AT89S51的信号发生器设计——频率显示部分 (字数:9051,页数:35 )·基于CPLD的CMI编译码器设计 (字数:8757,页数:34 )·自适应噪声抵消系统 (字数:14389,页数:35)·语音报价器设计 (字数:18177,页数:45)·心率失常计算机自动诊断 (字数:10645,页数:31)·图像灰度形态学算法的研究与实现 (字数:11698,页数:28)·数字式带通滤波器的设计 (字数:13225,页数:39)

(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法:一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行:第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。希望可以帮到你,有什么不懂的可以问我

数字图像处理方面了解的了。

数字图像处理论文1500字

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!排版一定要遵循学校格式模板要求,否则参考文献、字体间距格式不对,要发回来重改,老师还会说你不认真希望可以帮到你,有什么不懂的可以问我,下面对论文写作提供一些参考建议仅供参考:论文题目论文题目应该简短、明确、有概括性。读者通过题目,能大致了解论文的内容、专业的特点和学科的范畴。但字数要适当,一般不宜超过24字。必要时可加副标题。摘要与关键词论文摘要论文摘要应概括地反映出毕业设计(论文)的目的、内容、方法、成果和结论。摘要中不宜使用公式、图表,不标注引用文献编号。摘要以300~500字为宜。关键词关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用技术词条(参照相应的技术术语标准)。关键词一般为3~5个,按词条的外延层次排列(外延大的排在前面)。目录按章、节、条三级标题编写,要求标题层次清晰。目录中的标题要与正文中标题一致。目录中应包括绪论、论文主体、结论、致谢、参考文献、附录等。论文正文是毕业设计(论文)的主体和核心部分,一般应包括绪论、论文主体及结论等部分。绪论一般作为第一章,是毕业设计(论文)主体的开端。绪论应包括:毕业设计的背景及目的;国内外研究状况和相关领域中已有的研究成果;课题的研究方法;论文构成及研究内容等。绪论一般不少于1千字。论文主体是毕业设计(论文)的主要部分,应该结构合理,层次清楚,重点突出,文字简练、通顺。论文主体的内容应包括以下各方面:(1) 毕业设计(论文)总体方案设计与选择的论证。(2) 毕业设计(论文)各部分(包括硬件与软件)的设计计算。(3) 试验方案设计的可行性、有效性以及试验数据的处理及分析。(4) 对本研究内容及成果应进行较全面、客观的理论阐述,应着重指出本研究内容中的创新、改进与实际应用之处。理论分析中,应将他人研究成果单独书写,并注明出处,不得将其与本人提出的理论分析混淆在一起。对于将其他领域的理论、结果引用到本研究领域者,应说明该理论的出处,并论述引用的可行性与有效性。(5) 自然科学的论文应推理正确,结论清晰,无科学性错误。(6) 管理和人文学科的论文应包括对研究问题的论述及系统分析,比较研究,模型或方案设计,案例论证或实证分析,模型运行的结果分析或建议、改进措施等。结论学位论文的结论单独作为一章排写,但不加章号。结论是毕业设计(论文)的总结,是整篇论文的归宿。要求精炼、准确地阐述自己的创造性工作或新的见解及其意义和作用,还可进一步提出需要讨论的问题和建议。致谢致谢中主要感谢导师和对论文工作有直接贡献及帮助的人士和单位。参考文献按论文正文中出现的顺序列出直接引用的主要参考文献。毕业设计(论文)的撰写应本着严谨求实的科学态度,凡有引用他人成果之处,均应按论文中所出现的先后次序列于参考文献中。并且只应列出正文中以标注形式引用或参考的有关著作和论文。一篇论著在论文中多处引用时,在参考文献中只应出现一次,序号以第一次出现的位置为准。附录对于一些不宜放入正文中、但作为毕业设计(论文)又是不可缺少的部分,或有重要参考价值的内容,可编入毕业设计(论文)的附录中。例如,过长的公式推导、重复性的数据、图表、程序全文及其说明等。

哈哈 我也是大一的 支持哈 为什么要有作业呀

关于医学影像的论文范文

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!

前 言

数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。

1 关键技术在数字图像处理中的应用

医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。

图像获取

图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].

图像处理

在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。

图像识别与重建

在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。

2 医学影像中数字图像处理技术

数字图像处理技术的辅助治疗

当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].

提升放射治疗的疗效

在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。

加深对脑组织以其功能认识

脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。

实现了数字解剖功能

数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。

3 结 论

综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。

参考文献:

[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.

[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.

[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.

数字图像处理,MATLAB,可好 ,

数字图像处理毕业论文图像复原

图像复原技术及其MATLAB实现摘 要图像复原的目的是从观测到的退化图像重建原始图像,它是图像处理、模式识别、机器视觉等的基础,在天文学、遥感成像、医疗图像等领域获得了重要应用。运动模糊图像的复原是图像复原的重要组成部分。由运动模糊图像复原出原图像关键问题是获取点扩展函数,模糊方向和长度的鉴别至关重要。本文通过对运动模糊图像的频域幅度图的黑带条纹(即图像零点个数)分析,计算出运动模糊PSF的参数。获得PSF的参数后,本文主要采用了逆滤波法、维纳滤波法、最小线性二乘法、Richardson-Lucy算法对模糊图像进行复原,并对各种复原方法的结果进行了分析与对比。关键词:图像复原;运动模糊;模糊方向;模糊长度引 言图像复原是图像处理领域一个具有现实意义的课题。运动模糊图像的研究越来越受到关注,这种模糊是成像过程中普遍存在的问题,其复原在许多领域都有广泛的应用。实际上,图像复原设计三个方面的内容:退化图像的成像模型,图像复原算法和复原图像的评价标准。不同的成像模型、问题空间、优化规则和方法都会导致不同的图像复原算法,适用于不同的应用领域。现有的复原方法概括为以下几个类型:去卷积复原算法、线性代数复原、图像盲反卷积算法等,其他复原方法多是这三类的衍生和改进。其中,去卷积方法包括维纳去卷积、功率谱平衡与几何平均值滤波等,这些方法都是非常经典的图像复原方法。但是需要有关于原始图像、降质算子较多的先验信息和噪声平衡性的假设只适合于不变系统及噪声于信号不相关的情形,特别是降质算子病态的情况下,图像复原结果还不太理想。由于图像复原技术在图像处理中占有重要的地位,已经形成了一些经典的常用图像复原算法,如无约束最小二乘法、有约束最小二乘方法、逆滤波、维纳、最大熵复原等,至今还被广泛使用。但这些复原算法都是假设系统的点扩散函数PSF(即系统对图像中点的脉冲响应,是导致图像退化的原因)为已知,实际情况是系统的点扩散函数由于大气扰动、光学系统的相差、相机和对象之间的相对运动等多种因素的影响,往往是未知的。这就需要人们用某种先验知识在系统的点扩散函数未知时进行估计,然而这种先验知识并不容易取得也不够精确,这就需要我们在对己模糊图像分析和处理的基础之上估计最逼近的PSF。在运动模糊方向的鉴别方面,由于匀速直线运动的点扩散函数是矩形函数,其模糊图像对应的频域上有周期性的零值条纹,运动方向与零值条纹方向相垂直,本文就是借用此法获取模糊图像的PSF参数。本文主要针对运动模糊图像的复原进行研究,讨论分析了匀速直线运动模糊的退化模型,研究了运动方向和模糊尺度的估计,介绍了常用的几种图像复原方法。对模糊图像用几种复原算法分别进行了复原,根据复原结果,讨论分析了各算法的优缺点及适用的恢复环境。第1章 绪论 研究背景图像复原是数字图像处理中的一个重要课题。它的主要目的是改善给定的图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,受多种因素的影响,图像的质量都会有不同程度的下降,典型的表现有图像模糊、失真、有噪声等,这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复被退化图像的本来面目。在成像系统中,引起图像退化的原因很多。例如,成像系统的散焦,成像设备与物体的相对运动,成像器材的固有缺陷以及外部干扰等。成像目标物体的运动,在摄像后所形成的运动模糊。当人们拍摄照片时,由于手持照相机的抖动,结果像片上的景物是一个模糊的图像。由于成像系统的光散射而导致图像的模糊。又如传感器特性的非线性,光学系统的像差,以致在成像后与原来景物发生了不一致的现象,称为畸变。再加上多种环境因素,在成像后造成噪声干扰。人类的视觉系统对于噪声的敏感程度要高于听觉系统,在声音传播中的噪声虽然降低了质量,但时常是感觉不到的。但景物图像的噪声即使很小都很容易被敏锐的视觉系统所感知。图像复原的过程就是为了还原图像的本来面目,即由退化了的图像恢复到能够真实反映景物的图像。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 相关领域的研究现状及存在的问题图像恢复是数字图像处理中的一个重要分支,它研究的是如何从所得的退化图像中以最大的保真度复原出真实图像。成像系统的缺陷,传播媒介中的杂质,以及图像记录装置与目标之间的相对运动等因素,都不可避免地造成了图像的某些失真和不同程度的降质。然而在众多的应用领域中,又需要清晰的、高质量的图像,因此,图像恢复问题具有重要的意义。与图像增强相似,图像复原的目的也是改善图像的质量。图像复原可以看作图像退化的逆过程,是将图像退化的过程加以估计,建立退化的数学模型后,补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或图像的最优估计值,从而改善图像质量。图像复原是建立在退化的数学模型基础上的,且图像复原是寻求在一定优化准则下的原始图像的最优估计,因此,不同的优化准则会获得不同的图像复原,图像复原结果的好坏通常是按照一个规定的客观准则来评价的。运动模糊图像的恢复是图像恢复中的重要课题之一,随着科学技术的不断发展,它在各个领域中的应用越来越多,要求也越来越高,可广泛应用于天文、军事、道路交通、医学图像、工业控制及侦破领域,具有重要的现实意义。图像复原作为图像处理的一个重要领域,对于该问题国内外展开了诸多关键技术的研究。实际上,图像复原涉及三个方面的内容:退化图像的成像模型,图像复原算法和复原图像的评价标准。不同的成像模型、问题空间、优化规则和方法都会导致不同的图像复原算法。适用于不同的应用领域。现有的复原方法概括为以下几个类型:去卷积复原算法、线性代数复原、图像盲反卷积算法等,其他复原方法多是这三类的衍生和改进。其中,去卷积方法包括维纳去卷积、功率谱平衡与几何平均值滤波等,这些方法都是非常经典的图像复原方法。但是需要有关于原始图像、降质算子较多的先验信息和噪声平衡性的假设只适合于不变系统及噪声于信号不相关的情形,特别是降质算子病态的情况下,图像复原结果还不太理想。线性代数复原技术是基于已知降质算子和噪声的统计特征,从而利用线性代数原理的复原技术,它为复原滤波器的数值提供了一个统一的设计思路和较透彻的解释。但是当降质函数有接近零的特征值时,复原的结果对噪声特别敏感,且该方法是把整幅图像一并处理,计算量大,同时也没有考虑纹理、边界等高频信号与噪声的区别,这将使纹理、边界等重要特征在图像复原过程中被破坏。针对这些问题,国外主要在改进算法的效率上做了许多工作,如全局最小二乘法、约束总体最小二乘法和正则化约束总体最小二乘法。图像盲反卷积是图像复原的另一个重要的手段,它针对没有或少有关于降质函数和真实信号灯先验知识的复原问题,直接根据退化图像来估计降质函数和真实信号。目前有以下几种算法:零叶面分离法、预先确定降质函数法、三次相关法、迭代盲反卷积法等。这些算法在先验信息不足的情况下对降质图像进行复原,由于原始图像以及点扩展函的先验知识只是部分已知的,造成图像复原的解往往不唯一,而且解的好坏与初始条件的选择以及附加的图像假设等直接有关。同时,由于加性噪声的影响使得图像的盲目复原成病态。即若对点扩展函数直接求逆进行复原,通常会带来高频噪声放大的问题导致算法性能的恶化,所以当图像的信噪比水平较低时获得的结果往往不太理想。正则化方法作为一种解决病态反问题的常用方法,通常用图像的平滑性作为约束条件,但是这种正则化策略通常导致复原图像的边缘模糊。为了克服边缘退化问题,最近几年,不少学者对各种“边缘保持”的正则化方法进行了比较深入的研究,提出了一些减少边缘退化的正则化策略,这些策略通常需要引入非二次正则化泛函,从而使问题的求解成为一个非线性问题。沿着这一思路,Geman和Yang提出了“半二次正则化”的概念来解决这种策略中出现的非线性优化问题。其后,Charbonni等人在此基础上研究了一种新的半二次正则化方法。从而可以利用确定性算法来得到问题的最优解。另一个较新的发展使Vogel等人提出的基于全变差模型的图像复原算法。尽管这些算法都在一定意义上提高了复原图像的质量,但边缘模糊的问题并未得到理想的解决。另外,近年来小波的理论得到迅速发展,并光法应用于图像复原中。基于小波变换的迭代正则化图像复原算法,兼顾抑制噪声的增长和保留图像的重要边界。具有噪声估计能力的图像恢复正则化方法。Belge等人以广义高斯模型作为小波系数的先验分布,提出了一种小波域边缘保持正则化的方法。同时给出了小波域图像复原的一般框架,但其复原方法相对于传统复原方法提高的并不显著,赵书斌等人以混合高斯模型逼近小波系数的分布,并引入小波域隐马尔可夫模型作为自然图像的先验概率模型对图像超分辨率复原问题进行正则化,复原效果不错,但该方法还是不能避免计算量过大的缺点。从图像复原的Bayesian框架出发,小波域局部高斯模型的线性图像复原方法,该方法较好的再现了图像的各种边缘信息,取得不错的复原效果。2 逆滤波复原图5-1逆滤波复原过程图,图(a)是选取的原始图像,图(b)是利用MATLAB对原始图像进行运动模糊和加噪声仿真而生成的仿真图像,模糊长度为10个像素。经过逆滤波复原图像为图(c)。(a)原图像 (b)模糊加噪图像(c)复原图像图5-1 逆滤波复原过程从恢复出来的图5-1(c)可以看出复原效果不理想,出现较大的振铃现象。从理论分析上看是由于一般情况下,逆滤波复原不能正确估计退化函数的零点,因此必须采用一个折中的方法进行解决。实际上,逆滤波不用,而是采用另外一个关于的函数。函数称为转移函数。改进方法为(5-1)式中K和d均为小于1的常数。采用逆滤波对运动模糊加噪图像进行复原。在噪声相同情况下,参数K分别选取、、、、和。图中(a)-(f)为对应参数下的复原图像。通过转移函数替代原退化模型得到图5-2逆滤波减小振铃现象复原图像。(a)k= (b) k=(c)k= (d) k=(e) k= (f) k=图5-2 逆滤波减小振铃现象复原图像图从复原结果图5-2可以看出随着K值的增大复原效果逐渐变差,K=到之间复原效果较好。从理论上分析,逆滤波方法不能正确估计退化函数的零点。采用一个折衷的方法加以解决。一般情况,可以将图像的退化过程视为一个具有一定带宽的带通滤波器,随着频率的升高,该滤波器的带通特性很快下降,即的幅度随着平面原点的距离的增加而迅速下降,而噪声项的幅度变化是比较平缓的。在远离平面的的值就会变得很大,而对于大多数图像来说,却变小,在这种情况下,噪声反而占优势,自然无法满意的恢复出原图像。这一规律说明,应用逆滤波时仅在原点领域采用方能有效。 有约束最小二乘方复原的实现通过MATLAB仿真来实现有约束的最小二乘方复原,图5-3是有约束的最小二乘方复原图。分别取参数为0、1、、、、对应图5-3里面的(a)-(f)。图5-3 有约束最小二乘方在不同参数下的恢复情况图 维纳滤波复原的实现图(a)是选取的原始图像,图(b)是利用MATLAB对原始图像进行运动模糊和加噪声仿真而生成的仿真图像,模糊长度为5个像素。采用维纳滤波恢复算法对模糊图像进行恢复,在加噪声的情况下,参数k分别选取0.0001、0.001、0.005、0.01、和1。各种图中(c)-(h)为对应参数下的恢复图像。图5-4有噪声下维纳滤波在不同参数下的恢复情况。(a)原始图像 (b)含噪声运动模糊图像d=5,v=(c) K= (d) K=(e) K= (f) K=(g) K= (h) K=1图5-4 有噪声下维纳滤波在不同参数下的恢复情况可以看出,恢复图像还是都有一定的振铃现象。K=时,图像振铃效应比较小,但其噪声很大。k=相对前一幅恢复图像振铃效应明显一点,但噪声有所减少。k=和k=的恢复效果也是看起来区别不明显,虽然它们的噪声都减少了,但图像整体都相对前面有明显的模糊,且振铃效应明显。K=的模糊程度比较大,而k=1时,图像最模糊,且亮度很暗。总的看来,主观评价认为k=时的恢复效果最清楚,恢复质量最好。K=时次之,k=1时的效果最差。利用公式(5-1)与(5-2)计算出平均平方误差,如表5-1所示:表5- 1平均平方误差客观评价方法得分参数k 1平均平方误差(M) 2861 6463 6937 6576 2861 2513从表5-1可以看出,采用平均平方误差准则时K=的平均平方误差和K=一样,但是其对应的图像很模糊。对于非迭代方法的维纳滤波恢复法,k值的选取对图像恢复质量有很重要的影响。从上面实验结果可以看出,虽然对于每幅特定图像的评价得分不尽相同,但基本上当k值在[,]的范围取值时,恢复图像质量最好。从理论上分析,维纳滤波复原的图像,在图像的频率特征和附加噪声已知的情况下,采用维纳滤波去卷积比较有效。维纳滤波复原法不存在极点,即当很小或变为零时,分母至少为K,而且的零点也转换成了维纳滤波器的零点,抑制了噪声,所以它在一定程度上克服了逆滤波复原方法的缺点。 Richardson-Lucy复原的实现图(a)是原始图像,图(b)是对原图进行运动模糊仿真而生成的仿真图像,模糊长度为10个像素,模糊方向为水平方向。采用Richardson-Lucy恢复算法对模糊图像进行恢复,迭代次数参数分别选取20次、50次、100次、150次、200次和300次。所有图的(c-h)为对应迭代次数下的复原图像。(a) 原图像 (b) 水平运动10像素加噪声图像(c) 迭代20次 (d) 迭代50次(e) 迭代100次 (f) 迭代150次(g) 迭代200次 (h) 迭代300次图5-5 R-L算法在不同参数下的复原图像从图5-5可以看出,恢复的图像整体差别不大。从图像人物、背景等分辨,质量随着迭代次数增大而提高。迭代100次以后恢复效果区别不大,仔细辨认,迭代200次和300次更好一些.所以主观评价认为200次或300次时复原质量最好。本文通过MATLAB编程,利用公式(5-1)、(5-2)计算出图5-5:(c)-(h)各恢复图像的平均平方误差。通过计算平均平方误差的倒数(M)来做客观分析。客观分析如表5-2:表5- 2复原图像与原图像的平均平方误差迭代次数 20 50 100 150 200 300平均平方误差(M) 4348 4762 5000 5263 5263 5263从表5-2可以看出,采用均方误差准则评价时,平均平方误差差别不大。总体上随着迭代次数增加分数增大,迭代次数为150次后平均平方误差一样。上述分析表明,在R-L恢复算法下,对于这幅图像,传播波方程客观评价准则和平均平方误差准则的评价结果基本一致,并和主观评价结果吻合。从理论上分析,Richardson-Lucy算法能够按照泊松噪声统计标准求出与给定PSF卷积后,最有可能成为输入模糊图像的图像。PSF已知但是图像噪声信息未知时,也可以使用这个函数进行有效的工作。随着复原迭代的次数增加,可以提高复原图像的似然性,最终将会收敛在具有最大似然性处。结论与展望图像复原是图像处理领域一个具有现实意义的课题。运动模糊图像的研究越来越受到关注,这种模糊是成像过程中普遍存在的问题,其复原在许多领域都有广泛的应用。图像复原需要根据相应的退化模型知识重建或恢复原始的图像。也就是说,图像复原技术就是要将图像退化的过程模型化,并由此采取相反的过程以得到原始图像。运动模糊是由于在拍摄过程中相机与景物之间相对运动而产生,因此对于匀速直线运动造成的运动模糊图像来说,图像退化模型的两个重要参数相对运动的方向和运动模糊尺度的估计就成了图像复原的关键问题。本文以匀速直线运动造成的模糊图像为基础,研究退化函数的参数估计方法,所做的工作及创新之处总结如下:论文的工作总结(1)论文研究了模糊图像尤其是水平方向运动模糊图像的退化模型,任意方向的匀速直线运动模糊图像只需要通过坐标旋转至水平方向,其图像特征的描述可由水平匀速直线运动模糊图像类推得出。(2)论文研究了运动方向和模糊尺度的估计,通过对运动模糊图像的频域幅度图的黑带条纹(即图像零点个数)分析来估算出运动模糊PSF的参数运动模糊方向和运动模糊长度)的,同时通过查阅文献获得另一种对模糊尺度的估算即对模糊图像进行一阶微分,然后进行自相关运算,可得到一条鉴别曲线,曲线上会出现对称的相关峰,峰值为负,两相关峰之间的距离等于运动模糊长度。(3)对于运动模糊图像的恢复,介绍分析了逆滤波、有约束的最小二乘方、维纳滤波和Richardson-Lucy四种常用的恢复方法。并且采用Richardson-Lucy迭代算法和维纳滤波方法在选取不同参数的情况下对运动模糊图像进行了恢复。利用逆滤波方法进行恢复时,复原图像的效果整体不是很好,存在着较明显的振铃效应,加噪情况下复原图像的噪声也比较严重。本文通过理论分析及仿真,探索出减小振铃现象的一些方法,但还不够完善,今后还需要继续深入研究如何改进算法、减少振铃效应和噪声,以提高复原图像的质量。针对有约束的最小二乘方、维纳滤波复原方法,本文主要通过参数变化来控制复原效果,最终选出最优准则。Richardson-Lucy迭代算法从理论上看是迭代次数越大,复原效果越好。考虑到程序的有效性,本文采用了最大为迭代300次。从主客观评价对复原图像的评价来看迭代次数超过150次以后效果就基本一样。展望由于本人的能力有限,对图像复原技术的研究还不够系统、不够深入,无论在理论上,还是在工程应用中,还需要做大量深入、细致的研究工作。因此在这方面的研究还只是个开始,很多地方都需要改进与提高,例如:(1)运动模糊图像的复原大多是对整幅图像进行全局的复原,然而在实际应用中并非完全如此。例如,由于物体运动而产生的相对运动,其运动模糊只出现在物体运动的轨迹上,而背景是清晰的。在这种情况下就不能对全局进行处理,应首先分割出运动模糊区域,然后再进行参数估计,图像复原。如何分割运动模糊区域,分割的依据如何等将成为以后研究工作的一部分。(2)本文研究的运动模糊图像参数估计算法仅限于匀速直线运动造成的模糊,而缺乏对非匀速的、轨迹为曲线的运动模糊研究,且得到的参数还具有一定的误差。参考文献[1] 杨帆,等.数字图像处理与分析(第二版)[M].北京:航空航天大学出版社,2007.[2] 黄爱民,等.数字图像处理分析基础[M].北京:中国水利水电出版社,2005.[3] 孙兆林.MATLAB 图像处理[M].北京:科学出版社,2003.[4] 贾永红.计算机图像处理与分析[M].武汉:武汉大学出版社,2001.[5] 姚敏.数字图像处理[M].北京:机械工业出版社,2006.[6] 孟永定,马佳.基于MATLAB实现数字图像恢复[J].电脑学习,2007,1(1),30-32.[7] 刘红岩,徐志鹏.基于MATLAB的数字图像恢复[J].科技信息(学术研究).2008,3(12),23-26.[8] 孟昕,张燕平.运动模糊图像恢复的算法研究与分析[J].计算机技术与发展,2007,17(8):74-76.[9] 孟昕,周琛琛,郝志廷.运动模糊图像恢复算法相关研究发展概述[J].安徽电子信息职业技术学院学报,2008,7(6),38-41.[10] 曾志高,谭骏珊.匀速直线运动模糊图像的恢复技术研究[J].陕西理工学院学报(自然科学版),2006,22(2),36-38.[11] 李云浩,王建设.匀速直线运动模糊图像的退化数学模型试验研究[J].江西理工大学学报,2006,27(4),28-30.[12] 谢伟,秦前清.基于倒频谱的运动模糊图像PSF参数估计[J].武汉大学学报(信息科学版).2008,5(02),30-32.[13] Banham Mark M,Katsaggelos A image restoration. IEEE Signal Processing Magazine . 1997.[14] Mccallum B deconvolution by simulated annealing. Optics Communitions . 1990.[15] Hardie C and Boncelet C filters: A class rank order based filters for smoothing and sharpening. IEEE Transactions on Signal Processing . 1993.附录C 主要源程序(1)模糊图像的傅里叶频谱获取j=imread('车牌.jpg');figure(1);imshow(j);title('原图像');len=20;theta=30;psf=fspecial('motion',len,theta);j1=imfilter(j,psf,'circular','conv');figure,imshow(j1);title('PSF模糊图像');J=rgb2gray(j);K=fft2(J); %傅里叶变换M=fftshift(K); %直流分量移到频谱中心N=abs(M); %计算频谱幅值P=(N-min(min(N)))/(max(max(N))-min(min(N)))*225;%归一化Figure;imshow(P);title('原图像的傅里叶变换频谱');J1=rgb2gray(j1);K1=fft2(J1); %傅里叶变换M1=fftshift(K1); %直流分量移到频谱中心N1=abs(M1);%计算频谱幅值P1=(N1-min(min(N1)))/(max(max(N1))-min(min(N1)))*225;%归一化Figure;imshow(P1);title('模糊图像的傅里叶变换频谱');(2)模糊长度获取程序f1=rgb2gray(j1);f1=im2double(f1);h = fspecial('Sobel'); %Sobel算子J = conv2(f1,h,'same'); %Sobel算子微分IP=abs(fft2(J)); %图像能量谱密度S=fftshift(real(ifft2(IP)));figure,plot(S);title

张玉君

(地质矿产部航空物探遥感中心研究所北京)

摘要:本文介绍一种独特的航放数据图像复原方法。该方法的主要技术关键是:提出航放数据图像复原原理和理论基础;建立航放数据图像复原处理流程;制定重建数据网格文件的途径;进行航放数据图像复原效果及误差评价。

关键词:航放数据,大气本底,图像处理,图像复原技术。

一、引言

自20世纪70年代初期方柱形NaI晶体进入机载综合航空站以来,航放测量的灵敏度和有效性显著提高,地质及地球物理勘探界对于航空放射性测量的需求产生了根本变化。

在近20年的应用实际中,大气氡本底(简称大气本底)的改正很难准确,它始终是困扰该方法应用效果的主要难点;其后果是在图面上造成条带现象,从而严重地影响着图件的可用性及方法的效果。其原因[1]可概括为:空中所测放射性不仅仅来源于地下,而且受飞机硬件环境、宇宙射线、大气中氡及其子体的影响。后者称之为大气本底干扰,它又受气候、风力、风向、温度、季节及一天中何时测量等因素的影响。大气本底干扰的主要表现形式是架次与架次间本底水平不同。受干扰最大的是铀道,钾道次之,钍道和总道虽较小,但也不可忽视,(见彩版附图7中的图3、图4)。由于这种噪声的存在,来源于地质体的信息常常淹没于噪声之中。图3a(彩版附图7)为哈密土墩测区K(红)、Th(绿)、U(蓝)三元素复原图像,图3b为该测区航放原始数据合成图像,图4a(彩版附图7)表示各架次早、晚校准读数,图4b为总道原始数据图像。条带噪声的存在,可以形象地比喻为挂在有用信息图像前面的彩条窗帘,条带的严重性使得该工区原始航放数据无法绘制等值线图。

航放图面条带问题是一个“世界性”的问题[2]。解决得较好的是加拿大,靠星罗棋布的湖泊河流等水域上空测量结果改正本底,取得较好的效果,而且不使用向上探头[1]。美国Geometrics公司及其他航空物探公司则是靠向上探头测量,作为本底改正的依据[3]。1986年Grasty[4]提出当测区内没有湖泊时,可用测线上无异常区的平均值代替本底。

本文介绍的方法与国际上已采用的各种方法全然不同,该方法在数字图像处理学中可称之为航放图像复原技术。图像复原技术的主要目的,是要改善给定的图像。复原是一个过程,它试图利用蜕化现象的某种先验知识,把已经蜕化了的图像加以重建或恢复。因此,复原技术是把蜕化模型化,并运用相反的过程在某种程度上恢复原来的图像。

Cannon博士[5]研究了一种图像复原技术或称图案去除技术,它适用于:从规则图案(如纺织品)上提取指纹图形,改善散焦图像,消除卫片图像探测器与探测器间的噪声,使在曝光过程中相机或物体平移造成模糊的图像清晰化等。Srinivasan也报道了这类研究[6]。张玉君等研究了深海锰结核照片光照不均匀等蜕化现象的图像复原问题[7]。航放数据图像复原处理是数字图像复原技术在地学界成功应用的又一实例,但航放数据图像所存在的蜕化问题与上述各例均不相同。该方法研究成功后,曾在6个测区得到验证。

二、航放数据图像复原技术原理和理论基础

航放所测到的是一幅蜕化了的图像G(x,y)它可视为由真实图像F(x,y)与干扰图像η(x,y)叠加而成,简化了的蜕化过程,见图1。航放图像蜕化现象的先验知识来自对航放测量过程及原始图像的分析。在测量过程中,来自地质体的有用信息是不随时间为转移的。而干扰在本质上是随时间变化的,但在图像上干扰已变为(x,y)的函数,因为:

张玉君地质勘查新方法研究论文集

图1航放数据图像蜕化示意图

η的变化可分为架次之间的跳变及架次之内的渐变,见图4(彩版附图7),在每一测线上此干扰大致为一个常数,如果将x(即图像上的列)表示垂直测线的方向,则η(x,y)简化为η(x),则有

张玉君地质勘查新方法研究论文集

航放图像复原的目的,就在于设法近似地求出η(x),从而近似地得到F(x,y)。为此,沿测线方向对原始图像进行多次单列

多行窄长窗口褶积:

张玉君地质勘查新方法研究论文集

式中W为褶积模板,是由加权因子组成的矩阵。褶积过程是一种线性运算,其算子H不随空间变化。因为算子为线性的,则两个输入之和的响应等于两个响应之和。

张玉君地质勘查新方法研究论文集

由于假定了η仅与x有关,又由于褶积窗口为单列,则有:

张玉君地质勘查新方法研究论文集

现在分析HF(x,y)的性质,由于沿y方向的多次滑动平均,局部异常“淹没”于近区域特征之中,这种近区域特征表现为沿测线方向的低缓变化;如果用f(x,y)表示局部异常,用L(x,y)表示近区域场,于是:

张玉君地质勘查新方法研究论文集

再经如下处理

张玉君地质勘查新方法研究论文集

由(9)式可见,从原始图像中减去噪声图像后,所得复原图像f(x,y),它从局部异常角度是接近真实图像的,误差取决于所减去的“近区域背景值”在测线方向起伏变化的幅度。

三、航放数据图像复原处理过程

航放数据图像复原技术的研究是以多元统计为理论基础,以图像处理为工具来完成的,并体现了图像处理快速直观的特点,其流程如图2所示。

图2航放数据图像复原处理流程

此方法假定航放噪声本底沿测线方向不变或呈线性变化。通过沿测线方向的多次滑动平均,使局部异常逐渐淹没在噪声本底之中,得出一幅与噪声本底线性相关的噪声图像。噪声图像尚需进行边缘影响补偿;对去除噪声后的图像,经中值滤波和空间变量反差增强,达到最终复原的效果。这一复原过程集中表示于图2的左半部。

图2的右半部为数据网格文件的重建过程,它是实际应用所必不可少的。经过分类分区,求得各类别在复原前后的均值向量,经最小二乘拟合求出复原图像的元素含量或计数率值,重新建立为在主计算机上绘制等值线图用的网格文件。

本研究曾试验通过沿测线方向取平均值做为噪声水平,结果不及上述方法理想。

四、效果及误差评价

1.航放数据图像复原的效果

(1)图面直观效果的改善。

可以形象地说,航放图像复原好比揭去一层条带窗帘,使原来透过此窗帘隐约可见的图像显示出了真面目,见图3a(彩版附图7)。图面直观效果的改善还表现在由于定位问题所引起的岩体边界上的锯齿状噪声得以消除,见图5(彩版附图7)。图5为总道对比图像,5a为原始数据,5b表示噪声图像,5c为去噪声后的图像,5d为复原图像。

(2)用复原数据所做等值线图真实可信。

以哈密土墩测区为例,原始资料由于条带干扰,在主计算机上,钾、钍、铀道都无法绘等值线图,仅提供了平剖图;只有总道提供了等值线图,但仍可看到条带的影响。

经图像复原、重建网格文件,反馈回主计算机后绘制了TC、K、Th和U等值线图,现以K道经复原后数据等值线图为例示于图6(彩版附图7),与地质图对比,表明异常和地质体对应良好,各类岩性的放射性趋势也都吻合,证实这些等值线图的可靠性。利用复原图像所做分类图也证实了这一点,见图7(彩版附图7),图7中数字分别为:①超基性岩;②基性岩;③花岗岩;④闪长岩;⑤变质岩;⑥混合岩;⑦第四纪沉积;⑧第三、四纪沉积;⑨第三纪沉积。

(3)有用信息增加。

本研究利用多元统计的方法,对航放图像复原的效果给出定量评价。可用一幅图像有用信息构成的变异值的大小来对它做定量评价。为此应计算全图面总变异对于一个象素的平均值,即平均变异值。用C、C´和C"分别表示原始图像中有用信息平均变异值、原始图像中干扰信息平均变异值和最终复原图像有用信息平均变异值。统计时以G´(x,y)近似代表η(x);以[G(x,y)-G´(x,y)]近似代表F(x,y);以P(x,y)表示最终复原图像,并假定它已无干扰存在。

张玉君地质勘查新方法研究论文集

式中,字母上加“—”表示平均值;M、N为图像的行、列数。

表1为哈密土墩测区航放数据图像按上述各式所做定量评价的统计结果。

表1

从表1可见,K、Th、U、TC经图像复原后,有用信息都有十分显著的增长;就此工区而论,TC和K原始图像相对质量较好,Th和U较差。

2.复原图像的准确度及误差评价

复原图像的主要误差来源是“近区域背景值”L(x,y),它是在多次滑动平均时形成的。通过对干扰图像剖面数据的统计,得到以下准确度评价:

K±(绝对含量);Th+ pp m;

U± ppm;TC±计数。

五、结论

(1)本文介绍的方法是在国内外首次提出的方法独特的航放数据图像的复原技术,并在多个工区验证了其可靠性和实用性。

(2)本技术可以基本上消除由于大气本底及阈值变动所造成的图面条带现象,基本复原航放图像的真面目,为进一步图像处理(诸如:求导、增强、分类、逻辑运算等)做了准备,因此本技术也是一种快速预处理方法。

(3)本方法改善了由于飞行往返定位位移所引起的某些地质体边缘呈锯齿状的图像噪声问题。

(4)本研究建立了“有用信息平均变异值”做为定量评价航放数据图像复原效果的尺度。还讨论了图像复原做为一种预处理过程,对于元素含量值可能导入的绝对误差或称为方法的准确度。

参考文献

[1]Grasty, ., Gamma ray spectrometric methods in uranium exploration—Thcory and operational procedures, Geophysics and Geochemistry in the Search for Metallic Ores,GSC,Ottawa,147-162,1977.

[2]Creen, airborne gamma-radiation data using between-channel correlation information,Geophysics,52,1557-1562,1987.

[3]Foote, ., Improvement in airborne gamma-radiation data analysis by removal of environmental and pedologic radiation changes, in the Use of Nuclear Techniques in Prospecting and Developmcnt of Mineral Resources: Energy Agency Mtg.,Buenos Aires,187-196,1968.

[4]Grasty, system for computing on-line atmospheric backgrounds,GSC paper,1-52,1987.

[5]Cannon,M.,Lehar, Preston,F.,Background pattern removal by power spectral filtering,Applied Optics,22,777-779,1983.

[6]Srinivasan,R.,Software image restoration techniques,Digital Design, 16,4,27-34, 1986.

[7]张玉君,史鉴文.深海多金属结核照片的图像复原和图像处理技术研究.物探与化探,1989,(13):435~441.

致谢林振民同志对本文提出了宝贵的意见,史鉴文同志参加了重复工区试验,张志民和谢欣同志分别编制了网格文件转换和最小二乘拟合程序,杨星虹同志拍摄了屏幕图片,水恩海同志搜集了试验工区校准资料,在此一并致谢。

A STUDY ON IMAGE RESTORATION TECHNIQUES FOR AERORADIOMETRIC DATA

Zhang Yu jun

(Research Institute, Center of Aero-Gcophysics and Remote Sensing,Ministry of Geology and Mineral Resources, Beijing)

Abstract

This paper represents a specific methodfor restoration of images of airborne radiometric main technical keys involved in this study are;the advancementof the principles and theory;the establishment of the flow-diagram for processing;the formulation of the means for reestablishment of the gridded data file;the evaluation of the restoration results and the errors, involved by the restoration processing.

Key words Aeroradiometric data, Atmospheric background, Image processing, Image restoration techniques.

原载《地球物理学报》,1990,。

1、图像获取是数字图像处理的第一步处理。图像获取与给出一幅数字形式的图像一样简单。通常,图像获取阶段包括图像预处理,譬如图像缩放。2、图像增强是对一幅图像进行操作,使其结果在特定应用中比原始图像更适合进行处理。“特定”一词很重要,因为增强技术建立在面向问题的基础上,例如,对增强X射线图像十分有用的方法,对增强电磁波谱中红外波段获取的卫星图像可能就不是好方法。不存在图像增强方法的通用理论,图像增强方法多种多样,特殊情况特殊对待。3、图像复原也是改进图像外观的处理领域。与图像增强不同,图像增强是主观的,而图像复原是客观的;复原技术倾向于以图像退化的数学或概率模型为基础。而增强以什么是好的增强效果这种主观偏爱为基础。4、彩色图像处理,第6章涵盖许多彩色模型和数字域彩色处理的基本概念。彩色也是图像中提取感兴趣区域的基础。5、小波是以不同分辨率来描述图像的基础。本书中为图像数据压缩和金字塔表示使用了小波,此时图像被成功地细分为较小的区域。6、压缩指的是减少图像存储量或降低图像带宽的处理。互联网是以大量的图片内容为特征的,例如,jpg文件扩展名用于jpeg的图像压缩标准。jpeg格式的图像可以用最少的磁盘空间得到较好的图像质量。7、形态学处理涉及提取图像成分的工具,这些成分在表示和描述形状方面很有用。这一章的内容将从输出图像处理到输出图像属性处理的转换开始。8、分割过程将一幅图像划分为其组成部分或目标。通常,自动分割是数字图像处理中最困难的任务之一。成功地把目标逐一分割出来是一个艰难的分割过程。通常,分割越准确,识别越成功。9、表示与描述,选择一种表示仅是把原始数据转换为适合计算机进行后续处理的形式的一部分。为描述数据以使感兴趣的特征更加明显,必须确定一种方法。描述又称为特征选择,它涉及提取特征,可得到某些感兴趣的定量信息,或是区分一组目标与其他目标的基础。10、目标识别,是基于目标的描述给该目标赋予标志(如“车辆”)的过程。关于数字图像处理的基本步骤,青藤小编就和您分享到这里了。如果您对页面排版、网站设计、图形处理等有浓厚的兴趣,希望这篇文章可以对您有所帮助。如果您还想了解更多关于平面设计的素材及技巧等内容,可以点击本站的其他文章进行学习。

图像处理分为好多块,你这么笼统的说那太难为人了,我建议你随便找本图像处理的书,看看目录,就大概知道有哪些了

  • 索引序列
  • 数字图像处理边缘检测论文摘要
  • 图像边缘检测论文知网
  • 数字图像处理论文2000字
  • 数字图像处理论文1500字
  • 数字图像处理毕业论文图像复原
  • 返回顶部