• 回答数

    5

  • 浏览数

    346

多儿的妈咪
首页 > 学术论文 > 数字图像处理毕业论文图像复原

5个回答 默认排序
  • 默认排序
  • 按时间排序

寄居小妖妖

已采纳

图像复原技术及其MATLAB实现摘 要图像复原的目的是从观测到的退化图像重建原始图像,它是图像处理、模式识别、机器视觉等的基础,在天文学、遥感成像、医疗图像等领域获得了重要应用。运动模糊图像的复原是图像复原的重要组成部分。由运动模糊图像复原出原图像关键问题是获取点扩展函数,模糊方向和长度的鉴别至关重要。本文通过对运动模糊图像的频域幅度图的黑带条纹(即图像零点个数)分析,计算出运动模糊PSF的参数。获得PSF的参数后,本文主要采用了逆滤波法、维纳滤波法、最小线性二乘法、Richardson-Lucy算法对模糊图像进行复原,并对各种复原方法的结果进行了分析与对比。关键词:图像复原;运动模糊;模糊方向;模糊长度引 言图像复原是图像处理领域一个具有现实意义的课题。运动模糊图像的研究越来越受到关注,这种模糊是成像过程中普遍存在的问题,其复原在许多领域都有广泛的应用。实际上,图像复原设计三个方面的内容:退化图像的成像模型,图像复原算法和复原图像的评价标准。不同的成像模型、问题空间、优化规则和方法都会导致不同的图像复原算法,适用于不同的应用领域。现有的复原方法概括为以下几个类型:去卷积复原算法、线性代数复原、图像盲反卷积算法等,其他复原方法多是这三类的衍生和改进。其中,去卷积方法包括维纳去卷积、功率谱平衡与几何平均值滤波等,这些方法都是非常经典的图像复原方法。但是需要有关于原始图像、降质算子较多的先验信息和噪声平衡性的假设只适合于不变系统及噪声于信号不相关的情形,特别是降质算子病态的情况下,图像复原结果还不太理想。由于图像复原技术在图像处理中占有重要的地位,已经形成了一些经典的常用图像复原算法,如无约束最小二乘法、有约束最小二乘方法、逆滤波、维纳、最大熵复原等,至今还被广泛使用。但这些复原算法都是假设系统的点扩散函数PSF(即系统对图像中点的脉冲响应,是导致图像退化的原因)为已知,实际情况是系统的点扩散函数由于大气扰动、光学系统的相差、相机和对象之间的相对运动等多种因素的影响,往往是未知的。这就需要人们用某种先验知识在系统的点扩散函数未知时进行估计,然而这种先验知识并不容易取得也不够精确,这就需要我们在对己模糊图像分析和处理的基础之上估计最逼近的PSF。在运动模糊方向的鉴别方面,由于匀速直线运动的点扩散函数是矩形函数,其模糊图像对应的频域上有周期性的零值条纹,运动方向与零值条纹方向相垂直,本文就是借用此法获取模糊图像的PSF参数。本文主要针对运动模糊图像的复原进行研究,讨论分析了匀速直线运动模糊的退化模型,研究了运动方向和模糊尺度的估计,介绍了常用的几种图像复原方法。对模糊图像用几种复原算法分别进行了复原,根据复原结果,讨论分析了各算法的优缺点及适用的恢复环境。第1章 绪论 研究背景图像复原是数字图像处理中的一个重要课题。它的主要目的是改善给定的图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,受多种因素的影响,图像的质量都会有不同程度的下降,典型的表现有图像模糊、失真、有噪声等,这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复被退化图像的本来面目。在成像系统中,引起图像退化的原因很多。例如,成像系统的散焦,成像设备与物体的相对运动,成像器材的固有缺陷以及外部干扰等。成像目标物体的运动,在摄像后所形成的运动模糊。当人们拍摄照片时,由于手持照相机的抖动,结果像片上的景物是一个模糊的图像。由于成像系统的光散射而导致图像的模糊。又如传感器特性的非线性,光学系统的像差,以致在成像后与原来景物发生了不一致的现象,称为畸变。再加上多种环境因素,在成像后造成噪声干扰。人类的视觉系统对于噪声的敏感程度要高于听觉系统,在声音传播中的噪声虽然降低了质量,但时常是感觉不到的。但景物图像的噪声即使很小都很容易被敏锐的视觉系统所感知。图像复原的过程就是为了还原图像的本来面目,即由退化了的图像恢复到能够真实反映景物的图像。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 相关领域的研究现状及存在的问题图像恢复是数字图像处理中的一个重要分支,它研究的是如何从所得的退化图像中以最大的保真度复原出真实图像。成像系统的缺陷,传播媒介中的杂质,以及图像记录装置与目标之间的相对运动等因素,都不可避免地造成了图像的某些失真和不同程度的降质。然而在众多的应用领域中,又需要清晰的、高质量的图像,因此,图像恢复问题具有重要的意义。与图像增强相似,图像复原的目的也是改善图像的质量。图像复原可以看作图像退化的逆过程,是将图像退化的过程加以估计,建立退化的数学模型后,补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或图像的最优估计值,从而改善图像质量。图像复原是建立在退化的数学模型基础上的,且图像复原是寻求在一定优化准则下的原始图像的最优估计,因此,不同的优化准则会获得不同的图像复原,图像复原结果的好坏通常是按照一个规定的客观准则来评价的。运动模糊图像的恢复是图像恢复中的重要课题之一,随着科学技术的不断发展,它在各个领域中的应用越来越多,要求也越来越高,可广泛应用于天文、军事、道路交通、医学图像、工业控制及侦破领域,具有重要的现实意义。图像复原作为图像处理的一个重要领域,对于该问题国内外展开了诸多关键技术的研究。实际上,图像复原涉及三个方面的内容:退化图像的成像模型,图像复原算法和复原图像的评价标准。不同的成像模型、问题空间、优化规则和方法都会导致不同的图像复原算法。适用于不同的应用领域。现有的复原方法概括为以下几个类型:去卷积复原算法、线性代数复原、图像盲反卷积算法等,其他复原方法多是这三类的衍生和改进。其中,去卷积方法包括维纳去卷积、功率谱平衡与几何平均值滤波等,这些方法都是非常经典的图像复原方法。但是需要有关于原始图像、降质算子较多的先验信息和噪声平衡性的假设只适合于不变系统及噪声于信号不相关的情形,特别是降质算子病态的情况下,图像复原结果还不太理想。线性代数复原技术是基于已知降质算子和噪声的统计特征,从而利用线性代数原理的复原技术,它为复原滤波器的数值提供了一个统一的设计思路和较透彻的解释。但是当降质函数有接近零的特征值时,复原的结果对噪声特别敏感,且该方法是把整幅图像一并处理,计算量大,同时也没有考虑纹理、边界等高频信号与噪声的区别,这将使纹理、边界等重要特征在图像复原过程中被破坏。针对这些问题,国外主要在改进算法的效率上做了许多工作,如全局最小二乘法、约束总体最小二乘法和正则化约束总体最小二乘法。图像盲反卷积是图像复原的另一个重要的手段,它针对没有或少有关于降质函数和真实信号灯先验知识的复原问题,直接根据退化图像来估计降质函数和真实信号。目前有以下几种算法:零叶面分离法、预先确定降质函数法、三次相关法、迭代盲反卷积法等。这些算法在先验信息不足的情况下对降质图像进行复原,由于原始图像以及点扩展函的先验知识只是部分已知的,造成图像复原的解往往不唯一,而且解的好坏与初始条件的选择以及附加的图像假设等直接有关。同时,由于加性噪声的影响使得图像的盲目复原成病态。即若对点扩展函数直接求逆进行复原,通常会带来高频噪声放大的问题导致算法性能的恶化,所以当图像的信噪比水平较低时获得的结果往往不太理想。正则化方法作为一种解决病态反问题的常用方法,通常用图像的平滑性作为约束条件,但是这种正则化策略通常导致复原图像的边缘模糊。为了克服边缘退化问题,最近几年,不少学者对各种“边缘保持”的正则化方法进行了比较深入的研究,提出了一些减少边缘退化的正则化策略,这些策略通常需要引入非二次正则化泛函,从而使问题的求解成为一个非线性问题。沿着这一思路,Geman和Yang提出了“半二次正则化”的概念来解决这种策略中出现的非线性优化问题。其后,Charbonni等人在此基础上研究了一种新的半二次正则化方法。从而可以利用确定性算法来得到问题的最优解。另一个较新的发展使Vogel等人提出的基于全变差模型的图像复原算法。尽管这些算法都在一定意义上提高了复原图像的质量,但边缘模糊的问题并未得到理想的解决。另外,近年来小波的理论得到迅速发展,并光法应用于图像复原中。基于小波变换的迭代正则化图像复原算法,兼顾抑制噪声的增长和保留图像的重要边界。具有噪声估计能力的图像恢复正则化方法。Belge等人以广义高斯模型作为小波系数的先验分布,提出了一种小波域边缘保持正则化的方法。同时给出了小波域图像复原的一般框架,但其复原方法相对于传统复原方法提高的并不显著,赵书斌等人以混合高斯模型逼近小波系数的分布,并引入小波域隐马尔可夫模型作为自然图像的先验概率模型对图像超分辨率复原问题进行正则化,复原效果不错,但该方法还是不能避免计算量过大的缺点。从图像复原的Bayesian框架出发,小波域局部高斯模型的线性图像复原方法,该方法较好的再现了图像的各种边缘信息,取得不错的复原效果。2 逆滤波复原图5-1逆滤波复原过程图,图(a)是选取的原始图像,图(b)是利用MATLAB对原始图像进行运动模糊和加噪声仿真而生成的仿真图像,模糊长度为10个像素。经过逆滤波复原图像为图(c)。(a)原图像 (b)模糊加噪图像(c)复原图像图5-1 逆滤波复原过程从恢复出来的图5-1(c)可以看出复原效果不理想,出现较大的振铃现象。从理论分析上看是由于一般情况下,逆滤波复原不能正确估计退化函数的零点,因此必须采用一个折中的方法进行解决。实际上,逆滤波不用,而是采用另外一个关于的函数。函数称为转移函数。改进方法为(5-1)式中K和d均为小于1的常数。采用逆滤波对运动模糊加噪图像进行复原。在噪声相同情况下,参数K分别选取、、、、和。图中(a)-(f)为对应参数下的复原图像。通过转移函数替代原退化模型得到图5-2逆滤波减小振铃现象复原图像。(a)k= (b) k=(c)k= (d) k=(e) k= (f) k=图5-2 逆滤波减小振铃现象复原图像图从复原结果图5-2可以看出随着K值的增大复原效果逐渐变差,K=到之间复原效果较好。从理论上分析,逆滤波方法不能正确估计退化函数的零点。采用一个折衷的方法加以解决。一般情况,可以将图像的退化过程视为一个具有一定带宽的带通滤波器,随着频率的升高,该滤波器的带通特性很快下降,即的幅度随着平面原点的距离的增加而迅速下降,而噪声项的幅度变化是比较平缓的。在远离平面的的值就会变得很大,而对于大多数图像来说,却变小,在这种情况下,噪声反而占优势,自然无法满意的恢复出原图像。这一规律说明,应用逆滤波时仅在原点领域采用方能有效。 有约束最小二乘方复原的实现通过MATLAB仿真来实现有约束的最小二乘方复原,图5-3是有约束的最小二乘方复原图。分别取参数为0、1、、、、对应图5-3里面的(a)-(f)。图5-3 有约束最小二乘方在不同参数下的恢复情况图 维纳滤波复原的实现图(a)是选取的原始图像,图(b)是利用MATLAB对原始图像进行运动模糊和加噪声仿真而生成的仿真图像,模糊长度为5个像素。采用维纳滤波恢复算法对模糊图像进行恢复,在加噪声的情况下,参数k分别选取0.0001、0.001、0.005、0.01、和1。各种图中(c)-(h)为对应参数下的恢复图像。图5-4有噪声下维纳滤波在不同参数下的恢复情况。(a)原始图像 (b)含噪声运动模糊图像d=5,v=(c) K= (d) K=(e) K= (f) K=(g) K= (h) K=1图5-4 有噪声下维纳滤波在不同参数下的恢复情况可以看出,恢复图像还是都有一定的振铃现象。K=时,图像振铃效应比较小,但其噪声很大。k=相对前一幅恢复图像振铃效应明显一点,但噪声有所减少。k=和k=的恢复效果也是看起来区别不明显,虽然它们的噪声都减少了,但图像整体都相对前面有明显的模糊,且振铃效应明显。K=的模糊程度比较大,而k=1时,图像最模糊,且亮度很暗。总的看来,主观评价认为k=时的恢复效果最清楚,恢复质量最好。K=时次之,k=1时的效果最差。利用公式(5-1)与(5-2)计算出平均平方误差,如表5-1所示:表5- 1平均平方误差客观评价方法得分参数k 1平均平方误差(M) 2861 6463 6937 6576 2861 2513从表5-1可以看出,采用平均平方误差准则时K=的平均平方误差和K=一样,但是其对应的图像很模糊。对于非迭代方法的维纳滤波恢复法,k值的选取对图像恢复质量有很重要的影响。从上面实验结果可以看出,虽然对于每幅特定图像的评价得分不尽相同,但基本上当k值在[,]的范围取值时,恢复图像质量最好。从理论上分析,维纳滤波复原的图像,在图像的频率特征和附加噪声已知的情况下,采用维纳滤波去卷积比较有效。维纳滤波复原法不存在极点,即当很小或变为零时,分母至少为K,而且的零点也转换成了维纳滤波器的零点,抑制了噪声,所以它在一定程度上克服了逆滤波复原方法的缺点。 Richardson-Lucy复原的实现图(a)是原始图像,图(b)是对原图进行运动模糊仿真而生成的仿真图像,模糊长度为10个像素,模糊方向为水平方向。采用Richardson-Lucy恢复算法对模糊图像进行恢复,迭代次数参数分别选取20次、50次、100次、150次、200次和300次。所有图的(c-h)为对应迭代次数下的复原图像。(a) 原图像 (b) 水平运动10像素加噪声图像(c) 迭代20次 (d) 迭代50次(e) 迭代100次 (f) 迭代150次(g) 迭代200次 (h) 迭代300次图5-5 R-L算法在不同参数下的复原图像从图5-5可以看出,恢复的图像整体差别不大。从图像人物、背景等分辨,质量随着迭代次数增大而提高。迭代100次以后恢复效果区别不大,仔细辨认,迭代200次和300次更好一些.所以主观评价认为200次或300次时复原质量最好。本文通过MATLAB编程,利用公式(5-1)、(5-2)计算出图5-5:(c)-(h)各恢复图像的平均平方误差。通过计算平均平方误差的倒数(M)来做客观分析。客观分析如表5-2:表5- 2复原图像与原图像的平均平方误差迭代次数 20 50 100 150 200 300平均平方误差(M) 4348 4762 5000 5263 5263 5263从表5-2可以看出,采用均方误差准则评价时,平均平方误差差别不大。总体上随着迭代次数增加分数增大,迭代次数为150次后平均平方误差一样。上述分析表明,在R-L恢复算法下,对于这幅图像,传播波方程客观评价准则和平均平方误差准则的评价结果基本一致,并和主观评价结果吻合。从理论上分析,Richardson-Lucy算法能够按照泊松噪声统计标准求出与给定PSF卷积后,最有可能成为输入模糊图像的图像。PSF已知但是图像噪声信息未知时,也可以使用这个函数进行有效的工作。随着复原迭代的次数增加,可以提高复原图像的似然性,最终将会收敛在具有最大似然性处。结论与展望图像复原是图像处理领域一个具有现实意义的课题。运动模糊图像的研究越来越受到关注,这种模糊是成像过程中普遍存在的问题,其复原在许多领域都有广泛的应用。图像复原需要根据相应的退化模型知识重建或恢复原始的图像。也就是说,图像复原技术就是要将图像退化的过程模型化,并由此采取相反的过程以得到原始图像。运动模糊是由于在拍摄过程中相机与景物之间相对运动而产生,因此对于匀速直线运动造成的运动模糊图像来说,图像退化模型的两个重要参数相对运动的方向和运动模糊尺度的估计就成了图像复原的关键问题。本文以匀速直线运动造成的模糊图像为基础,研究退化函数的参数估计方法,所做的工作及创新之处总结如下:论文的工作总结(1)论文研究了模糊图像尤其是水平方向运动模糊图像的退化模型,任意方向的匀速直线运动模糊图像只需要通过坐标旋转至水平方向,其图像特征的描述可由水平匀速直线运动模糊图像类推得出。(2)论文研究了运动方向和模糊尺度的估计,通过对运动模糊图像的频域幅度图的黑带条纹(即图像零点个数)分析来估算出运动模糊PSF的参数运动模糊方向和运动模糊长度)的,同时通过查阅文献获得另一种对模糊尺度的估算即对模糊图像进行一阶微分,然后进行自相关运算,可得到一条鉴别曲线,曲线上会出现对称的相关峰,峰值为负,两相关峰之间的距离等于运动模糊长度。(3)对于运动模糊图像的恢复,介绍分析了逆滤波、有约束的最小二乘方、维纳滤波和Richardson-Lucy四种常用的恢复方法。并且采用Richardson-Lucy迭代算法和维纳滤波方法在选取不同参数的情况下对运动模糊图像进行了恢复。利用逆滤波方法进行恢复时,复原图像的效果整体不是很好,存在着较明显的振铃效应,加噪情况下复原图像的噪声也比较严重。本文通过理论分析及仿真,探索出减小振铃现象的一些方法,但还不够完善,今后还需要继续深入研究如何改进算法、减少振铃效应和噪声,以提高复原图像的质量。针对有约束的最小二乘方、维纳滤波复原方法,本文主要通过参数变化来控制复原效果,最终选出最优准则。Richardson-Lucy迭代算法从理论上看是迭代次数越大,复原效果越好。考虑到程序的有效性,本文采用了最大为迭代300次。从主客观评价对复原图像的评价来看迭代次数超过150次以后效果就基本一样。展望由于本人的能力有限,对图像复原技术的研究还不够系统、不够深入,无论在理论上,还是在工程应用中,还需要做大量深入、细致的研究工作。因此在这方面的研究还只是个开始,很多地方都需要改进与提高,例如:(1)运动模糊图像的复原大多是对整幅图像进行全局的复原,然而在实际应用中并非完全如此。例如,由于物体运动而产生的相对运动,其运动模糊只出现在物体运动的轨迹上,而背景是清晰的。在这种情况下就不能对全局进行处理,应首先分割出运动模糊区域,然后再进行参数估计,图像复原。如何分割运动模糊区域,分割的依据如何等将成为以后研究工作的一部分。(2)本文研究的运动模糊图像参数估计算法仅限于匀速直线运动造成的模糊,而缺乏对非匀速的、轨迹为曲线的运动模糊研究,且得到的参数还具有一定的误差。参考文献[1] 杨帆,等.数字图像处理与分析(第二版)[M].北京:航空航天大学出版社,2007.[2] 黄爱民,等.数字图像处理分析基础[M].北京:中国水利水电出版社,2005.[3] 孙兆林.MATLAB 图像处理[M].北京:科学出版社,2003.[4] 贾永红.计算机图像处理与分析[M].武汉:武汉大学出版社,2001.[5] 姚敏.数字图像处理[M].北京:机械工业出版社,2006.[6] 孟永定,马佳.基于MATLAB实现数字图像恢复[J].电脑学习,2007,1(1),30-32.[7] 刘红岩,徐志鹏.基于MATLAB的数字图像恢复[J].科技信息(学术研究).2008,3(12),23-26.[8] 孟昕,张燕平.运动模糊图像恢复的算法研究与分析[J].计算机技术与发展,2007,17(8):74-76.[9] 孟昕,周琛琛,郝志廷.运动模糊图像恢复算法相关研究发展概述[J].安徽电子信息职业技术学院学报,2008,7(6),38-41.[10] 曾志高,谭骏珊.匀速直线运动模糊图像的恢复技术研究[J].陕西理工学院学报(自然科学版),2006,22(2),36-38.[11] 李云浩,王建设.匀速直线运动模糊图像的退化数学模型试验研究[J].江西理工大学学报,2006,27(4),28-30.[12] 谢伟,秦前清.基于倒频谱的运动模糊图像PSF参数估计[J].武汉大学学报(信息科学版).2008,5(02),30-32.[13] Banham Mark M,Katsaggelos A image restoration. IEEE Signal Processing Magazine . 1997.[14] Mccallum B deconvolution by simulated annealing. Optics Communitions . 1990.[15] Hardie C and Boncelet C filters: A class rank order based filters for smoothing and sharpening. IEEE Transactions on Signal Processing . 1993.附录C 主要源程序(1)模糊图像的傅里叶频谱获取j=imread('车牌.jpg');figure(1);imshow(j);title('原图像');len=20;theta=30;psf=fspecial('motion',len,theta);j1=imfilter(j,psf,'circular','conv');figure,imshow(j1);title('PSF模糊图像');J=rgb2gray(j);K=fft2(J); %傅里叶变换M=fftshift(K); %直流分量移到频谱中心N=abs(M); %计算频谱幅值P=(N-min(min(N)))/(max(max(N))-min(min(N)))*225;%归一化Figure;imshow(P);title('原图像的傅里叶变换频谱');J1=rgb2gray(j1);K1=fft2(J1); %傅里叶变换M1=fftshift(K1); %直流分量移到频谱中心N1=abs(M1);%计算频谱幅值P1=(N1-min(min(N1)))/(max(max(N1))-min(min(N1)))*225;%归一化Figure;imshow(P1);title('模糊图像的傅里叶变换频谱');(2)模糊长度获取程序f1=rgb2gray(j1);f1=im2double(f1);h = fspecial('Sobel'); %Sobel算子J = conv2(f1,h,'same'); %Sobel算子微分IP=abs(fft2(J)); %图像能量谱密度S=fftshift(real(ifft2(IP)));figure,plot(S);title

282 评论

M15981511985

张玉君

(地质矿产部航空物探遥感中心研究所北京)

摘要:本文介绍一种独特的航放数据图像复原方法。该方法的主要技术关键是:提出航放数据图像复原原理和理论基础;建立航放数据图像复原处理流程;制定重建数据网格文件的途径;进行航放数据图像复原效果及误差评价。

关键词:航放数据,大气本底,图像处理,图像复原技术。

一、引言

自20世纪70年代初期方柱形NaI晶体进入机载综合航空站以来,航放测量的灵敏度和有效性显著提高,地质及地球物理勘探界对于航空放射性测量的需求产生了根本变化。

在近20年的应用实际中,大气氡本底(简称大气本底)的改正很难准确,它始终是困扰该方法应用效果的主要难点;其后果是在图面上造成条带现象,从而严重地影响着图件的可用性及方法的效果。其原因[1]可概括为:空中所测放射性不仅仅来源于地下,而且受飞机硬件环境、宇宙射线、大气中氡及其子体的影响。后者称之为大气本底干扰,它又受气候、风力、风向、温度、季节及一天中何时测量等因素的影响。大气本底干扰的主要表现形式是架次与架次间本底水平不同。受干扰最大的是铀道,钾道次之,钍道和总道虽较小,但也不可忽视,(见彩版附图7中的图3、图4)。由于这种噪声的存在,来源于地质体的信息常常淹没于噪声之中。图3a(彩版附图7)为哈密土墩测区K(红)、Th(绿)、U(蓝)三元素复原图像,图3b为该测区航放原始数据合成图像,图4a(彩版附图7)表示各架次早、晚校准读数,图4b为总道原始数据图像。条带噪声的存在,可以形象地比喻为挂在有用信息图像前面的彩条窗帘,条带的严重性使得该工区原始航放数据无法绘制等值线图。

航放图面条带问题是一个“世界性”的问题[2]。解决得较好的是加拿大,靠星罗棋布的湖泊河流等水域上空测量结果改正本底,取得较好的效果,而且不使用向上探头[1]。美国Geometrics公司及其他航空物探公司则是靠向上探头测量,作为本底改正的依据[3]。1986年Grasty[4]提出当测区内没有湖泊时,可用测线上无异常区的平均值代替本底。

本文介绍的方法与国际上已采用的各种方法全然不同,该方法在数字图像处理学中可称之为航放图像复原技术。图像复原技术的主要目的,是要改善给定的图像。复原是一个过程,它试图利用蜕化现象的某种先验知识,把已经蜕化了的图像加以重建或恢复。因此,复原技术是把蜕化模型化,并运用相反的过程在某种程度上恢复原来的图像。

Cannon博士[5]研究了一种图像复原技术或称图案去除技术,它适用于:从规则图案(如纺织品)上提取指纹图形,改善散焦图像,消除卫片图像探测器与探测器间的噪声,使在曝光过程中相机或物体平移造成模糊的图像清晰化等。Srinivasan也报道了这类研究[6]。张玉君等研究了深海锰结核照片光照不均匀等蜕化现象的图像复原问题[7]。航放数据图像复原处理是数字图像复原技术在地学界成功应用的又一实例,但航放数据图像所存在的蜕化问题与上述各例均不相同。该方法研究成功后,曾在6个测区得到验证。

二、航放数据图像复原技术原理和理论基础

航放所测到的是一幅蜕化了的图像G(x,y)它可视为由真实图像F(x,y)与干扰图像η(x,y)叠加而成,简化了的蜕化过程,见图1。航放图像蜕化现象的先验知识来自对航放测量过程及原始图像的分析。在测量过程中,来自地质体的有用信息是不随时间为转移的。而干扰在本质上是随时间变化的,但在图像上干扰已变为(x,y)的函数,因为:

张玉君地质勘查新方法研究论文集

图1航放数据图像蜕化示意图

η的变化可分为架次之间的跳变及架次之内的渐变,见图4(彩版附图7),在每一测线上此干扰大致为一个常数,如果将x(即图像上的列)表示垂直测线的方向,则η(x,y)简化为η(x),则有

张玉君地质勘查新方法研究论文集

航放图像复原的目的,就在于设法近似地求出η(x),从而近似地得到F(x,y)。为此,沿测线方向对原始图像进行多次单列

多行窄长窗口褶积:

张玉君地质勘查新方法研究论文集

式中W为褶积模板,是由加权因子组成的矩阵。褶积过程是一种线性运算,其算子H不随空间变化。因为算子为线性的,则两个输入之和的响应等于两个响应之和。

张玉君地质勘查新方法研究论文集

由于假定了η仅与x有关,又由于褶积窗口为单列,则有:

张玉君地质勘查新方法研究论文集

现在分析HF(x,y)的性质,由于沿y方向的多次滑动平均,局部异常“淹没”于近区域特征之中,这种近区域特征表现为沿测线方向的低缓变化;如果用f(x,y)表示局部异常,用L(x,y)表示近区域场,于是:

张玉君地质勘查新方法研究论文集

再经如下处理

张玉君地质勘查新方法研究论文集

由(9)式可见,从原始图像中减去噪声图像后,所得复原图像f(x,y),它从局部异常角度是接近真实图像的,误差取决于所减去的“近区域背景值”在测线方向起伏变化的幅度。

三、航放数据图像复原处理过程

航放数据图像复原技术的研究是以多元统计为理论基础,以图像处理为工具来完成的,并体现了图像处理快速直观的特点,其流程如图2所示。

图2航放数据图像复原处理流程

此方法假定航放噪声本底沿测线方向不变或呈线性变化。通过沿测线方向的多次滑动平均,使局部异常逐渐淹没在噪声本底之中,得出一幅与噪声本底线性相关的噪声图像。噪声图像尚需进行边缘影响补偿;对去除噪声后的图像,经中值滤波和空间变量反差增强,达到最终复原的效果。这一复原过程集中表示于图2的左半部。

图2的右半部为数据网格文件的重建过程,它是实际应用所必不可少的。经过分类分区,求得各类别在复原前后的均值向量,经最小二乘拟合求出复原图像的元素含量或计数率值,重新建立为在主计算机上绘制等值线图用的网格文件。

本研究曾试验通过沿测线方向取平均值做为噪声水平,结果不及上述方法理想。

四、效果及误差评价

1.航放数据图像复原的效果

(1)图面直观效果的改善。

可以形象地说,航放图像复原好比揭去一层条带窗帘,使原来透过此窗帘隐约可见的图像显示出了真面目,见图3a(彩版附图7)。图面直观效果的改善还表现在由于定位问题所引起的岩体边界上的锯齿状噪声得以消除,见图5(彩版附图7)。图5为总道对比图像,5a为原始数据,5b表示噪声图像,5c为去噪声后的图像,5d为复原图像。

(2)用复原数据所做等值线图真实可信。

以哈密土墩测区为例,原始资料由于条带干扰,在主计算机上,钾、钍、铀道都无法绘等值线图,仅提供了平剖图;只有总道提供了等值线图,但仍可看到条带的影响。

经图像复原、重建网格文件,反馈回主计算机后绘制了TC、K、Th和U等值线图,现以K道经复原后数据等值线图为例示于图6(彩版附图7),与地质图对比,表明异常和地质体对应良好,各类岩性的放射性趋势也都吻合,证实这些等值线图的可靠性。利用复原图像所做分类图也证实了这一点,见图7(彩版附图7),图7中数字分别为:①超基性岩;②基性岩;③花岗岩;④闪长岩;⑤变质岩;⑥混合岩;⑦第四纪沉积;⑧第三、四纪沉积;⑨第三纪沉积。

(3)有用信息增加。

本研究利用多元统计的方法,对航放图像复原的效果给出定量评价。可用一幅图像有用信息构成的变异值的大小来对它做定量评价。为此应计算全图面总变异对于一个象素的平均值,即平均变异值。用C、C´和C"分别表示原始图像中有用信息平均变异值、原始图像中干扰信息平均变异值和最终复原图像有用信息平均变异值。统计时以G´(x,y)近似代表η(x);以[G(x,y)-G´(x,y)]近似代表F(x,y);以P(x,y)表示最终复原图像,并假定它已无干扰存在。

张玉君地质勘查新方法研究论文集

式中,字母上加“—”表示平均值;M、N为图像的行、列数。

表1为哈密土墩测区航放数据图像按上述各式所做定量评价的统计结果。

表1

从表1可见,K、Th、U、TC经图像复原后,有用信息都有十分显著的增长;就此工区而论,TC和K原始图像相对质量较好,Th和U较差。

2.复原图像的准确度及误差评价

复原图像的主要误差来源是“近区域背景值”L(x,y),它是在多次滑动平均时形成的。通过对干扰图像剖面数据的统计,得到以下准确度评价:

K±(绝对含量);Th+ pp m;

U± ppm;TC±计数。

五、结论

(1)本文介绍的方法是在国内外首次提出的方法独特的航放数据图像的复原技术,并在多个工区验证了其可靠性和实用性。

(2)本技术可以基本上消除由于大气本底及阈值变动所造成的图面条带现象,基本复原航放图像的真面目,为进一步图像处理(诸如:求导、增强、分类、逻辑运算等)做了准备,因此本技术也是一种快速预处理方法。

(3)本方法改善了由于飞行往返定位位移所引起的某些地质体边缘呈锯齿状的图像噪声问题。

(4)本研究建立了“有用信息平均变异值”做为定量评价航放数据图像复原效果的尺度。还讨论了图像复原做为一种预处理过程,对于元素含量值可能导入的绝对误差或称为方法的准确度。

参考文献

[1]Grasty, ., Gamma ray spectrometric methods in uranium exploration—Thcory and operational procedures, Geophysics and Geochemistry in the Search for Metallic Ores,GSC,Ottawa,147-162,1977.

[2]Creen, airborne gamma-radiation data using between-channel correlation information,Geophysics,52,1557-1562,1987.

[3]Foote, ., Improvement in airborne gamma-radiation data analysis by removal of environmental and pedologic radiation changes, in the Use of Nuclear Techniques in Prospecting and Developmcnt of Mineral Resources: Energy Agency Mtg.,Buenos Aires,187-196,1968.

[4]Grasty, system for computing on-line atmospheric backgrounds,GSC paper,1-52,1987.

[5]Cannon,M.,Lehar, Preston,F.,Background pattern removal by power spectral filtering,Applied Optics,22,777-779,1983.

[6]Srinivasan,R.,Software image restoration techniques,Digital Design, 16,4,27-34, 1986.

[7]张玉君,史鉴文.深海多金属结核照片的图像复原和图像处理技术研究.物探与化探,1989,(13):435~441.

致谢林振民同志对本文提出了宝贵的意见,史鉴文同志参加了重复工区试验,张志民和谢欣同志分别编制了网格文件转换和最小二乘拟合程序,杨星虹同志拍摄了屏幕图片,水恩海同志搜集了试验工区校准资料,在此一并致谢。

A STUDY ON IMAGE RESTORATION TECHNIQUES FOR AERORADIOMETRIC DATA

Zhang Yu jun

(Research Institute, Center of Aero-Gcophysics and Remote Sensing,Ministry of Geology and Mineral Resources, Beijing)

Abstract

This paper represents a specific methodfor restoration of images of airborne radiometric main technical keys involved in this study are;the advancementof the principles and theory;the establishment of the flow-diagram for processing;the formulation of the means for reestablishment of the gridded data file;the evaluation of the restoration results and the errors, involved by the restoration processing.

Key words Aeroradiometric data, Atmospheric background, Image processing, Image restoration techniques.

原载《地球物理学报》,1990,。

221 评论

fantienan002

1、图像获取是数字图像处理的第一步处理。图像获取与给出一幅数字形式的图像一样简单。通常,图像获取阶段包括图像预处理,譬如图像缩放。2、图像增强是对一幅图像进行操作,使其结果在特定应用中比原始图像更适合进行处理。“特定”一词很重要,因为增强技术建立在面向问题的基础上,例如,对增强X射线图像十分有用的方法,对增强电磁波谱中红外波段获取的卫星图像可能就不是好方法。不存在图像增强方法的通用理论,图像增强方法多种多样,特殊情况特殊对待。3、图像复原也是改进图像外观的处理领域。与图像增强不同,图像增强是主观的,而图像复原是客观的;复原技术倾向于以图像退化的数学或概率模型为基础。而增强以什么是好的增强效果这种主观偏爱为基础。4、彩色图像处理,第6章涵盖许多彩色模型和数字域彩色处理的基本概念。彩色也是图像中提取感兴趣区域的基础。5、小波是以不同分辨率来描述图像的基础。本书中为图像数据压缩和金字塔表示使用了小波,此时图像被成功地细分为较小的区域。6、压缩指的是减少图像存储量或降低图像带宽的处理。互联网是以大量的图片内容为特征的,例如,jpg文件扩展名用于jpeg的图像压缩标准。jpeg格式的图像可以用最少的磁盘空间得到较好的图像质量。7、形态学处理涉及提取图像成分的工具,这些成分在表示和描述形状方面很有用。这一章的内容将从输出图像处理到输出图像属性处理的转换开始。8、分割过程将一幅图像划分为其组成部分或目标。通常,自动分割是数字图像处理中最困难的任务之一。成功地把目标逐一分割出来是一个艰难的分割过程。通常,分割越准确,识别越成功。9、表示与描述,选择一种表示仅是把原始数据转换为适合计算机进行后续处理的形式的一部分。为描述数据以使感兴趣的特征更加明显,必须确定一种方法。描述又称为特征选择,它涉及提取特征,可得到某些感兴趣的定量信息,或是区分一组目标与其他目标的基础。10、目标识别,是基于目标的描述给该目标赋予标志(如“车辆”)的过程。关于数字图像处理的基本步骤,青藤小编就和您分享到这里了。如果您对页面排版、网站设计、图形处理等有浓厚的兴趣,希望这篇文章可以对您有所帮助。如果您还想了解更多关于平面设计的素材及技巧等内容,可以点击本站的其他文章进行学习。

262 评论

妖娆176991534

图像处理分为好多块,你这么笼统的说那太难为人了,我建议你随便找本图像处理的书,看看目录,就大概知道有哪些了

237 评论

颖儿yuki

数字图像处理的工具可分为三大类:

第一类包括各种正交变换和图像滤波等方法,其共同点是将图像变换到其它域(如频域)中进行处理(如滤波)后,再变换到原来的空间(域)中。

第二类方法是直接在空间域中处理图像,它包括各种统计方法、微分方法及其它数学方法。

第三类是数学形态学运算,它不同于常用的频域和空域的方法,是建立在积分几何和随机集合论的基础上的运算。

由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。

扩展资料

1、数字图像处理包括内容:

图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。

2、数字图像处理系统包括部分:

输入(采集);存储;输出(显示);通信;图像处理与分析。

3、应用

图像是人类获取和交换信息的主要来源,因 此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。

主要应用于航天和航空、生物医学工程、通信   工程、工业和工程、军事公安、文化艺术、机器人视觉、视频和多媒体系统、科学可视化、电子商务等方面。

参考资料来源:百度百科-数字图像处理

288 评论

相关问答

  • 有关数字图像处理的毕业论文

    数字图像处理方面了解的了。

    颜庄小店 5人参与回答 2023-12-05
  • 数字图像处理论文读后感

    你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出

    秋林花语 3人参与回答 2023-12-07
  • 数字图像处理论文1500字

    你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出

    淡蓝喵喵喵 4人参与回答 2023-12-05
  • 数字图像处理论文2000字

    关于医学影像的论文范文 医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,

    迷茫老男人 5人参与回答 2023-12-09
  • 医学影像图像处理毕业论文

    医学影像诊断学是医学影像学中的一门重要学科,而医学影像学是临床医学的一个重要分支。下面是我为大家整理的医学影像技术专业 毕业 论文,供大家参考。 《 高职影

    球球阿月 4人参与回答 2023-12-11