首页 > 学术论文知识库 > 毕业论文波形图标准

毕业论文波形图标准

发布时间:

毕业论文波形图标准

正文中所有图都应有编号和图题。

图的编号由“图和从1开始的阿拉伯数字组成,例如:“图1”图2/等。图的

编号可以一直连续到文末,图较多时,也可分章编号。

图题即图的名字,每幅图都应有图题,并置于图的编号之后,与编号之前空

一格排写。图的编号和图题置于图下方的居中位置,宇体采用5号宋体。图中若有分

图时,分图的编号用(a)、(b)等置于分图之下。正文中与相关图对应文宇处须在括弧中

注明“见图n”字样。

图与其图题不得拆开排写于两页,插图处的该页空白不够排写该图整体时,

可将其后文字部分提前排写,将图移至次页最前面。

饼状图

正文中所有表都应有编号和表题。

表的编号由“表”'和从1开始的阿拉伯数字组成,例如“表1”、“表2”等。表的编

号可一直连续到文末,表较多时,也可分章编号。

表题即表的名称。每个表都应有表题,并置于表的编号之后,与编号之前空

-格排写。表的编号和表题应置于表上方的居中位置,字体采用5号宋体。正文中与

相关表对应文字处须在括弧中注明“见表n”字样;表题中不允许使用标点符号。

表与其表题不得拆开排写于两页,表格应写在离正文首次出现处的近处,不

应过分超前或拖后。表格允许下页接写,接写时应重复表的编号,后跟表题(可省略)

和“(续),续表均应重复表头和关于单位的陈述。

走势图

毕业论文排版格式要求如下:

1、构成项目

毕业论文包括以下内容:

封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。如果需要,可以在正文前加“引言”,在参考文献后加“后记”。

论文格式排版要求

2、各项目含义

(1)封面

封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。

(2)内容提要与关键词

内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。

(3)目录

列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。

(4)正文

正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。这三部分在行文上可以不明确标示。

(5).注释

对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。

(6)附录

附属于正文,对正文起补充说明作用的信息材料,可以是文字、”表格”、图形等形式。

(7)参考文献

作者在写作过程中使用过的文章、著作名录。

3、”毕业论文格式”编排

第一、纸型、页边距及装订线

毕业论文一律用国家标准A4型纸(297mmX210mm)打印。页边距为:天头(上)30mm,地脚(下)25mm,订口(左)30mm,翻口(右)25mm。装订线在左边,距页边10mm。

第二、版式与用字

文字、图形一律从左至右横写横排,倍行距。文字一律通栏编辑,使用规范的简化汉字。忌用”繁体字”、异体字等其他不规范字。

第三、论文各部分的`编排式样及字体字号

(1)文头

封面顶部居中,小二号行楷,顶行,居中。固定内容为“成都中医药大学本科毕业论文”。

(2)论文标题

小一号黑体。文头居中,按小一号字体上空一行。(如果加论文副标题,则要求:小二号黑体,紧挨正标题下居中,文字前加破折号)

论文标题以下的行距为:固定值,40磅。

(3)作者、学院名称、专业、年级、指导教师、日期

项目名称用小三号黑体,后填写的内容处加下划线标明,8个汉字的长度,所填写的内容统一用三号楷体,各占一行,居中对齐。下空两行。

(4)内容提要及关键词

紧接封面后另起页,版式和字号按正文要求。其中,“内容提要”和 “:”

黑体,内容用宋体。上空一行,段首空两格,回行顶格:“关键词”与 “内容提要”间隔两行,段首空两格。“关键词”和 “:” 用黑体,内容用宋体。关键词通常不超过七个,词间空一格。

(5)目录

另起页,项目名称用3号黑体,居中排列,上下各空一行;内容用小4号仿宋。

(6)正文文字:另起页。

(7)论文标题:用二号黑体加粗,居中排列,上空一行;下标明年级、专业、作者,作者姓名另起一行,四号楷体,居中排列;下空两行接正文。正文文字一般用小四号宋体,每段起首空两格,回行顶格,单倍行距。

(8)正文文中标题

一级标题,标题序号为“一、”与正文字号相同,黑体,独占行,末尾不加标点;

二级标题,标题序号为“(二)”,与正文字体字号相同,独占行,末尾不加标点;

三级以下标题序号分别为“1.”和(1),与正文字体字号相同。为避免与注释相互混淆,不可用“①”。可根据标题的长短确定是否独占行,若独占行,则末尾不使用标点,否则,标题后必须加句号。每级标题的下一级标题应各自连续编号。

你直接把这张图放进去不就完结,干嘛非要重画呢

打开excel,在A1单元格输入0,在A2单元格输入0,在B1单元格输入130,在B2单元格输入280;

选取A1:B2单元格,插入散点图

设定纵坐标格式:

刻度:  最小值 -50 ,最大值 300 ,主要刻度单位 50 ,次要刻度单位 10 ,数值(X)轴交叉于 -10 ;

图案:主要刻度线选外部,次要刻度线选外部;点确定

设定横坐标格式:

刻度:  最小值 -10 ,最大值 130 ,主要刻度单位 10 ,次要刻度单位 1 ,数值(Y)轴交叉于 -3 ;

图案:主要刻度线选外部,次要刻度线选外部;点确定

选择散点图中的数据点,设置数据系列格式:

图案:线形选“无”,数据标记选“无”;点确定

点散点图中的网格线,点Delete删除;将绘图区域充填色改为白色;一个空白坐标框架就做好了。

插入一个带圆角的矩形框,挡住坐标框的多余部分

将波形图用excel自带的裁剪工具调整大小,并与坐标框对齐,插入自选图形 → 曲线,在波形图上点点,直线段可以点稀疏些,曲线段要点密些,到最后一个点时双击。

完成后调整曲线的格式(线宽、颜色)。如果曲线有些地方不符,可以右键单击曲线,选“编辑顶点”,拖动曲线上的小黑点,直至满意。删除波形图。将坐标框、带圆角的矩形、画好的曲线合并成一体。

只要心细一点,一定会做的很漂亮。

毕业论文波形图

这两个网页你都瞄过了的吧我就按那个原理比较简单的那个做的可以吗?

里的波形图,利用屏幕截图,然后粘到word中,就好了,为什么要反白呢?就原图显示就很好了,就非常清楚吗。就算是打印也完全可以的,特别是示波器右边的旋纽等反白后就什么也看不清了。

示波器背景里的栅格也不用去掉啊,有格更能显示出波形及数值特征。

这样的图不是很好吗?为什么要费那劲呢?

基于 AT89C52 的多周期同步测频技术的实现黄晓峰 上海工程技术大学高职学院,上海 200437 摘 要:论述了传统的频率测量方法的原理及误差。提出了基于 AT89C52 实现多周期同步测频的新方法。 构造了与待测信号同步的多周期闸门时间,实现了时基信号与待测信号的准同步计数,系统只用一个定时/ 计数器 T2 实现了多周期同步测频。该频率测试仪结构简单,成本较低,能够在高低频段范围内实现频率参 数的等精度测量,具有较高的测量精度和较短的系统反应时间。 关键词:频率测量;多周期同步;闸门时间;AT89C52;捕捉方式; 关键词:频率测量;多周期同步;闸门时间;AT89C52;捕捉方式;等精度测量 中图分类号: 中图分类号: 文献标识码: 文献标识码:B 文章编号: 文章编号: Realization of multi-cycle synchronization based on AT89C52 HUANG Xiao-Feng Vocational Technical College, Shanghai University of Engineering Science, Shanghai, 200437 Abstract:The traditional frequency measuring principles and the errors are introduced. The new way of : multi-cycle synchronization based on 89C52 is presented. By structuring multi-cycle gate time synchronistically with the frequency signal, the system use only T2 to acquire under synchronous time base with the frequency signal, and realize the new method of multi-cycle synchronization frequency measuring .With the characteristics of a simple structure ,low cost, high accuracy and short measuring time, this frequency meter can realize equal precision measurement from high frequency to low frequency . Keyword:frequency measurement; multi-cycle synchronization; gate time;AT89C52; capture function;equal : precision measurement 0 引言 频率作为一种最基本的物理量,是电子测量技术中最重要的被测量之一。本文详细论 述了传统频率测量方法及原理, 并对各种方法的测量误差进行了分析。 为保证频率测量精度 和兼顾测量反应时间, 采用多周期同步测频技术, 设计了以 AT89C52 单片机为核心的频率参 数测试仪, 由于充分利用 AT89C52 片内定时器/计数器 T2 所特有的捕捉功能, 使得该频率参 数测试仪的软硬件结构简单, 实现了对高低频段频率参数的等精度测量, 具有较高的测量精 度和较短的系统反应时间。 1 传统测频方法及其误差分析 频率测量的方法主要有 M 法、T 法以及 M/T 法 [1] 。M 法的基本测频原理是在选定的 闸门时间 T 内对被测脉冲信号进行计数,根据计数值 N x 和闸门时间 T 求得所测脉冲信号的 频率。在 M 法中,由于闸门时间 T 由标准频率源决定,而单片机的标准频率源是由晶振频 率分频后获得, 因而保证了闸门时间 T 的精确性。 但由于闸门的启闭与待测计数脉冲不同步, 闸 门开 通时间 通常 不是待 测信 号周期 的整数 倍, 存在 待测脉 冲信号 的计 数量 化误差 ?N x = ±1 。由 M 法的测频原理可知,待测信号频率 1 fx = Nx N ? f0 = x N0 T (1) 设待测脉冲频率的准确值为 f xd , 由于单片机测频系统中的标准频率源通常是由晶振产 生的频率信号分频后得到的, 而晶振的稳定性很高, 只要按测量精度要求选择合适的晶振后, 由标准频率源的不稳定性所造成的测频误差就可以被忽略掉 (文中的误差分析均是在忽略标 准频率源的不稳定性下做出的) 。设 δ Mx 为测量的相对误差 δM x = f xd = 得 δ Mx = f xd ? f x f xd (2) N x + ?N x T = ?N x N x + ?N x ≤ (3) f xd ? f x f xd 1 Nx (4) 由式(4)知, 当待测脉冲信号频率较高时, 在闸门时间 T 内被测信号脉冲的计数值 N x 较 大, δ Mx 很小,M 法能够达到较高的测量精度;而当待测脉冲信号频率较低时,在闸门时间 T 内 N x 较小, δ Mx 很大,测频精度降低。例如,被测信号的频率为 100HZ,则在 1S 内的相对误差 δ M x =1%。 而当待测脉冲信号的频率为 10HZ, f x 在 T =1S 内的相对误差 δ M x =10%。 则 虽然可以通过增大闸门时间 T 来提高测量精度,但闸门时间 T 过长将使系统的测量时间过 长,无法满足实时性的要求。 T 法的基本原理是在待测脉冲的一个周期内对标准频率信号进行计数,根据计数值 N 0 和标准信号的频率 f 0 求得待测脉冲信号的频率。在 T 法中,由于闸门时间 T 由待测脉冲信 号决定,不存在待测脉冲信号计数的量化误差 ?N x 。但由于闸门的启闭与标准频率源不同 步,故存在对标准频率源信号的计数量化误差 ?N 0 = ±1 。由 T 法的测频原理可知,待测信 号频率 f x = 1 N 0T0 = f 0 N 0 其中 T0 为标准频率源信号的周期。同理,可得 (5) δ Tx = f xd ? f x f0 f = ? 0 N 0 + ?N 0 N 0 f xd f0 N 0 + ?N 0 (6) 2 = ?N 0 N 0 ≤ 1 N 0 由于闸门时间 T 是待测脉冲信号周期的整数倍, 当待测脉冲频率较低时, 闸门时间 T 较 长,对标准频率源的计数值 N 0 较大,测量精度高;而当待测脉冲频率较高时,闸门时间 T 过短,甚至与标准频率源信号周期相近,故高频测量时 T 法存在严重的测量误差。 理论分析表明, 无论采取何种补偿措施, 都无法同时消除对待测脉冲和标准信号的计数 量化误差。将 M 法和 T 法结合起来就是 M/T 法,M/T 法结合了 M 法和 T 法各自的优点,在被 测信号频率较高时采用 M 法,频率较低时采用 T 法,这样在高、低频信号测量中都能获得较 高的精度。但由于在 M 法中, ?N x 随着被测信号频率的降低而增大,在 T 法中 ?N 0 随着被 测信号频率的增大而增大, 因此必存在 M 法和 T 法的分界点, 在该点高低频测量的相对误差 相等且达到最大,即 δ max = δ M x = δ T x 。我们将该点的频率称为中界频率 f C ,由式(1)知 N x = f x ? T ,由式(5)得 N 0 = f 0 f x ,则中界频率 f C = f 0 T 。虽然 M/T 法能够在两端获 得高精度,但在中界频率处的误差却总是最大的。本系统采用多周期同步测频原理,利用 AT89C52 片内定时器/计数器 T2 所特有的捕捉方式,实现对信号频率、周期、脉宽以及占空 比的测量。 2 多周期同步测频原理及其误差分析 多周期同步测频技术的基本原理是在待测脉冲的 m 个周期内同时对对待测脉冲和标准 信号计数, 根据待测脉冲的计数值 N x 和标准信号的计数值 N 0 求得被测信号的频率 [2,3] 。 由 于闸门时间 T 为待测脉冲的 m 个周期即闸门时间与待测脉冲同步,从而消除了待测脉冲的 计数量化误差 ?N x 。但由于闸门的启闭与标准信号不同步,故仍存在对标准信号的计数量 化误差 ?N 0 = ±1 。设两个计数器在闸门时间 T 内同时对待测脉冲和标准信号的计数值分别 为 N x 和 N 0 ,则待测信号频率 fx = Nx T f0 = N0 T 消去闸门时间 T ,得 f x = N x ? f 0 N 0 (7) (8) (9) 同理,相对误差 δ = f xd ? f x f xd f0 f ?N ? Nx ? 0 x N + ?N 0 N0 = 0 f0 ? Nx N 0 + ?N 0 (10) = ?N 0 N 0 ≤ 1 N 0 = 1 f 0T 3 由式(10)知, δ 只与标准频率源的频率 f 0 和闸门时间 T 有关,与待测脉冲的频率 f x 无 关,实现了整个测量频段内的等精度测量,使测量精度大大提高。对于标准信号的计数量化 误差 ?N 0 ,虽然可以通过提高标准频率源的频率 f 0 和加大闸门宽度 T 来减小,但需要考虑 标准频率源工作频率的限制,以及加大闸门宽度 T 所带来的系统测量时间的增加。 3 基于 AT89C52 的多周期同步测频技术的实现 AT89C52 片内有 1 个 16 位的定时/计数器 T2,T2 除具备和定时/计数器 T0、T1 相同的 功能外,还具有捕捉方式、16 位自动重装等功能 [4,5] 。所谓捕捉功能就是当 T2 的外部输入 端 T2EX()的输入电平发生负跳变时,就会把 TH2 和 TL2 的内容同时记录到特殊功能寄存 器 RCAP2H 和 RCAP2L 中,并将外部中断标志 EXF2 置位,向 CPU 发出中断申请信号。T2 的 捕捉功能避免了 CPU 在读计数值的高字节时, 低字节还在变化所引起的读数误差, 更重要的 是,T2EX()上输入电平连续两次负跳变的计数差值,就是外部输入脉冲的周期。 依据多周期同步测频技术的原理,将 AT89C52 的定时/计数器 T2 设置为定时器捕捉工 作方式,闸门时间 T 为 m 个待测脉冲周期,被测信号经放大、整形、分频后送入 T2 的外部 输入端 T2EX(),在待测信号产生第一次负跳变时,TH2 和 TL2 中的内容(即时基脉冲计 数值)被同时捕捉至特殊功能寄存器 RCAP2H 和 RCAP2L,并在 T2 外部中断服务程序中记录 待测信号下降沿的数目, 以此实现闸门开启及待测脉冲及和时基脉冲的同时计数, 闸门时间 到时(即 T2 的外部输入端 T2EX 检测到第 m + 1 个待测脉冲下降沿) ,一次测量过程结束。 在此过程中, 当外部待测脉冲的下降沿到来或定时器 T2 产生对时基脉冲的计数溢出时, T2 外部中断标志 EXF2 或 T2 溢出标志 TF2 置位,并向 CPU 发出中断申请信号。CPU 相应中 断后,在 T2 中断服务程序中通过软件判断是 EXF2 还是 TF2 产生的中断,并进行相应的处 理,是 EXF2 产生的中断就记录下待测脉冲下降沿的数目,若是 TF2 就记录下 T2 对时基脉 冲的溢出次数。待测频率具体的计算如下: 设闸门时间 T 内共产生了 m + 1 次 T2 外部中断( m 个待测脉冲)及 N 次 T2 溢出中断, 且设第一个待测脉冲的下降沿到来时 T2 对时基的计数值为 l1 , m + 1 个待测脉冲的下降沿 第 到来时 T2 对时基的计数值为 l2 ,则 T2 对时基的计数过程如下(包括 N 次 T2 溢出中断) 。 l1 L65535 → 0L65535 → 0L65535 → 0LLL0L65535 → 0Ll2 则闸门时间 T = ( l2 ? l1 + 65536 × N ) × T0 = mTx 其中 T0 为单片机时基信号周期, Tx 为待测脉冲信号周期,故被测信号频率为 fx = k ( l2 ? l1 + 65536 × N ) × mT0 (11) 其中 k 为可编程分频器相应的分频数 4 4 系统的软硬件设计 本系统采用多周期同 步 测 频 原 理 [3] , 以 盘 AT89C52 单片机为核心, 显 利用其片内定时器/计数 示 器 T2 所特有的捕捉功能, 器 XTAL2 利用定时器 T2 的捕捉功 复位电路 RESET VSS 能及外部中断,软硬件结 GND 合完成待测信号与闸门信 图1 系统硬件组成框图 号的同步,以及待测信号 与时基信号的同时刻计数,使用一个定时器/计数器 T2 实现多周期同步测频技术,使得频率 测试仪的软硬件结构简单易于实现。系统硬件组成框图如图 1 所示,主要由放大限幅电路、 波形转换与整形电路、可编程分频器电路、单片机最小应用系统及键盘显示器电路组成。输 入的正弦波、 三角波等各种形式的小信号电压经放大限幅后, 通过波形转换电路转换为方波 信号,再利用 7414 整形为 TTL 电平信号,利用可编程分频器来扩展频率测量范围的上限, 这样将经过了放大、整形、分频后的待测脉冲送入单片机最小应用系统的 (T2 的外部 输入端 T2EX) ,通过键盘显示器电路来实现被测频率参数(频率、周期、脉宽和占空比) 的选择与动态显示。 放 大 被测信号 与 限 幅 波 形 变 换 整 形 可 编 程 待测脉冲 分 频 器 +5V VCC XTAL1 键 软件采用自顶向下的模块化设计方法 [6] ,将 T2中断服务程序流程图 N 各个功能分成独立的模块,由系统的监控程序统 一管理执行。整个系统由初始化模块、键输入模 块(用于测量参数的选择)、信号频率测量模块、 数据处理模块、数据显示模块等组成。上电后, 首先进入系统初始化模块,在初始化子程序中完 成对定时/计数器 T2 的定时器及捕捉方式的设置, 并启动 T2。 频率测量模块由 T2 中断服务程序完成, 当外 部待测脉冲的下降沿到来或定时器 T2 产生对时基 脉冲的计数溢出时,T2 向 CPU 发出中断申请。 CPU 响应中断后, 通过软件判断是 EXF2 还使 TF2 产生的中断,并进行相应处理。T2 中断服务程序 流程图如图 2 所示。 5 结束语 本文讨论了传统频率测量方法的原理及误 差。在此基础上,对多周期同步测频技术的原理 及其误差进行了详细分析。由于多周期同步测频 技术的测量精度与被测信号的频率无关,实现了 整个测量频段内的等精度测量,消除了 M 法中对 T2外部中断? Y T2外中断次数加1 T2溢出中断 次数加1 Y 第1个外部 脉冲下降沿? N 第m+1个外部 脉冲下降沿? 捕捉寄存器 内容送时基 计数单元1 Y 捕捉寄存器内容 送时基计数单元2 存外中断次数 外中断次数清零 存T2溢出次数 溢出次数清零 清TF2中断 标志 清EXF2中断标志 中断返回 图2 T2中断服务程序流程图 5 被测脉冲信号的计数量化误差 ?N x = ±1 , 克服了 M/T 法中高低频两端精度高而中界频率附 近测量误差最大的缺陷。 本文提出了基于 AT89C52 实现多周期同步测频方法, 利用 T2 的捕 捉功能和外部中断产生与待测信号同步的闸门时间,通过 T2 的定时功能实现了时基信号与 待测信号的同步计数,使得系统只用一个定时器/计数器 T2 就实现了多周期同步测频技术, 该系统软硬件结构简单,具有较高的测量精度和较短的系统反应时间。 参考文献: 参考文献: [1] 尹克荣.智能仪表中的频率测量方法[J].长沙电力学院学报,2002, 17(1):74-76 [2] 章军,张平,于刚.多周期同步测频测量精度的提高[J].电测与仪表,2003,40(6):16-18 [3] 王连符.测频系统测量误差分析及其应用[J].中国科技信息,2005,(18A):94-94 [4] 李全利.单片机原理及应用技术[M].北京:高等教育出版社,2001 [5] 李群芳 黄建.单片微型计算机与接口技术[M].北京:电子工业出版社,2002 [6] 孙传友,孙晓斌,汉泽西等,测控系统原理与设计[M].北京:北京航空航天大学出版社,2002 作者简介: 作者简介: 黄晓峰(1969-),男,甘肃省甘谷县人,副教授,硕士,研究方向为检测技术及智能仪器仪表、计算机控制。 E-mail: 电话: 6 基于 MCS_51单片机的直流电机转速测控系统设计摘要: 给出了一种基于89C51单片机以及 PWM 控制思想的高精度、高稳定、多任务直流电机转速测控系 统的硬件组成及关键单元设计方法。实验结果表明该系统能实时、有效地对直流电机转速进行监测与控制, 而且输出转速精度高、稳定性好。 0 引言 目前使用的电机模拟控制电路都比较复杂,测量范围与精度不能兼顾, 且采样时间较长, 难以测得 瞬时转速。本文介绍的电机控制系统利用 PWM 控制原理, 同时结合霍尔传感器来采集电机转速, 并经 单片机检测后在显示器上显示出转速值, 而单片机则根据传感器输出的脉冲信号来分析转速的过程量, 并 超限自动报警。本系统同时设置有按键操作仪表, 可用于调节电机的转速。 1 系统方案的制定 直流电机控制系统主要是以 C8051单片机为核心组成的控制系统, 本系统中的电机转速与电机两端的 电压成比例, 而电机两端的电压与控制波形的占空比成正比, 因此, 由 MCU 内部的可编程计数器阵列 输出 PWM 波, 以调整电机两端电压与控制波形的占空比, 从而实现调速。本系统通过霍尔传感器来实 现对直流电机转速的实时监测。系统的设计任务包括硬件和软件两大部分,其中硬件设计包括方案选定、 电路原理图设计、PCB 绘制、线路调试; 软件设计包括内存空间的分配, 直流电机控制应用程序模块的 设计, 程序调试、软件仿真等。 2 硬件设计 C8051是完全集成的混合信号系统级 MCU 芯片, 具有64个数字 I/O 引脚, 片内含有 VDD 监视器、 看门狗定时器和时钟振荡器, 是真正能独立工作的片上系统, 并能快捷准确地完成信号采集和调节。同 时也方便软件编程、干扰防制、以及前向通道的结构优化。 本单片机控制系统与外部连接可实时接收到外部信号, 以进行对外部设备的控制, 这种闭环系统可 以较准确的实现设计要求, 从而制定出一个合理的方案, 图1所示是电机测控系统框图。 图1 电机测控系统框图。 本系统先由单片机发出控制信号给驱动电机, 同时通过传感器检测电机的转速信号并传送给单片机, 单片机再通过软件将测速信号与给定转速进行比较, 从而决定电机转速, 同时将当前电机转速值送 LED 显示。此外, 也可以通过设置键盘来设定电机转速。系统中的转速检测装置由霍尔传感器组成, 并通过 A/D 转换将转速转换为电压信号, 再以脉冲形式传给单片机。这种设计方法具有频率响应高(响应频率达 20 kHz 以上)、输出幅值不变、抗电磁干扰能力强等特点。其中霍尔传感器输入为脉冲信号, 十分容易与 微处理器相连接, 也便于实现信号的分析处理。单片机的 T0口可对该脉冲信号进行计数。 设计时, 可通过单片机的 ~ 五个接口来完成键盘的输入, 口可完成鸣叫和报警, 接电机, ~接显示器的位选, P0口为显示器段选码, 其硬件连接电路如图2所示。 图2 硬件连接电路图。 本系统的脉冲宽度调制(Pulse Width Modulation)原理是: 脉冲宽度调制波由一列占空比不同的矩形脉 冲构成, 其占空比与信号的瞬时采样值成比例。该系统由一个比较器和一个周期为 Ts 的锯齿波发生器组 成。脉冲信号如果大于锯齿波信号, 比较器输出正常数 A, 否则输出0。图3所示为脉冲宽度调制系统的 调制原理和波形图。 图3 脉宽调制过程。 设样本 τk 为均匀脉冲信号, 它的第 k 个矩形脉冲可以表示为: 其中, x {t} 是离散化信号; Ts 是采样周期,τ0是未调制宽度, m 是调制指数。现假设脉冲幅度为 A, 中心在 t=kTs 处, τk 在相邻脉冲间变化缓慢, 那么, 其 Xp (t) 可表示为: 其中, 为电机角速度,结合式(2) 可见, 脉冲宽度信号可由信 号 x (t)加上一个直流成分以及相位调制波构成。当 τ0<<> 因此, 脉冲宽度调制波可以直接通过低通滤波器进行解调。C8051单片机有2个12位的电压方式 DAC, 每个 DAC 的输出摆幅为0 V~VREF, 对应的输入码范围是0x000~0xFFF。通过交叉开关配置可将 CEX0~CEX4 配置到 P2 端口, 这样, 改变 PWM 的占空比就可以调整电机速度。 LED 显示采用动态扫描方式, 并用单片机 I/O 接口扩展输出, 再由三极管驱动各显示器的位选端并 放大电流。独立式按键采用查询方式, 按键输入均采用低有效, 上拉电阻可用于保证在按键断开使其 I/O 口为高电平。单片机的 I/O ()引脚所扩展的5个按键分别定义为: 设置、启动、移位、开始、+1 功能。硬件电路确定以后, 电机转速控制的主要功能将依赖于软件来实现。 3 软件设计 本系统的软件程序的设计可分为5个步骤: 分别是综合分析并确定算法; 设计程序流程图;合理选择和分配内存单元以及工作寄存器; 编写程 序; 上机调试运行程序。 应用软件的设计可采用模块化结构设计, 其优点是每个模块的程序结构相对简单, 且任务明确, 易 于编写、调试和修改; 其次是程序可读性好, 对程序的修改可局部进行, 而其他部分可以保持不变, 这 样便于功能扩充和版本升级; 另外, 对于使用频繁的子程序, 可以建立子程序库, 以便于多个模块调 用; 最后是便于分工合作, 多个程序员可同时进行程序的编写和调试工作, 故可加快软件研制进度。 本程序采用8051单片机的 C 语言编程来实现。 在系统的程序设计中, 可采用模块化编程实现。 整个软件由主程序模块、转速测量模块、时钟模块、数据通信模块、动态显示模块等组成。各模块均 采用结构化程序设计思想设计, 因而具有较强的通用性; 而采用模块化程序结构则可使软件易于调试、 维护和移植。 系统软件可根据硬件电路的功能与 AT89C51各管脚的连接情况对软件进行设计。以便明确各引脚所要 完成的功能, 从而方便进行程序设计和内存地址的分配, 最终完成程序模块化设计。 本系统为直流电机测控系统。根据系统性能要求, 除复位电路外, 还应该设置一些功能键: 包括启动键、设置键、确定键、移位键、加1键等。由于本系统中的单片机还有闲置的 I/O 口线,而系 统要求所设置的按键数量也不多, 因此, 可以采用独立式按键结构。 根据直流电机控制系统的结构, 该电机转速控制系统为一简单的应用系统, 可以采用顺序的设计方 法。这种设计由主程序和若干个中断服务程序构成, 整个电机转速测控系统可分成六大模块, 每个模块 完成一定的功能。图4所示是根据电路图确定的程序设计模块图。 图4 直流电机控制软件设计模块图。 其中主程序模块主要设置主程序的起始地址、中断服务程序的起始地址、有关内存单元及相关部件的 初始化和一些子程序调用等。其主程序流程图如图5所示。 图5 主程序流程图。 对于定时器 T1 (1s) 子程序的设计,其实在单片机中,定时功能既可以由硬件(定时/计数器) 实现,也 可以通过软件定时程序来实现。软件延时程序要占用 CPU 的时间, 因而会降低 CPU 的利用率。而硬件定 时则通过单片机内的定时器来定时, 而且, 定时器启动以后可与 CPU 并行工作, 故不占用 CPU 的时间, 从而可使 CPU 具有较高的工作效率。 本系统采用硬件定时和软件定时并用的方式, 即用 T1溢出中断功能来实现10 ms 定时, 而通过软件 延时程序实现1 ms 定时。其中 T1定时器中断服务程序的功能主要实现转速值的读入、检测与缓存处理。 对于定时器 T1的计数初值计算, 由于本系统采用的是6 MHz 的时钟频率, 所以, 一个机器周期时 间是2 ?s。这样, 根据 T1定时器产生500 ?s 的定时, 便可以计算出计数初值。 本文设计的转速测控系统的工作方式寄存器 TMOD=00010000B, T1定时器以工作方式2来完成定时。 4 程序调试 程序调试可在伟福仿真软件上进行编制, 该软件支持脱机运行, 纯软件环境可模拟单步、跟踪、全 速、 断点; 源文件仿真、 汇编等, 并可支持多文件混合编程。 仿真调试后的目标程序可以固化到 EPROM, 然后用专门的程序烧写器对89C51单片机进行程序烧写。 5 结束语 本设计采用 C51进行编程, 程序占用存储器单元少, 执行速度快, 并能够准确掌握执行时间, 实 现精细控制。同时由于采用89C51为 CPU,并利用噪声抵抗能力较强的 PWM 控制技术、串行口扩展显示 器接口和 I/O 口扩展键盘, 因而可省去片外 RAM, 而且体积小, 功能全, 小巧灵活,操作方便, 又 可安装在工作现场单独工作。因而具有较大的实用价值和良好的应用前景。

函数信号发生器的设计与制作 系别:电子工程系 专业:应用电子技术 届:07届 姓名:李贤春 摘 要 本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。 关键词 ICL8038,波形,原理图,常用接法 一、概述 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。 二、方案论证与比较 ·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: ·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率 相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为~300KHz。 三、系统工作原理与分析 、ICL8038的应用 ICL8038是精密波形产生与压控振荡器,其基本特性为:可同时产生和输出正弦波、三角波、锯齿波、方波与脉冲波等波形;改变外接电阻、电容值可改变,输出信号的频率范围可为~300KHz;正弦信号输出失真度为1%;三角波输出的线性度小于;占空比变化范围为2%~98%;外接电压可以调制或控制输出信号的频率和占空比(不对称度);频率的温度稳定度(典型值)为120*10-6(ICL8038ACJD)~250*10-6(ICL8038CCPD);对于电源,单电源(V+):+10~+30V,双电源(+V)(V-):±5V~±15V。图1-2是管脚排列图,图1-2是功能框图。8038采用DIP-14PIN封装,管脚功能如表1-1所示。 、ICL8038内部框图介绍 函数发生器ICL8038的电路结构如图虚线框内所示(图1-1),共有五个组成部分。两个电流源的电流分别为IS1和IS2,且IS1=I,IS2=2I;两个电压比较器Ⅰ和Ⅱ的阈值电压分别为 和 ,它们的输入电压等于电容两端的电压uC,输出电压分别控制RS触发器的S端和 端;RS触发器的状态输出端Q和 用来控制开关S,实现对电容C的充、放电;充点电流Is1、Is2的大小由外接电阻决定。当Is1=Is2时,输出三角波,否则为矩尺波。两个缓冲放大器用于隔离波形发生电路和负载,使三角波和矩形波输出端的输出电阻足够低,以增强带负载能力;三角波变正弦波电路用于获得正弦波电压。 、内部框图工作原理 ★当给函数发生器ICL8038合闸通电时,电容C的电压为0V,根据电压比较器的电压传输特性,电压比较器Ⅰ和Ⅱ的输出电压均为低电平;因而RS触发器的 ,输出Q=0, ; ★使开关S断开,电流源IS1对电容充电,充电电流为 IS1=I 因充电电流是恒流,所以,电容上电压uC随时间的增长而线性上升。 ★当上升为VCC/3时,电压比较器Ⅱ输出为高电平,此时RS触发器的 ,S=0时,Q和 保持原状态不变。 ★一直到上升到2VCC/3时,使电压比较器Ⅰ的输出电压跃变为高电平,此时RS触发器的 时,Q=1时, ,导致开关S闭合,电容C开始放电,放电电流为IS2-IS1=I因放电电流是恒流,所以,电容上电压uC随时间的增长而线性下降。 起初,uC的下降虽然使RS触发的S端从高电平跃变为低电平,但 ,其输出不变。 ★一直到uC下降到VCC/3时,使电压比较器Ⅱ的输出电压跃变为低电平,此时 ,Q=0, ,使得开关S断开,电容C又开始充电,重复上述过程,周而复始,电路产生了自激振荡。 由于充电电流与放电电流数值相等,因而电容上电压为三角波,Q和 为方波,经缓冲放大器输出。三角波电压通过三角波变正弦波电路输出正弦波电压。 结论:改变电容充放电电流,可以输出占空比可调的矩形波和锯齿波。但是,当输出不是方波时,输出也得不到正弦波了。 、方案电路工作原理(见图1-7) 当外接电容C可由两个恒流源充电和放电,电压比较器Ⅰ、Ⅱ的阀值分别为总电源电压(指+Vcc、-VEE)的2/3和1/3。恒流源I2和I1的大小可通过外接电阻调节,但必须I2>I1。当触发器的输出为低电平时,恒流源I2断开,恒流源I1给C充电,它的两端电压UC随时间线性上升,当达到电源电压的确2/3时,电压比较器I的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I2接通,由于I2>I1(设 I2=2I1),I2将加到C上进行反充电,相当于C由一个净电流I放电,C两端的电压UC又转为直线下降。当它下降到电源电压的1/3时,电压比较器Ⅱ输出电压便发生跳变,使触发器输出为方波,经反相缓冲器由引脚9输出方波信号。C上的电压UC,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波的两端变为平滑的正弦波,从2脚输出。 其中K1为输出频段选择波段开关,K2为输出信号选择开关,电位器W1为输出频率细调电位器,电位器W2调节方波占空比,电位器W3、W4调节正弦波的非线性失真。 图1-1 、两个电压比较器的电压传输特性如图1-4所示。 图1-4 、常用接法 如图(1-2)所示为ICL8038的引脚图,其中引脚8为频率调节(简称为调频)电压输入端,电路的振荡频率与调频电压成正比。引脚7输出调频偏置电压,数值是引脚7与电源+VCC之差,它可作为引脚8的输入电压。 如图(1-5)所示为ICL8038最常见的两种基本接法,矩形波输出端为集电极开路形式,需外接电阻RL至+VCC。在图(a)所示电路中,RA和RB可分别独立调整。在图(b)所示电路中,通过改变电位器RW滑动的位置来调整RA和RB的数值。 图1-5 当RA=RB时,各输出端的波形如下图(a)所示,矩形波的占空比为50%,因而为方波。当RA≠RB时,矩形波不再是方波,引脚2输出也就不再是正弦波了,图(b)所示为矩形波占空比是15%时各输出端的波形图。根据ICL8038内部电路和外接电阻可以推导出占空比的表达式为 故RA<2RB。 为了进一步减小正弦波的失真度,可采用如图(1-6)所示电路,电阻20K与电位器RW2用来确定8脚的直流电压V8,通常取V8≥2/3Vcc。V8越高,Ia、Ib越小,输出频率越低,反之亦然。RW2可调节的频率范围为20HZ20~KHZ。V8还可以由7脚提供固定电位,此时输出频率f0仅有Ra、Rb及10脚电容决定,Vcc采用双对电源供电时,输出波形的直流电平为零,采用单对电源供电时,输出波形的直流电平为Vcc/2。两个100kΩ的电位器和两个10kΩ电阻所组成的电路,调整它们可使正弦波失真度减小到。在RA和RB不变的情况下,调整RW2可使电路振荡频率最大值与最小值之比达到100:1。在引脚8与引脚6之间直接加输入电压调节振荡频率,最高频率与最低频率之差可达1000:1。 、实际线路分析 可在输出增加一块LF35双运放,作为波形放大与阻抗变换,根据所选择的电路元器件值,本电路的输出频率范围约10HZ~20KHZ;幅度调节范围:正弦波为0~12V,三角波为0~20V,方波为0~24V。若要得到更高的频率,还可改变三档电容的值。 图1-6 表 1-1 ISL8038管脚功能 管 脚 符 号 功 能 1,12 SINADJ1,SINADJ2 正弦波波形调整端。通常SINADJ1开路或接直流电压, SINADJ2接电阻REXT到V-,用以改善正弦波波形和减小失真。 2 SINOUT 正弦波输出 3 TRIOUT 三角波输出 4,5 DFADJ1,DFADJ2 输出信号重复频率和占空比(或波形不对称度)调节端。通常DFADJ1端接电阻RA到V+,DFADJ2端接RB到V+,改变阻值可调节频率和占空比。 6 V+ 正电源 7 FMBIAS 调频工作的直流偏置电压 8 FMIN 调频电压输入端 9 SQOUT 方波输出 10 C 外接电容到V-端,用以调节输出信号的频率与占空比 11 V- 负电源端或地 13,14 NC 空脚 四、制作印刷电路板 首先,按图制作印刷电路板,注意不能有断线和短接,然后,对照原理图和印刷电路板的元件而进行元件的焊接。可根据自己的习惯并遵循合理的原则,将面板上的元器件安排好,尽量使连接线长度减少,变压器远离输出端。再通电源进行调试,调整分立元件振荡电路放大元件的工作点,使之处于放大状态,并满足振幅起振条件。仔细检查反馈条件,使之满足正反馈条件,从而满足相位起振条件。 制作完成后,应对整机进行调试。先测量电源支流电压,确保无误后,插上集成快,装好连接线。可以用示波器观察波形发出的相应变化,幅度的大小和频率可以通过示波器读出 。 五、系统测试及误差分析 、测试仪器 双踪示波器 YB4325(20MHz)、万用表。 、测试数据 基本波形的频率测量结果 频率/KHz 正弦波 预置 2 20 50 100 实测 方波 预置 2 20 50 实测 三角波 预置 1 2 20 100 实测 、误差分析及改善措施 正弦波失真。调节R100K电位器RW4,可以将正弦波的失真减小到1%,若要求获得接近失真度的正弦波时,在6脚和11脚之间接两个100K电位器就可以了。 输出方波不对称,改变RW3阻值来调节频率与占空比,可获得占空比为50%的方波,电位器RW3与外接电容C一起决定了输出波形的频率,调节RW3可使波形对称。 没有振荡。是10脚与11脚短接了,断开就可以了 产生波形失真,有可能是电容管脚太长引起信号干扰,把管脚剪短就可以解决此问题。也有可能是因为2030功率太大发热导致波形失真,加装上散热片就可以了。 、调试结果分析 输出正弦波不失真频率。由于后级运放上升速率的限制,高频正弦波(f>70KHz)产生失真。输出可实现步进,峰-峰值扩展至0~26V。 图1-2 图 1−7 六、结论 通过本篇论文的设计,使我们对ICL8038的工作原理有了本质的理解,掌握了ICL8038的引脚功能、工作波形等内部构造及其工作原理。利用ICL8038制作出来的函数发生器具有线路简单,调试方便,功能完备。可输出正弦波、方波、三角波,输出波形稳定清晰,信号质量好,精度高。系统输出频率范围较宽且经济实用。 七、参考文献 【1】谢自美《电子线路设计.实验.测试(第三版)》武汉:华中科技大学出版社。2000年7月 【2】杨帮文《新型集成器件家用电路》北京:电子工业出版社, 【3】第二届全国大学生电子设计竞赛组委会。全国大学生电子设计竞赛获奖作品选编。北京:北京理工大学出版社,1997. 【4】李炎清《毕业论文写作与范例》厦门:厦门大学出版社。 【5】潭博学、苗江静《集成电路原理及应用》北京:电子工业出版社。 【6】陈梓城《家用电子电路设计与调试》北京:中国电力出版社。2006

毕业论文波形图怎么画

绘制脉冲波形图参考下面做法:向左转|向右转的抛物线的绘制方法:1、单击插入----形状----线条----曲线工具;向左转|向右转2、在页面上点击鼠标,向右水平移动鼠标到结束处再点击鼠标,绘制一条直线;向左转|向右转3、在直线上单击鼠标右键,在弹出的快捷菜单中选择编辑顶点命令;向左转|向右转4、在直线的中点处单击鼠标右键,在弹出的快捷菜单中选择添加顶点命令;向左转|向右转5、用鼠标拖动添加的顶点,即可绘制出一条抛物线。向左转|向右转

例如上面波形图的制作步骤:

1、单击插入----形状----线条----带箭头直线工具;

2、按住Shift,从左向右拖动鼠标,绘制一条带箭头的水平直线;

3、单击插入----形状----线条----曲线工具;

3、分别在A、B、C、D点单击鼠标,在E点双击鼠标即可绘制出如图所示的波形图。

word中波形可通过插入曲线的方式实现。

方法步骤如下:

1、打开需要操作的WORD文档,点击工具栏的“插入”,切换到插入选项卡。

2、点击插入选项卡中的“形状”,然后选择“曲线”。【注意需要选择“曲线”,不要错选“曲线连接符”,鼠标停留在相应形状上会有提示】

3、在WORD中根据需要,即可自由画出波形,最后双击结束点位置即可结束画图。

先用专业软件画图-->截屏-->在画图板里面粘贴,修改,保存-->复制保存好的图片-->粘贴到Word中

毕业论文仿真图和波形查重吗

图片不会进行论文查重,因为首先要进行识别,但是现在的算法无法很有效的对于图片进行识别,所以论文查重不会对图片进行查重。论文查重主要是文字进行查重,一般的查重比例是5%-30%之间。详情可以看一下自己学校的论文查重比例。另外,有什么问题,可以追问,也可以直接点击头像,查看更多的论文相关问题。

一般毕业论文的图片不会查重。

1、目前大部分论文查重系统是不能识别图片,不能对图片进行查重的,一般情况下图片是不会被查重的,但是现在也有一些查重系统能够识别图片中的文字,对图片的文字进行查重。

2、当论文中的图片不仅不会被纳入查重范围,而且论文中的某些部分重复率太高,很难简单快速地修改时,你也可以截图这些部分的内容,然后用图片替换,从而降低重复率。

毕业论文简介:

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

毕业论文不能查重图片已经是过去式了,知网目前是完全可以查重图片的,不仅如此,论文中的公式、表格、代码等一些在以往无法识别的内容,目前都可以识别并检测的。

毕业论文图表国际标准

不需要。

图片格式需要IIF或JPG格式。半条形图宽度小于,普通条形图宽度小于11cm。在图表顺序和标题中使用小五个黑色,并在它们之间留一个空格。一般在图的空白处。

标题应该在标题之后。在每张构图的右下角,应标明每张构图的序号。显微镜病理图像应显示染色方法和放大倍数,染色方法和放大倍数之间,手掌之间有一个字间距。

论文写作基本要求

1、独立性:毕业论文必须经护生本人努力、指导老师指导下独立完成,不得弄虚作假,抄袭或下载他人成果。

2、专业性:毕业论文的选题必须在护理学专业范围之内,并具有护理专业特点。

3、鲜明性:论文应主题鲜明,论题、论点、论据一致,中心突出,论据充分,结论正确;结构紧凑,层次分明,格式规范,文字流畅,切忌错别字。

4、标准化:论文中使用的度量单位一律采用国际标准单位。

5、三线表:论文中图表具有代表性,对所使用的图表要给予解释,统一标注编号和图题,放置在论文的适当位置中,图表要清晰、简洁、比例适当。

6、篇幅字数:篇幅在4000字左右(不含图表、等),不少于3500字。

论文图表格式规范如下:毕业论文图表格式要求 一、图 正文中所有图都应有编号和图题。 图的编号由“图”和从1开始的阿拉伯数字组成,例如:“图1”、“图2”等。 图的编号可以一直连续到文末,图较多时,也可分章编号。 图题即图的名字,每幅图都应有图题,并置于图的编号之后,与编号之前空一格排写。 图的编号和图题置于图下方的居中位置,字体采用5号宋体。 图中若有分图时,分图的编号用(a)、(b)等置于分图之下。 正文中与相关图对应文字处须在括弧中注明“见图n”字样。 图与其图题不得拆开排写于两页,插图处的该页空白不够排写该图整体时,可将其后文字部分提前排写,将图移至次页最前面。 二、表 正文中所有表都应有编号和表题。 表的编号由“表”和从1开始的阿拉伯数字组成,例如“表1”、“表2”等。

  • 索引序列
  • 毕业论文波形图标准
  • 毕业论文波形图
  • 毕业论文波形图怎么画
  • 毕业论文仿真图和波形查重吗
  • 毕业论文图表国际标准
  • 返回顶部