首页 > 学术论文知识库 > 地球物理学导论论文

地球物理学导论论文

发布时间:

地球物理学导论论文

曾融生在中国首先应用地震面波的相速度研究地壳构造,提出地壳的分区。发现1974年5月云南昭通大地震的多重性。1984年出版《固体地球物理学导论》。与合作者发现华北地幔顶部另有一个界面,和莫霍界面同为薄层顶面。深入研究唐山和华北盆地以及唐山震源区的深部构造,提出张性盆地和盆地中震源的统一动力学模式。1990年后,承担中美合作的青藏高原深部探测任务,并提出印度—欧亚大陆碰撞过程,它也适用于其他的陆—陆碰撞带。 后来又着力研究大陆岩石圈构造和地震成因等问题,其论文《唐山震区的岩石圈构造及伸张盆地的动力学过程研究》,获国家自然科学三等奖。 1991年他被载入英国剑桥国际传记中心出版的《有成就的人》(Men of achievement,第15版),同年美国传记协会也将他收入到《世界5 000名人录》(5 000 personalities of the world,第3版)中。 ●深部构造研究曾融生院士是中国地球深部构造研究工作的开创者。●对人工折射地震方法的研究1958年,中国科学院地球物理研究所在石油工业部的支持下,利用由前苏联引进的低频(频率小于10赫兹)地震方法和技术探测柴达木盆地很深的基岩界面。曾融生主持这项工作,并取得十分可喜的成果。他和同事从地震波的理论出发,详细分析了所获得的极强的续至波的性质,鉴定出不同类型的震相。其中包括:①基岩界面的首波;②地壳内高速夹层所产生的首波和回折波;③莫霍界面的反射波;④不同类型的多次波等。他们首次测定了柴达木盆地基岩界面的深度和起伏,解决了柴达木盆地的一个难题。 1978年以后,曾融生主持国家地震局地球物理所的深部构造研究工作。研制出新一代的模拟地震测深仪器。1990年,曾融生等完成了中国大陆莫霍界面深度图的编制,并对中国大陆构造作了阐释。 ●对天然地震波与深部构造的研究曾融生在1965年发表了《中国境内Rayleigh波的相速度》一文,对比了国内不同地区地震台站的瑞利(Rayleigh)面波相速度和相应的速度构造与地壳厚度。这是第一次对全国不同地区的地壳厚度和速度构造进行系统的比较。为适应当代固体地球物理学迅速发展的形势,曾融生自1976年开始广泛收集并系统整理国际最新资料、成果和理论,以及中国地球物理工作者对地球内部研究的新进展,编写成66万字的《固体地球物理学导论》专著,1984年出版。该书全面讨论了有关地球内部的研究方法,重点探讨地球内部结构、组成,并深入研究地球动力及其对地球表面构造的影响,此外还将其他行星的探测结果同地球进行对比。它是中国第一部完整而系统地论述固体地球物理理论和应用的重要论著,对地球物理科学研究和教学都有很大影响。 ●地壳动力学研究曾融生另一方面的成就是利用深部构造资料对大陆地壳动力学的探讨。1973年,曾融生根据地壳厚度、重力及地形资料,提出:华北与华南属于两个不同的块体,它们各自已经达到重力均衡状态;它们的标准地壳厚度和密度分布各不相同;它们的地壳厚度和重力的关系可以两个不同方程来表示。 对于1976年发生的唐山地震,曾融生自1980年以来先后对地震测深、反射地震及天然地震的资料进行解释,并连续发表了《从地震折射和反射剖面结果讨论唐山地震成因》(1988)、《华北盆地强震的震源模型兼论强震和盆地成因》(1991)等多篇文章。 据中国科学技术信息研究所、国家工程技术数字研究馆信息:1993年至2005年期间,曾融生共培养6名学生获得博士学位,基本情况如下 :【周民都】 学位类别:博士 ;授予学位日期 2005年03月01日; 授予学位单位:中国地震局地球物理研究所;学位论文:青藏高原东北缘地壳上地幔速度结构的地震层析成像研究【田小波】 学位类别:博士 ;授予学位日期 2002年12月01日; 授予学位单位:中国地震局地球物理研究所;学位论文:横向非均匀介质中接收函数的数值模拟与偏移成像研究【丁志峰】 学位类别:博士 ;授予学位日期1999年12月01日; 授予学位单位:国家地震局地球物理研究所;学位论文:近震层析成像的理论及应用【吴建平】 学位类别:博士 ;授予学位日期1997年10月01日; 授予学位单位:国家地震局地球物理研究所;学位论文:宽频带数字地震波形反演与中国大陆地壳上地幔速度结构的研究【吴庆举】 学位类别:博士 ;授予学位日期1996年05月01日; 授予学位单位:国家地震局地球物理研究所;学位论文:宽频带远震体波波形反演方法与青藏高原岩石圈速度结构研究【朱良保】 学位类别:博士 ;授予学位日期1993年; 授予学位单位:国家地震局地球物理研究所;学位论文:Maslov渐近理论地震图 专著 序号作品年份出版作者1固体地球物理学导论1984科学出版社曾融生2固体地球物理学论评 19911992地震出版社曾融生主编3探索地球内部的奥秘2002清华大学出版社,暨南大学出版社曾融生,陈运泰编著4探索地球内部的奥秘2004清华大学出版社曾融生,陈运泰期刊论文 [1] Kan Rongju, Hu Hongxiang,Zeng Rongsheng,Walter D. Mooney, Thomas V. McEvilly, Crustal structure of Yunnan Provice, People's Republic of China, from seismic refraction profiles, 1986, Science, 234, 433-437.[2] Zeng, R. et al., Three-dimensional seismic velocity structure of the Tibetan Plateau and its eastern neighboring areas with implications to the model of collision between continents, 1993, Acta Seismologica Sinica, 6(2), 251-260.[3] Zeng, R. et al., Seismicity and focal mechanism in Tibetan Plateau and its implications to lithospheric flow, 1993, Acta Seismologica Sinica, 6(2), 251-287.[4] Zeng, R. et al., On the dynamics of extensional basin, 1995, PAGEOPH, 145(No. 3/4), 579-603.[5] 曾融生、丁志峰、吴庆举,喜马拉雅—祁连山地壳构造与大陆-大陆碰撞过程,1998,地球物理学报,41(1),49-60.[6] 曾融生、丁志峰、吴庆举、吴建平,喜马拉雅及南藏的地壳俯冲带─地震学证据,2000,地球物理学报,43(6),780-797.[7] Wang Chun-Yong、Rong-Sheng Zeng、W. D. Mooney、B. R. Hacker, A crustal model of the ultrahigh - pressure Dabie Shan orogenic belt,China,derived from deep seismic refraction profiling,2000,JOURNAL OF GEOPHYSICAL RESEARCH, 105(B5), 10, 857-10, 869.

第一节 地球科学的研究对象和研究内容人类生活在地球上,衣食住行等一切活动都离不开地球。如人们要靠山 川大地获取生活资料以维持生命,要从地球中开采矿物资源制造生产和生活 工具,要了解地球上的自然地理和气候条件以便发展生产,要与地球上发生 的各种自然灾害作斗争。因而,人类在长期的实践中逐步加深了对地球的认 识,并且逐渐形成了一门以地球为研究对象的科学——地球科学(geoscience)。 地球科学简称地学,是数学、物理学、化学、天文学、地学、生物学六大基础自然科学之一。地球科学以地球为研究对象,包括环绕地球周围的气 体(大气圈)、地球表面的水体(水圈)、地球表面形态和固体地球本身。 至于地球表面的生物体(生物圈),由于其研究内容广、分支学科较多、且 研究方法具有特殊性,因而已独立成一门专门的基础自然科学——生物学。 但生物的起源与演化、生物体与生存的地球环境之间的关系也属于地球科学 的研究范畴。地球科学是一门理论性和应用性都很强的科学。它不仅承担着揭示自然界奥秘与规律的科学使命,同时也为生活在地球上的人类如何利用、适应和 改造自然提供科学的方法论。随着生产和科学技术的发展,地球科学的研究 内容和领域也不断地深入和扩展,逐渐形成了日臻完善的由多学科组成的综 合性学科体系。地球科学目前主要包括地质学、地球物理学、地理学、气象 学、水文学、海洋学、土壤学、环境地学等学科。其中,地质学(geology) 由于其研究领域广博、分支学科较多,并且以研究地球的本质特征为目的, 因而成为地球科学的主要组成部分,以至于人们有时把地质学和地球科学作 为同义语使用,其实两者的含义是有差别的,它们具有包容关系。随着科学 的发展,地球科学还会不断地诞生新的学科和出现一些边缘学科。地理学(geography)主要研究地球表面的各种地形、地理环境及其结构、分布和演变规律,并涉及到自然和社会两个领域之间的相互关系。地理学一 般可分为自然地理学和人文地理学两大组成部分。自然地理学是研究自然地 形、地理环境的结构及发生、发展规律的学科,主要包括普通自然地理学、 区域自然地理学、地志学等。人文地理学是研究人和社会与自然地形、地理 之间的相互关系的学科,主要包括政治地理学、社会地理学、人口与聚落地 理学、经济地理学、历史地理学等。气象学(meteorology)以地球周围的大气圈为研究对象,主要研究大气 的各种物理性质、物理现象及其变化规律。其研究内容也很广泛,包括许多 分支学科和应用学科。主要的分支学科有大气物理学、天气学、气候学、高 空气象学、动力气象学等,主要的应用学科有卫星气象学、无线电气象学、 航空气象学、海洋气象学、农业气象学、林业气象学等。其目的在于揭示大 气中的各种物理现象和物理过程的发生、发展本质,从而掌握并应用它为人 类生活和国家经济建设服务。水文学(hydrology)和海洋学(oceanography)以地球表面分布的水体 为研究对象。水文学主要研究地球上江河、湖沼、冰川、地下水以及海洋等 各种水体的数量、质量、运动变化与分布规律,以及它们与地理环境、生态系统和人类社会之间的相互影响与相互联系。海洋学是以海洋作为一个独立 体进行研究的,它实际上是从地球科学的其它几个分支学科中独立出来的, 这是由于海洋在现代地球科学、人类生存环境和未来社会发展中的地位越来 越重要的缘故。海洋学是研究海洋中发生的各种现象和规律及其相互关系的 各门学科的总称,根据研究内容不同可分为海洋物理学、海洋水文学、海洋 化学、海洋生物学、海洋气象学和海洋地质学等。土壤学(soil science)以地球表面发育的土壤层为研究对象。主要研 究土壤的物质组成、结构、类型、分布和形成发展过程。根据具体研究内容 和应用领域的不同,土壤学也有一些分支学科,如土壤生物学、土壤地理学、 土壤气候学、土壤物理学、土壤化学、土壤地质学等。地球物理学(geophysics)是应用物理学的方法研究地球的一门学科, 是近代发展起来的地球科学与物理学相结合的一门重要边缘学科。广义的地 球物理学的研究对象包括固体地球及其表部的水体和周围的大气圈。但由于 水体和大气圈的研究都已建立起相应的独立学科,所以一般所称的地球物理 学是狭义的,其主要研究对象是固体地球,因而也可称之为固体地球物理学。 地球物理学重点研究固体地球的各种物理性质、物理现象及其发生与发展过 程、地球的内部构造与组成、地球的起源与演化等。其主要分支学科有地震 学、地磁学、重力学、地热学、地电学、大地测量学、大地构造物理学和应 用地球物理学等。其中,应用地球物理学主要是研究地球物理勘探方法及其 在地球资源的勘探与开发、地球环境的监测与保护等方面的应用。地质学(geology)研究的主体对象也是固体地球,当前主要是研究固体地球的表层——地壳或岩石圈。地壳或岩石圈的厚度一般为几十到二百公里 左右,与地球的半径(6371km)相比只是一个很薄的表壳。这一薄壳之所以 成为地质学当前研究的主要对象,一方面是出于实际需要,因为这一层与人 类的生活、生产及生存都直接相关;另一方面是受现时人类能力的限制。人 们可以直接观测和研究地球表层,但现阶段人类尚无能力对地下深处进行直 接研究。钻井取样是目前人们获取地球较深部物质进行直接研究的唯一途 径,但由于受当前技术水平的限制,钻井所能达到的深度是有限的。目前世 界上最深的钻井()位于俄罗斯西北部的科拉半岛,这一深度尚不足 该区大陆地壳厚度的二分之一。可以相信,随着科学技术的发展,地质学研 究的对象将不断向地球的深部(如地幔、地核)扩展。地质学的研究内容主要包括固体地球(重点是地壳或岩石圈)的物质组成、内部构造和形成演化历史。按其研究内容和任务的不同,地质学的主要 分支学科可简举如下:(1)研究地球的物质组成方面的学科,如结晶学、矿物学、岩石学等;(2)研究地球的内部构造方面的学科,如构造地质学、构造物理学、区 域构造学、地球动力学等;(3)研究地球的形成演化方面的学科,如古生物学、地层学、地史学、 古地理学、地貌及第四纪地质学等;(4)研究地质学的应用方面的学科,可分为两个方面:其一是研究地下 资源方面的分科,如矿床学、石油地质学、煤田地质学、水文地质学等;其 二是研究地质与人类生活环境及灾害防护方面的分科,如工程地质学、环境 地质学、地震地质学等。此外,人们为了更好地研究上述地质学的各个方面,不断地吸收和借鉴其它一些学科的先进理论、方法和技术,用以促进和深化地质学的各项研究, 于是逐渐形成了一系列的边缘学科,如数学地质、地球化学、同位素地质学、 天文地质学、海洋地质学、遥感地质学及实验地质学等,这些边缘学科在现 代地质学各领域的研究中发挥着极其重要的作用。近几十年来,由于世界各国工业、农业、军事、航天、交通等产业的飞 速发展,其结果给地球的自然环境带来了巨大的影响。这种影响有些是直接 的(如污染问题)、有些是间接的(如气候变化),它已经严重地影响到地 球的自然生态和人类的生存与发展,因而受到科学工作者和全人类的广泛关 注。这一问题与地球科学和环境科学关系密切,于是在地球科学中逐渐形成 了一门与环境科学相结合的边缘学科,即环境地学。环境地学主要研究地球 自然环境的组成、结构、形成、演变以及环境的破坏、污染、防止、保护、 改良与评价等。根据地球科学中各学科所研究的侧重点不同,又可分为环境 地质学、环境地理学、环境气象学、环境水文学、环境海洋学、环境土壤学 等。朋友! 这些比较详细缺点就是多点 呵呵不知道你用不用

论文之家 优秀论文杂志 论文资料网 法律图书馆 法学论文资料库 中国总经理网论文集 mba职业经理人论坛 财经学位论文下载中心 公开发表论文_深圳证券交易所 中国路桥资讯网论文资料中心 论文商务中心 法律帝国: 学术论文 论文统计 北京大学学位论文样本收藏 学位论文(清华大学) 中国科技论文在线 论文中国 : 新浪论文网分类: 中国论文联盟: 大学生论文库 论文资料网:

地球物理学报和地球物理学进展

国内的两大主要科技文献检索机构:CSCD 和 CSTPCD : 无论是期刊界同仁还是科技工作者有时对我国的两大检索系统CSCD 与CSTPCD 产生混淆。好多朋友误认为两者是一个检索系统,其实,两者是不同的。看了以下内容,会给您提供些帮助。 1.中国科学引文数据库 (Chinese Science Citation Database简称 CSCD) 中国科学引文数据库(Chinese Science Citation Database,简称CSCD)是我国最重要的科学信息检索系统之一。隶属中国科学院,由中国科学院文献情报中心负责。创建于1989年,收录我国数学、物理、化学、天文学、地学、生物学、农林科学、医药卫生、工程技术、环境科学和管理科学等领域出版的中英文科技核心期刊和优秀期刊千余种,目前已积累从 1989 年到现在的论文记录300 万条,引文记录近 1700万条。中国科学引文数据库内容丰富、结构科学、数据准确。系统除具备一般的检索功能外,还提供新型的索引关系——引文索引,使用该功能,用户可迅速从数百万条引文中查询到某篇科技文献被引用的详细情况,还可以从一篇早期的重要文献或著者姓名入手,检索到一批近期发表的相关文献,对交叉学科和新学科的发展研究具有十分重要的参考价值。中国科学引文数据库还提供了数据链接机制,支持用户获取全文。中国科学引文数据库具有建库历史最为悠久、专业性强、数据准确规范、检索方式多样、完整、方便等特点,自提供使用以来,深受用户好评,被誉为“中国的SCI ”。 中国科学引文数据库是我国第一个引文数据库。曾获中国科学院科技进步二等奖。1995年CSCD出版了我国的第一本印刷本《中国科学引文索引》,1998年出版了我国第一张中国科学引文数据库检索光盘,1999年出版了基于CSCD和SCI数据,利用文献计量学原理制作的《中国科学计量指标:论文与引文统计》,2003年CSCD上网服务,推出了网络版,2005年CSCD出版了《中国科学计量指标:期刊引证报告》。2007年中国科学引文数据库与美国Thomson-Reuters Scientific合作,中国科学引文数据库将以ISI Web of Knowledge为平台,实现与Web of Science的跨库检索,中国科学引文数据库是ISI Web of Knowledge平台上第一个非英文语种的数据库。 中国科学引文数据库分为核心库和扩展库,数据库的来源期刊每两年进行评选一次。核心库的来源期刊经过严格的评选,是各学科领域中具有权威性和代表性的核心期刊。扩展库的来源期刊经过大范围的遴选,是我国各学科领域优秀的期刊。中国科学引文数据库(2007年-2008年)共遴选了1083种期刊,其中英文刊55种,中文刊1028种;核心库期刊737种(以C为标记)扩展库期刊346种(以E为表记)。2 中国科技论文与引文数据库(CSTPCD) CSTPCD是我国最重要的检索系统之一。隶属中国科技部,由中国科技信息研究所负责。旗下的万方公司推出的中国数字化期刊群在国内影响巨大。每年年底中国科技信息研究所均召开一次中国科技论文统计结果发布会,公布上年度的最新统计结果。并出版《××年版中国科技期刊引证报告》,目前国内各大科研机构及高等院校,均以此系统结果为国内科学论文检索查证的主要依据。 中国科技信息研究所认为,该系统能使我国的广大科技工作者、期刊编辑部和科研管理部门能够科学快速地评价期刊,客观准确地选择和利用期刊,为科技期刊和科研人员客观地了解自身的学术影响力,提供公正、合理、科学、客观的评价依据。同时,该系统也为决策管理部门科学地评价我国科学活动的宏观水平、微观绩效,以及建立科学交流传播机制积累基础数据。 中国科学技术信息研究所在与国际评价机制接轨的同时,注意结合中国科技期刊发展的实际情况,选择了总被引频次、影响因子等十几种期刊评价指标,利用中国科技论文与引文数据库十几年积累的丰富数据,编写出版《中国科技期刊引证报告》(CJCR)。《中国科技期刊引证报告》已连续出版11 年,是一种专门用于期刊引用分析研究的重要检索评价工具。利用CJCR 所提供的统计数据,可以清楚地了解期刊引用和被引用的情况,以及引用效率、引用网络、期刊自引等的统计分析。同时,利用CJCR中的期刊评价指标,还可以方便地定量评价期刊的相互影响和相互作用,正确评估某种期刊在科学交流体系中的作用和地位,确定高被引作者群等。自CJCR 问世以来,在开展科研管理和科学评价期刊方面一直发挥着巨大的作用。 CSTPCD 检索系统2008年共收录6082种中国科技期刊。《地球物理学报》和《地球物理学进展》一直是该系统的收录期刊。 目前看,两大检索系统发展迅速,网络化信息化功能和服务意识越来愈强。为中国科技期刊的评价和科学信息的传播具有不可替代的作用。是中国科技期刊检索系统的两大主力。这两家谁能凭借自己的实力和地位成为中国的龙头老大? 恐怕对方都不会服气。而其他数据库检索系统特别是最近风头正盛的清华同方集团,凭借清华人永不疲倦的奋斗精神,短短几年发展迅猛,在其强大的CNKI(中国知识资源总库)中的中国学术期刊网里建立了自己的检索系统:中国学术期刊综合评价数据库(CAJCED),并在每年11月份给出学术期刊综合引证报告(清华版),并及时发给各在库期刊编辑部。对CSCD和CSTPCD 的地位发起挑战。 在我们大部分编辑人心里,两大数据库的地位都差不多,CSCD来源期刊审查严格,精中选精,期刊数量较少,在全国6000多种科技期刊中,仅收录1000多种,核心刊仅700多种,可谓少而精。CSTPCD的核心库期刊是1200余种,相对数量大于前者,遴选相对宽泛。其扩展库我们一般理解为万方数据库中的6000余国内期刊。有时候我们常误认为CSCD和CSTPCD是一个系统,一套人马,其实还是有所区别。 目前,许多学术期刊在申请基金、重要成果报奖时,一般对方单位要求提供的是CSTPCD检索系统的结果。如申请国家自然科学基金期刊专项基金的时候,要求填写的是CSTPCD结果。

地球物理方面:1.地球物理学报 2.地震学报 3.地震地质4.地震工程与工程振动 5.地震 6.中国地震 7.地震研究 8.地球物理学进展9.西北地震学报10.水文石油、天燃气方面:1.石油勘探与开发 2.石油学报 5.天然气工业 3.石油与天然气地质 6.石油化工 4.石油实验地质7.石油物探 8.中国石油大学学报.自然科学版 9.天然气地球科学 10.西南石油大学学报.自然科学版 11.石油钻采工艺 12.新疆石油地质 13.测井技术14. 油气地质与采收率 15.大庆石油地质与开发 16.钻采工艺 17.油田化学 18.石油钻探技术19.石油炼制与化工 20.石油地球物理勘探 21.特种油气藏 22.石油机械 23.西安石油大学学报.自然科学版 24.钻井液与完井液 25.石油学报.石油加工 26.大庆石油学院学报 27.油气田地面工程 28.海相油气地质 29.中国海上油气

顶,读完博士后,回头看,除了那些高档一些的EI\SCI可能有些难度,其他全都那样的,有些装得有些品味吧,其实垃圾,不过不赞成的是,创新难度大,不能要求全部社会的人都去搞创新,不现实,生活本就这样,平淡而已,真正的,上至所谓的伟人,下至黎民百姓,都要生活,不能太苛求,哈哈。

如果仅美欧日三个发达地区,地球物理学领域的代表性期刊应该是美国的《Journal of Geophysical Research》和《Geophysical Research Letters》,欧洲(德国)的《Annales Geophysicae》和日本的《Earth, Planets and Space》等。

地球物理学报物理学校

一区。地球物理学报是中国科学院主管、中国地球物理学会主办的学术性期刊。地球物理学报期刊级别为核心期刊,出刊周期为月刊,期刊创办于1948年。地理物理学报是中国地球物理学会和中国科学院地质与地球物理研究所联合主办,是有关地球物理科学的综合性学术刊物。《地球物理学报》主要栏目设有:应用地球物理学、应用地球物理、地球动力学·地震学·地热学·地磁学、空间物理学·大气物理学·大地测量学、地球动力学·地震学·地热学、地球动力学·地震学·地磁学·地热学、空间物理学·大气物理学·重力与大地测量学、地球动力学·地震学·地磁学、空间物理学·大气物理学。

地铁10线健德门桥站,健德桥东200米,中国科学院地质与地球物理研究所新楼一楼

建德门桥东200m左右 中国农业银行东侧的小院里 七楼 城建开发大厦那个楼

地球物理学报刘洪

中国古代著名数学家 张丘建、朱世杰、贾宪、秦九韶、李冶、刘徽、祖冲之中国现代著名数学家 胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱、项武忠、项武义、龚升、王湘浩、伍鸿熙、严志达、陆家羲、苏家驹、王菊珍、谷超豪、王元、潘承洞、魏宝社、高扬芝、徐瑞云、王见定、吕晗。

王伟国1钱荣毅2

(1.广州海洋地质调查局广州510760;2.中国地质大学北京100083)

作者简介:王伟国,男(1982—),硕士,助理工程师,工作方向为地震偏移成像及定量地震解释。E-mail:

摘要普通的相移偏移算法具有速度快、稳定性高、理论上无网格频散等优点,但在复杂地质构造条件下,由于速度横向的剧烈变化,偏移成像往往不能得到理想的效果。而非稳态相移算法是基于在非稳态滤波器理论,通过对普通的相移算子在横向上增加一个扰动量(称之为非稳态相移算子),从而在偏移成像时能很好地适应速度的横向变化。用该算法在普通的横向变化速度模型及Marmousi模型上进行叠前深度偏移试算,均取得了很好的应用效果。

关键词非稳态相移叠前深度偏移速度模型

1前言

相移算法Seddon[1]预测一个深度层波场的振幅和相位主要是基于在更浅层的已知波场和地下速度模型。总体来说是基于波动方程的差分解,在这方面我国的很多学者也做了很多相关的研究[2~5]。相移法波场外推有许多前提条件和一个主要的难题。好的方面,对于常速度相移算子理论上是精确的,无条件稳定的,没有网格频散,并且对所有的散射角都是精确的。主要的难题是横向速度变化怎样结合到相移方法中,这还不是直观的表现,因为空间坐标进行了傅氏变换。已知的波场通常是实际检波器接收到的地震记录或是正演模拟的地震记录,相移波场被用于计算地下地质结构的反射系数。当介质速度是常量时,相移波场的过程是一个相当稳定的过程,并且给出相移角度能达到90°的精确解(Gazdag,1978;Stoffa等,1990)。Stoffa(1990)的裂步傅里叶方法和Wu(1994)的相位屏方法都实现了横变速度的近似相移,而Gazdag和Sguazzero[6]通过另一种方法叫相移加插值(PSPI),对于参考速度集而言,通过计算一系列的常速度相移,并插值得到一个单一的横向变化的结果,从而使得相移能够被拓展到横向变化的速度,但它仅仅是在数学上的一种处理方法,并不具有物理意义。Black等(1984)给出了傅氏方法的一个解析表达式来适应横向速度的变化,但并没有证明表达式。

Margrave和Ferguson[7-10]证明了Black的方法是广义的PSPI,它用很多的参考速度来代替插值,并利用非稳态滤波器[11]推导了和PSPI相联系的方法,称为非稳态相移(non stationary phase shift,NSPS)。与PSPI相比,NSPS具有物理上的解释。

2非稳态相移算子及算法流程

非稳态滤波器理论由Margrave(1998)提出,他提出非稳态滤波器理论至少有两种不同的形式是可能存在的。称之为组合滤波器和褶积滤波器,两种滤波器在稳态极限下是等价的。当对每一个不同的速度算出一个参考波场时,我们可以得到方程(1),它其实是一个广义反傅氏积分,是一个非稳态,双域的组合滤波器例子,滤波器的非稳态性通过了事实证明,滤波器描述αv(x)(kx,x,ω),取决于波数和空间位置。

南海地质研究.2010

其中,

南海地质研究.2010

这里,φ(kx,0,ω)为初始波场,ΨNSPS(x,Δz,ω)为利用NSPS外推Δz后的波场,αv(x)(kx,x,ω)在NSPS算法中称为偏移算子。kx,kz分别是横向和纵向的波数。

对公式(1)作正傅氏变换得到:

南海地质研究.2010

对公式(3)作反傅氏变换得到外推波场为:

南海地质研究.2010

通过非稳态相移的理论,可以按照图1的算法流程来进行叠前深度偏移。

3模型试算

考虑到计算机硬件资源和算法精度验证的要求,建立了一个断层-背斜模型,断层主要是加强模型的横向速度变化,深部的背斜是验证算法成像的最大倾角和深部成像对速度的要求。由于是已知模型,本文选用对速度更为敏感的炮集记录来进行叠前深度偏移。模型及参数如图2所示。

所布置的模拟观测系统参数为:双边接收系统,总炮数为50炮,炮点间隔为30m,首炮位置位于速度剖面的最左端,100道接收,道间距为5m,最小偏移距5m,排列自左向右移动。炮集模拟用的是单程声波波动方程。炮集震源为模拟爆炸震源,主频为30Hz。图3所示为第25炮,即模型中间750m位置处。具体在偏移过程中,添加了零道来满足偏移处理中与速度剖面的维数相同。图4为NSPS偏移结果。

图4中圆圈处为模型的断层点,从单炮偏移的效果看,圆圈处同相轴的纵向分辨率还是很高,断点也比较清晰,对比模型,归位也很准确,反射波和绕射波都已经收敛,600m处的一个同相轴被拉平,模型此处是水平地层,800m处背斜的顶点也能比较清晰地看到;这是没有做过任何叠前处理的炮记录,能够达到这样的效果,至少可以说明NSPS算法对于该模型是良好适应的。

图1 NSPS算法流程图 Flow of NSPS

通过图5的叠加剖面可以看出,断层点清晰可见,归位很准确,断层上下盘界面清晰,水平层位被很好地拉平,且深度都基本和模型位置的深度一致,基本没有重影,没有频散现象,背斜轮廓明显可见。但同时也可以看出,0~100m之间存在明显的直达波影响,主要是没有做叠前的一些常规数据处理造成的,这并不影响对于算法本身的验证;逆掩断层的断面及背斜的两个倾斜角度能量不强,没有很好地收敛,其实产生这样的结果主要是因为算法本身的假设条件造成的,单程波动方程偏移对于多次绕射波在理论上无法很好地成像。

图2 断层-背斜深度模型 Depth model of fault-anticline

图3 添加零道后的单炮记录 Single shot record after padding with zero

图4 单炮NSPS偏移结果 Migration of single shot

图5 NSPS偏移叠加结果 NSPS migration after stacking shots

图6 Marmousi模型 Marmousi model

我们可以看一下 NSPS 算法在IFP(Institut Francais du Petrole,法国石油研究院)Marmousi模型上的表现,图6为Marm ousi模型,该2D 模型包含240个炮集记录,一个震源波形和一个完整的速度和密度剖面,本文采用的是简化的速度模型,只含有纵波速度,不含有密度、横波等信息,炮集记录也是重新模拟生成,如图7所示。炮集设置为240炮,左端接收,接收道96道,道间距25m,最小偏移距200m,模拟炸药震源放炮,波函数为零相位雷克子波。图6为第120炮位置,即在5550m处,图7为第120炮的单炮模拟记录。为了应用NSPS算法,对模型数据进行了抽稀,抽成25m×25m的网格。

图7 第120炮地震记录 The record of shot 120

图8是基于爆炸发射理论模拟的剖面,由于爆炸反射界面成像原理没有时间差的关系,可认为是零炮检距剖面,考虑的是单程波,以及速度近似地认为是实际速度的一半,因此必然会存在一些误差,如图9中所出现的一些归位不是很准确及反射波不收敛的地方,当然这也和模型的精度降低有关(抽稀为25m×25m)。但是偏移使Marmousi模型的三个大断裂都基本归位,两个背斜构造成像清楚,2500m深度处的油水接触界面成像也非常清楚,表明NSPS叠前深度偏移算法的准确性和可靠性。

图8 基于爆炸反射理论的有限差分正演剖面 Finite difference forward section based on exploded reflecting theory

4 认识和讨论

1)NSPS深度偏移算法对于层位的归位还是很准确,虽然较之普通的相移算法成像效率要慢,但在保证精确度和准确性的前提下,效率也是可以接受的。

2)从文中两个模型最终的偏移效果来看,对于倾角比较大的地质界面(断层面、背斜的两个斜面)而言,该算法还不能使绕射波完全地收敛,当然这可能是由算法本身的假设条件引起[12]。

3)Marmousi模型是工业公认的叠前深度偏移算法的验证模型,由于其复杂程度接近实际的地质结构,因此利用该模型来验证偏移算法就显得很有必要;而本文的算法是基于规则网格(25×25)下的偏移算法,对于非规则网格Marmousi模型(网格为×4)还有待进一步的研究和提高。

4)相速度、波数和空间采样间距是相关的,当初值为一般函数时,由于其含有各种波数成分,它们将以各种不同的相速度传播,所以波形会不断的散开形成重影,这是差分所引起的频散;在用波动方程作模拟和偏移处理时,一些同向轴由于相速度和群速度的不一致在传播过程中就会产生这种畸变和重影,还有一些是由波动方程本身近似和空间采样率所引起的。

图9 NSPS偏移剖面 Migration section of NSPS

参考文献

[1]Gazdag, equation migration with the phase shift ~1351

[2]程玖兵,王华忠,马在田.带误差补偿的有限差分法叠前深度偏移方法.石油地球物理勘探,2001,36(4):408~413

[3]程玖兵,王华忠,于富文等.波动方程共炮检距道集叠前深度偏移.石油地球物理勘探,2001,36(5):526~532

[4]杨辉,高亮,刘洪等.微机群并行实现Marmousi模型叠前深度偏移.地球物理学进展,2001,16(3):68~75

[5]马在田.高阶方程偏移的分裂算法.地球物理学报,1983,26(4):377~388

[6]Jeno Gazdag,Piero of seismic data by phase shift ~131

[7]Margrave,Gary of nonstationary linear filtering in the Fouier domain with application to time variant ~259

[8]Margrave,Gary extrapolation by nonstationary phase ~1078

[9]Margrave,Gary explicit,symmetric wavefield extrapolator for depth Ann Internat Mtg Soc Expl-Geophys,Expanded Abstract[C],1999,1461~1464

[10] depth migration by symmetric nonstationary phase research report,1999,11:1~17

[11]Pann,K.,Shin, of convo1utional time-varying ~43

[12]贺振华等.反射地震资料偏移处理与反演方法.重庆大学出版社,1989

The Study on Pre-stack Depth Migration Based on Nonstationary Phase Shift

Wang Weiguo,Qian Rongyi

(Guangzhou Marine Geological Survey,Guangzhou 510760)

Abstract:In theory,the general phase shift migration algorithm is fast,high stability,and has no grid in complex geological structure,due to the huge diversity of lateral velocity,migration often can not get the desired nonstationary phase shift algorithm is based on the theory of nonstationary filter,and it adds a disturbance of phase shift operator in horizontally(called nonstationary phase shift operator),resulting in migration well adapted when the lateral velocity algorithm has achieved a very good application effect with pre-stack depth migration in common velocity model varied with lateral velocity and the Marmousi model.

Key words:Nonstationary phase shift;Pre-stack Depth Migration;Velocity model

华罗庚 陈景润 张丘建、朱世杰、贾宪、秦九韶、李冶、刘徽、祖冲之中国现代著名数学家 胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱、项武忠、项武义、龚升、王湘浩、伍鸿熙、严志达、陆家羲、苏家驹、王菊珍、谷超豪、王元、潘承洞、魏宝社、高扬芝、徐瑞云、王见定、吕晗。 郭守敬 刘应明 伏羲 :约五千年前何承天:公元370~447年赵斐: 不详墨子: 公元前468~376年张邱建:约公元5世纪郑玄: 汉代张苍: 约公元前152年祖冲之:公元429~500年辛研: 春秋时代耿寿昌:约公元前50祖日桓:公元5~6世纪惠施: 战国刘歆: 公元前50~后20年甄鸾: 约公元535~566王莽: 约公元~世纪乘马延平:公元前30年张钻: 公元540年王粲: 公元177~217张衡: 公元78~139年刘焯: 公元544~610年高允: 公元390~487年徐岳: 公元168~188年李淳风:公元604~672年信都芳:南北朝后齐刘徽: 元3世纪僧一行:公元683~727年元延明:公元约6世纪刘洪: 约公元206年王孝通:公元7世纪初刘宴: 约第八世纪陈炽: 公元220年孙子: 年代不详丁谓: 北宋赵爽: 约公元220年商高: 约周朝许商: 西汉王蕃: 公元228~266年夏侯阳:约后魏时 甄鸾: 约公元535~566年郭守敬:公元1231~1316年李之藻:公元1565~1630年刘焯: 公元544~610年王恂: 公元1235~1281周公: (约公元前11世纪)王孝通:公元六世纪杨辉: 约公元13世纪中至后半韩延: 约八世纪李淳风:公元604~672年朱世杰:13世纪后期的20~30年和14世纪开头的10~20年间徐昂 :约9世纪僧一行:公元683~727年陶宗仪:公元1366年元裕: 公元约12~13世纪边冈: 出生:文献尚无记载王文素:1463年~?沙克什:公元1278~1351贾宪: 约公元1023~1050年吴敬: 约14世纪末赵友钦:约公元1279~1368李冶: 公元1192~1279年程大位:公元1533~1606年刘仅: 约十四世纪秦九韶:约公元1202~1261年朱载堉 1536~1611沈括: 公元1031~1095年刘益: 约公元12世纪徐光启:公元1562~1633年 程大位: 1533~1606郑高升 明代朱元浚 明代朱载堉 1536~1611周述学 1522~1566王应选 明代徐光启: 1562~1633陈必智 明代王征 明代李之藻 1565~1630 林高 明代 李笃培 1576~1631 颐应祥 1483~1565杨溥 明代孔元化 ?~1632唐顺之 1497~1551徐心鲁 明代李天经 1579~1659陈邦称 明代柯尚迁 明代毛晋 1599~1659马杰 明代邢云路 明代薛凤祚 ?~1680 陈鹤龄 1670梅文鼎: 1633~1721明安图 ?~1763陈厚耀 1680陈世佶 1686~1749孙梅成 1681~1763 陈吁 1685年希尧 ?~1738 王锡阐 1628~1682黄宗宪:1608~1647(清代)余姚Huang Zongxian毛晋 1620~毛干干 1645~陈世仁 1676~1722江永 1681~1662 梅文鼎 (1633~1721)戴震 (1742~1797)李锐 (1769~1817)年希尧 (1678~1739)焦循 (1763~1820)项名达:1789~1850明安图 (1692~1763)阮元 (1764~1849)董佑诚 (1791~1823)李潢 ????~~1812汪莱 (1768~1813) 李善兰: 1811~1882阮元 1764~1849邹伯奇 1819~1869董佑诚 1791~1823项名达: 1789~1850李俨 1892~1963戴煦 1805~1860夏鸾翔 1823~1864曾纪鸿 1848~1877华衡芳:1833~1902 曾炯之 姜立夫 熊庆来 孙光远 冯康 陈省身 华罗庚 苏步青 陈建功 廖山涛 培经 许宝禄 钟开莱 王浩 江泽涵 姜伯驹 丁同仁 吴文俊 曾远荣 李新民 周鸿经 丘成桐 陈景润 王元 潘承洞 潘承彪 田刚 周炜良 袁亚湘

中国古代著名数学家 张丘建、朱世杰、贾宪、秦九韶、李冶、刘徽、祖冲之中国现代著名数学家 胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱、项武忠、项武义、龚升、王湘浩、伍鸿熙、严志达、陆家羲、苏家驹、王菊珍、谷超豪、王元、潘承洞、魏宝社、高扬芝、徐瑞云、王见定、吕晗。望采纳

地球物理学sci期刊

sci期刊涵盖:《北京科技大学学报》(MMM英文版)以及《地球物理学报》,还有《地质学报》(英文版)和《钢铁研究学报》(英文版),《高校化学学报》、《高校化学研究》(英文版)、《红外与毫米波学报》(中文版)、《化学学报》。

《数学学报》(英文版)、《世界胃肠病学杂志》(英文版)、《科学通报》(英文版)、《数学年刊B辑》(英文版)、《植物学报》(英文版)、《武汉工业大学学报》(材料科学英文版)、《中国海洋工程》(英文版)、《中国物理快报》(英文版)等。

用sci能够检索数学以及物理学,化学和天文学,生物学、医学、农业科学、材料科学、计算机科学等学科关键的学术成果相关信息,sci不单单能够检索学术期刊,还能检索学术会议,以及部分专利。

sci论文的特点

一、创新性

创新性是学术论文的灵魂,sci刊物都是国际上的顶尖刊物,对文章的创新性是非常看重的,文章的创新性高主要取决于选题是否有创新性,sci论文的选题一般都是具有很高创新性的,除了选题,研究方法、研究结果也是具有很高创新性的,他们共同构成了sci论文的学术价值,因此创新性必不可少。

二、简洁凝练的英文表述

英文写作是sci论文的基本要求,这一点也是不少作者为之挠头的,国内不少作者英文基础不是特别扎实,如果想达到sci论文的英文写作要求,大多国内作者都是需要进行针对性的训练与提升的,sci论文的英文表述应当是简洁而清楚的,并且具有很强的可读性,没有过于啰嗦重复的部分。

三、符合科研伦理

一项研究从研究问题上就要符合科研伦理。比如符合受试者科研伦理,符合实验动物科研伦理。

1.是。 2.《物理学报》由中国物理学会和中国科学院物理研究所主办的综合性物理学中文学术期刊,为半月刊,被SCI-CD、SCI-E、CA、AJ、MR等国际核心检索系统收录。 3.《物理学报》创刊于1933年的《中国物理学报》,1953年更名为《物理学报》。 年被评为新中国60年有影响力的期刊。

  • 索引序列
  • 地球物理学导论论文
  • 地球物理学报和地球物理学进展
  • 地球物理学报物理学校
  • 地球物理学报刘洪
  • 地球物理学sci期刊
  • 返回顶部