首页 > 学术论文知识库 > 玻璃纤维材料的研究论文

玻璃纤维材料的研究论文

发布时间:

玻璃纤维材料的研究论文

高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域,另外,(材料科学)里面的资料,让你找找自己的灵感

现在人们降低噪音方法越来越多了,其中使用隔音墙是一种非常常见的方法,很多材料都可以用作隔音墙墙体,比如说红砖墙和红砖墙都是很常用的材料,但是它们之间性能有什么不同呢?相信很多用户自己也不是很清楚,希望通过本文的介绍,能增加大家对不同隔音墙墙体材料隔音效果的了解。首先给大家说一下怎样来检测隔音效果:隔音效果的检查方法是在一房间内正常的放送音乐,在门口一米处测量声音的衰减程度,例如房间内的声压级是90dB,房间外面一米处测量的声压级是60dB则表示隔音30dB。房间的门的处理同样是装修设计比较困难的问题,录音棚的门的处理是专业的,隔音效果很好,可是成本很高,通常一个隔音门的价格少则4~5千元,多则上万元。目前比较实用的是采用成型一体门,大门边加密封条的办法,配合闭门器隔音效果还不错。首选是隔音墙板,这种材料属于专业的隔音材料,两边是金属板材中间是具有隔音作用的发泡塑料,这种墙板厚度越大隔音效果就越好。有些地方由于承受重量的问题,不能采用砖墙或者其他砌墙的办法,只能采用轻钢龙骨石膏板的办法。其次,经济实用的是2/4红砖墙,两边水泥墙面。这种隔断墙一定要砌到顶部,需要走通风管道或者其他走线时再打孔穿过,应该注意管路的密封问题,否则同样可以引起串音现象。我们的建议是再在石膏板的外面附加一层硬度比较高的水泥板,这种水泥板外观和石膏板相同(尺寸也差不多),但是硬度远远高于石膏板,是很好的隔音材料,应该注意的是施工工艺问题,特别是缝隙的部分一定要密封。长时间的被噪音干扰轻者会影响附近居民的睡眠质量,严重的可能会导致患者的生活质量下降,甚至影响患者的身体健康,而隔音墙能够为被噪音干扰的用户提供一个安静的环境。相关阅读推荐:国家规定在家庭中的八个部位必须使用安全隔音屏障蓝音隔音公司隔音屏障在性能方面突出的表现为每个受噪音干扰的家庭安装最合适的隔音门海绵优点:海绵是一种性能非常好的吸音材料,不然也就不会在录音棚内被大量使用了。表面做了吸音槽处理的海绵吸音效果更佳!这种海棉俗称波浪棉。不足:海绵的减震和隔音性能较差。吸水能力强、容易吸附灰尘,阴雨天或洗车后车重大大增加,容易引起对车身的锈腐!此外,未经过特别处理的海绵防火性差,一般不阻燃。改性海绵其实就是海绵,汽车隔音降噪网两年前为解决海绵的吸水问题,特意对海绵进行处理,在海绵一面热附着一层黑色塑膜,吸水问题得到解决,但是吸音能力就差多了,此外海绵本身减震能力也弱,所以弃用。目前市面上仍有人在刷上不干胶后,挂以国外品牌,竟卖到每平米近百元的价格,隔音材料用不干胶的做法并不科学。沥青板建筑上原先使用的沥青板具有较好的防水、减震、隔音效果。只是不能阻燃,自重较大且有污染。两年前天堂鸟先生推荐不少车友使用。后来发现山东生产一种改性沥青板,阻燃且环保,出厂时一面还可以附着一层铝箔,较美观。尽管施工时需要对材料加热处理,效果还是不错。优点:便宜。不足:自重大,吸音效果差。欧蓝德的地板下加的就是沥青板,车身的 A 、 B 、 C 柱填充了乙烯泡沫材料用于吸音降噪。橡胶板橡胶板因原材料组成成分不同,所表现出的物理性质也相差较大。比如表面光洁度、硬度、耐火性能、可塑性均有极大的差异。但总的来说普通橡胶减震能力弱于沥青板,隔音能力较强。 缺点就是自重大,吸音效果差,施工难度大。纤维毯、工业毛毡现在很多汽车生产厂家在生产线上使用的就是这种材料,你的爱车里多半也可以见到它的身影。只不过这种材料用在车底板和顶棚还可以,不适合其他部位使用。优点:成本低廉。缺点:减震效果一般,虽有一定吸音、隔音能力,但是不防水、不防火也不防腐。华普、夏利等车的前底板和顶棚等处可以见到,广本的后备厢内饰板及前车底板部位也有使用。麻绒价格便宜,原料来源丰富。防火、防潮性能差。在中华车的部分部位有使用。硅酸铝棉白色或淡黄色,柔软似棉花,耐火、吸水能力较差,不耐脏。对高频噪音吸收能力较强,隔音效果较差。对人体有危害,不环保。石油纤维棉白色,柔软似棉花,遇火既融,吸水能力较差,不耐脏。对高频噪音吸收能力较强,隔音效果较差。玻璃纤维棉吸声性能好,吸水,保温隔热,不自燃,防腐防潮。外观类似硅酸铝棉,但是很不环保,工业领域也已经逐步淘汰,但个别施工店面却依然在使用,有些引擎盖防护垫是用它做的。松散纤维易污染环境;内有气孔,相互连接,水汽能够非常容易的浸入,个别产品外加防护层,如有破损,即可导致污染,对健康造成威胁。老款切诺基副驾驶地垫下有少量使用。工业橡塑板黑色、柔软、防水、有一定耐火性。多用于建筑行业的保温设备或空调行业。优点:隔音、减震能力较强,价格便宜。不足:无吸音能力。有异味。目前被少数车友和部分汽车隔音店面使用,也有带自粘胶(背胶)的产品,价格稍高,可少量适用于底板部位,其余部位容易发粘或脱落,要慎用。发泡硅胶板优点:柔软、不易燃烧、防水、自重适中,环保。隔音效果和减震效果佳,使用寿命长。不足:吸音性能一般。成本太高:仅原材料就已经 90 多元每公斤 ,因此性价比不高。吸音涂料灰黑色液体,喷涂使用。吸音、隔音效果一般,倒是多层涂刷后减震能力还可以。发泡胶学名聚氨酯,白色偏黄、有些具有防火能力,不吸水,具有防火能力的价格较高。常用于建筑和保温行业。减震、隔音能力还可以,吸音效果一般。在车辆上使用后会给日后维修带来不便,不少隔音降噪网的网友在处理 A 、 B 、 C 柱时使用。铝箔复合材料市面常见,无品牌居多。以铝箔与海绵或多纤维材料复合而成,另一侧粘有不干胶。多用于引擎盖的隔音和防护。优点:质量轻、对声波的反射性能好。不足:复合层一般吸水;防火性能差;铝箔层向发动机和相邻线路反射大量热能,不利于发动机散热,易加速线路老化;不干胶在高温下容易发黏并脱落。隔声毡主要由铁粉、聚氯乙稀或沥青等材料制成,防潮、防蛀设计,有阻燃产品,常用于自来水管道包裹,墙体粘贴等建筑领域。隔音性能较好,无吸音能力。聚氨脂泡沫塑料 是构成发泡胶的主要成分。固化的聚氨脂泡沫材料能起到较好的隔音、吸音性能,防腐、防水,较好的聚氨脂材料有阻燃设计。但是吸声性能不稳定。车辆的座椅多用该材料制成。中华车后排座位下有大量聚氨脂隔音吸音材料,广本的车门内饰板也有少许采用。波峰海绵海绵或橡塑制品,多数在高温下释放有毒物质,做过改性后的产品有一定阻燃性。不防水且容易吸尘,水浸或受潮后更易藏污纳垢。有较好的吸音性能,海绵材质几乎无任何隔音性能,厚度一般在3CM甚至更厚,不适于对汽车噪音的抑制,常与隔声毡等材料搭配形成特殊声结构在影院、录音棚和KTV等场所做墙面吸音材料使用。平静隔音吸音棉以工业橡塑为主要载体,添加多种规格的隔音颗粒,氮气发泡成型,灰黑色外观。最具特色的是针对汽车噪音的异型吸音槽设计。防火、防水、柔软、恢复性强,底面刷胶粘贴起到止震作用;正面被微型吸音孔和异型吸音槽覆盖,对不同频率及波长的噪音高效过滤。集成了止震、隔音、吸音功能,满足车用降噪材料轻量化、环保等所有要求,性价比高。

现代纤维艺术中麻纤维的创新应用,首先通过研究沃林格“抽象与移情”的相关理论和内容,为麻纤维材料表现研究奠定了理论基础。下面是我为大家整理的纤维艺术毕业论文,供大家参考。

纤维艺术一词来源于英文“FiberArt”,最早出现在20世纪70年代的美国。受欧洲壁挂艺术的影响,美国艺术家集传统艺术的精华,积极开拓现代纤维艺术。20世纪80年代随着中国的改革开放,纤维艺术也被引入中国,一些人相继受之影响,开始学习与参与,逐渐有了从事此类艺术的艺术家。

90年代末由清华大学美术学院率先在国内发起了“纤维艺术普及教育运动”,并通过“从洛桑到北京”国际纤维艺术双年展的学术交流平台,吸引了国内外众多艺术家共同参与,积极推动着中国纤维艺术的新发展,掀起了纤维艺术运动的热潮。而直接影响是国内50多所高等院校相继开设纤维艺术专业,在全国展开了对纤维艺术教育、学术交流、艺术创作的发展势头,良好地构建了一个新的精神家园,开辟了一片新的艺术天地。

纤维艺术之所以迅速地在国内得到发展,并被众多艺术家和纤维艺术爱好者接受,除普及教育运动和学习交流等外在条件影响之外,重要的因素,是人们对纤维艺术概念的科学定位的接受与认可。较传统的称谓“编织艺术”“织物艺术”“壁挂艺术”或“织锦艺术”更具有拓展性和时代感。纤维艺术的定位打破了传统观念,突破了传统的表现手段,其称谓更具有强烈的艺术感染力、亲和力和艺术表达魅力。

艺术形式以材料确定称谓的有诸多学科门类。如:油画、水彩画、水墨画、漆画等。各类造型艺术有各自不同的材料效能、不同的表达手段、不同的艺术魅力、不同的形式界定和不同的发展方向。从而创造出形式、风格各不相同的艺术作品,产生出不同的艺术接受和不同的艺术价值。纤维艺术这门学科应属典型的材料型艺术,是以纤维材料来定性的。纤维这种充满自然气息的材料质地,是与人类关系最为密切相关的,并具有一种与生俱来的亲和力。这种亲和力来自纤维材料自身的性质:柔、轻、暖、光滑。无论是在视觉上、触觉上、心理上都给人一种灵感。

传统的编织艺术、织锦艺术多采用动、植物纤维材料,再加上采用韵味情调的手工编织表现手段,吸取自然之灵气,奇思妙想任意塑造,工装饰或写实,能够唤起人们对大自然的深厚情感,抒发艺术家的思想情怀,其作品给人一种回归自然的“人情味”与柔和的审美艺术享受,在艺术接受上也能清除现代生活中大量使用硬质材料所带来的冷、硬、重、糙的反感情绪。

现代纤维艺术的产生,在很大程度上是由于艺术家们不满足于传统的表现手段和传统的材料的局限,而长期对新纤维材料的关注与尝试所产生的结果。早在20世纪初,在法国艺术家让·吕尔萨人倡导和影响下,壁挂艺术在国际上得到空前的发展和迅速的提高,尤其是在表现形式上,有着很大的超越。特别是60年代初,他在瑞士洛桑开创并定期举办“国际壁挂艺术双年展”,更是吸引了许多画家、设计家投入到壁挂事业中来,融入了新的设计创作观念和思想情感,以现代装饰的造型、色彩象征主义的艺术手法,丰富和强化了壁挂艺术的表现力,使其成为一种特殊的现代艺术表现形式。

国际纤维艺术双年展第一届到第三届,基本上是以古老传统的奥比松表现手法为主的作品,具有一定的故事情节,背景复杂繁多,人物写实,表现出精湛的工艺水平。从第四届开始,作品出现新的表现形式。特别是到了第五、六、七届,开始大量引用综合材料和综合表现形式的作品,出现从具象到抽裂、从平面到立体、从室内到室外等富有创造性的纤维艺术作品,反映了纤维艺术从传统艺术到现代艺术变迁与超越的过程。这种变迁与超越主要是艺术家推陈出新、长期对新材料的关注与应用所致。引用了不同的材料就确定了不同的表现手段,从而产生不同的表现形式。

传统的材料是以天然的动、植物纤维丝、毛、麻、棉为主,其主要表现手段是编、织等技术,而现代人造合成纤维材料化学纤维、玻璃纤维、光导纤维和金属纤维,另外还有纺织品、纸等材料的启用,使艺术家在创作风格上、表现手段上产生著强烈的 *** ,常常除了传统编织技法外,还采用环洁、缠绕、包裹、捆绑、贴上、悬挂、排列等新的手段融入创作中去。材料的超载,使艺术家们大胆地进行现代观念和现代表现手段的赛马式竞争。

在创作领域、价值观、美学观上产生强烈的超越的渴望。许多作品摆脱了只限于观赏、陈设和装饰的概念,而成为现实生活的深度介入,成为人与生活对话与交流的应用品,成为纯艺术形式或抽象表达语言。不论是平面形式的壁挂艺术,还是立体形式的软雕塑艺术,或是建筑空间中的纤维构成艺术,以及装置艺术和纤维生活用品,都是因为纤维材料的拓展与超越引起的纤维艺术革命,使其走向一种“多元化”的发展时代。纤维艺术走到今天是多少代艺术家为之努力的结果,是从古老艺术到现代艺术的一种超越,是从传统观念到现代理念的一种升华。

艺术需要不断的创新与发展,新的纤维材料还会不断的产生,新的表达形式也将会不断产生。这就需要我们冷静地思考:纤维材料是否有界定,纤维艺术表达形式是否需要界定,纤维艺术作品是否有界定范围等等。现代纤维艺术中的一些作品似乎已经处于“纤维艺术”的临界点,处于模棱两可的状态的纤维艺术要发展、繁荣,对纤维艺术范畴的科学界定是值得艺术家们关注与探讨的重要问题。

参考文献:

[1]林乐成:《纤维艺术》,吉林美术出版社。

[2]杨琪:《艺术学概论》,高等教育出版社。

[3]尼跃红:《对中国国际纤维展艺术的评述》,2003年中国纤维艺术教育与手工文化建设理论研讨会文稿。

内容摘要:纤维艺术在中国随着现代主义文艺思潮的影响和传播,艺术家们对纤维材料的积极探索,与世界各国纤维艺术的不断交流及高校纤维教育的开展,将会焕发出勃勃的生机。

关 键 词:纤维艺术 中国 发展

纤维艺术是现代艺术的一种形式,它泛指一切以纤维材料进行创作的艺术作品,包括各种编织、印染、绗缝、软雕等等。目前,中国的纤维艺术随着现代主义文艺思潮的影响与传播,艺术家们对纤维材料的积极探索,与世界各国纤维艺术的不断交流,及高校纤维教育的开展,中国的纤维艺术焕发出勃勃的生机。

一、纤维艺术的取材

古往今来人们穿的、用的都是纺织纤维制成的,日久天长在人们思想中形成了纤维艺术品的材料都是纺织纤维的意象。其实不然,当代纤维艺术的取材远不止可纺织的纤维。

1.“纺织纤维”一般的要求

可纺性方面的要求,如纤维的长度、粗细、强度等;舒适方面的要求,如弹性、吸溼、透气、抗静电等。

2.“纺织纤维”的分类

①天然纤维。常规的天然纤维有棉、麻、丝、毛,随着科学技术的发展,新的天然纤维又出现了,比如菠萝叶纤维与现在普遍使用的竹纤维。

②化学纤维。化学纤维是随着化工行业的发展兴起的,目前已经成为纺织纤维的主体。其包括再生纤维与合成纤维两大类。再生纤维,也叫做人造纤维,是利用天然材料经制浆喷丝而成,有再生纤维素与再生蛋白质之分。合成纤维是以石油为原料,经化学聚合而成,主要纤维材料有涤纶、锦纶、腈纶、维纶、丙纶、氯纶等。它们可以根据需要切割成不同长度或直接使用长丝。其统一的燃烧特点是熔融成滴。

3.现代纤维艺术取材的开放性

从古到今,任何艺术创作和视觉形象都离不开材料,在每一个具体的艺术领域中,艺术家总是努力地挖掘和探索一切可能的新型材料。随着现代主义文艺思潮的影响和传播,中国的艺术家们突破了传统材料的观念束缚,广泛探索,大胆开拓和试验,使得纤维艺术取材更为广泛和多元化。

二、纤维艺术在中国的发展历史

中国早在先秦时期,利用动植物纤维制作服饰及装饰品已经很常见。如用兽毛织成、上面绣著五彩花纹的衣裳。春秋时期,吴、越、郑、卫等国的织造、染色水平都已经达到一定高度。到战国时期,丝织物在织法上,不仅能织细密的平纹,而且能织复杂的斜纹,还能提花和绣花。中国还是全世界最早使用蚕丝做纺织材料的国家。两汉时期又出现了工艺更加复杂的缂丝。由于缂丝工艺多为皇亲贵族的奢侈品,所以只追求工艺的精美绝伦而很少考虑人工成本。

宋代母子经缂法的运用使缂丝艺术品纹丝的均匀性胜过当时的工笔绘画作品。当时用缂丝技法临摹书画原作已经达到惟妙惟肖的境地,其工艺之精湛令人叹为观止。虽然缂丝采用的编织材料和欧洲壁毯不同,但通经断纬的编织技法却是相通的。清代缂丝的中心转移到了苏州一带,这时使用的彩色纬线已有六千多种颜色。

新中国成立后,纤维艺术的成就主要表现在地毯行业,地毯作为中国传统工艺美术的一个主流品种之一,一向以编织120道壁毯作为约定俗成的技术和质量标准。运用传统的栽绒工艺,遵循现实主义的创作原则,追求写实的画面效果,在艺术作品中还原生活的真实原貌。中国的地毯作品《万里长城》作为国礼赠送给联合国总部,一时传为佳话。 20世纪80年代,中国进入了改革开放的快车道,纤维艺术也迎来了明媚的春天“……一批青年艺术家揭竿而起,切入纤维艺术语言的探索,塑造了一些纤维感较强的艺术形象。”

当代中国工艺美术家学习欧洲高比林的编织技法,在极其简陋的工作环境中,开始进行独立的纤维艺术创作。一批采用高比林编织技法表达中国传统审美意趣的纤维艺术作品,如《山高水长》《秋水长天》等获得了艺术界的高度评价。

三、展望中国的纤维艺术的发展前景

纤维艺术的手工编织的特性使得这门传统的手工艺独具民族文化的特性。只有当一门技艺与文化相结合,才能在艺术的道路上永葆青春,常开不败。

1.国际纤维艺术的交流

2000年“从洛桑到北京”纤维艺术双年展,聚集了中国、美国、日本、乔治亚等16个国家二百多位纤维艺术家,这些艺术家的作品在中国最具现代意识的大都市上海集中展示,为世界范围内各种传统与现代的纤维艺术提供了展示空间和研讨殿堂。这本身就是一件促进中国纤维艺术发展,展现中国纤维艺术文化的大事件。

2002年第二届“从洛桑到北京”国际纤维艺术双年展在中国12所高校纤维艺术家共同努力下,在北京拉开了帷幕。这标志著中国纤维艺术进入到了一个崭新的发展阶段,它引领着世界纤维艺术的潮流,建立了国际学术交流的平台。中国成为世界纤维艺术的热点地区,纤维艺术也因为有了中国大舞台而焕发了蓬勃生机。

2.中国纤维艺术教育的开展

林乐成教授,清华大学美术学院纤维艺术高等教育的开创者,于1985年首先开设了编织壁挂设计制作课,这应是中国教育史上在大学开设编织壁挂教学的第一课。2000年,他又率先正式招收了纤维艺术研究方向的硕士研究生,这也应是中国教育史上第一个纤维艺术研究方向的硕士学位教育。他的社会实践和教育探索可谓硕果累累。2000年,清华大学美术学院工艺美术系纤维艺术工作室正式成立。几年来,纤维艺术工作室学生创作实践作品纷纷获奖。林乐成教授出版的《纤维艺术》一书,是他多年教育研究的结晶,是我国的纤维艺术教育领域具有学术价值和应用价值的第一本纤维艺术专著。

如今,纤维艺术已经在中国的高校开花结果,一批热爱纤维艺术的教育工作者正乐此不疲地耕耘在讲坛和工作室里。我国的纤维艺术教育,已经初具体系和规模。与此同时,理论文化的建设和研究,也逐步由感性到理性,由表层到纵深地发展着。

中国的纤维艺术有着悠久的历史,在改革开放的今天更加快速地发展着。纤维艺术不断与国际交流,吸取著欧美纤维艺术观念的开放性思潮,保留发扬着我国古老而独有的情怀和含蓄深远的意趣,也基本实现了传统手工艺与现代科技的完美结合。我们有理由相信,我国的纤维艺术在中国的经济日新月异和政治环境十分稳定下,在不断与世界的交流学习中,在国内纤维艺术教育的普及和国人审美情趣的不断提高中,一定会开拓出美好的明天。

参考文献:

[1]林乐成,王凯.纤维艺术.上海画报出版社,.

[2]朱尽晖.现代纤维艺术设计.陕西人民美术出版社,

下个金山快译2009就可以了,让她给你翻译

玻璃纤维复合材料论文

玻璃纤维复合材料通常指:玻璃钢。玻璃钢亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。玻璃钢别名玻璃纤维增强塑料,俗称FRP(Fiber Reinforced Plastics),即纤维增强复合塑料。根据采用的纤维不同分为玻璃纤维增强复合塑料(GFRP),碳纤维增强复合塑料(CFRP),硼纤维增强复合塑料等。它是以玻璃纤维及其制品(玻璃布、带、毡、纱等)作为增强材料,以合成树脂作基体材料的一种复合材料。纤维增强复合材料是由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在10μm以下,缺陷较少又较小,断裂应变约为千分之三十以内,是脆性材料,易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度、模量都要低很多,但可以经受住大的应变,往往具有粘弹性和弹塑性,是韧性材料。

复合材料是由两种或两种以上的不同性能、不同形态的组分材料,通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点,又显示了原组分材料所没有的新性能。《材料大词典》中定义为:复合材料是由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料,它既能保持原组分材料的主要特色,又通过复合效应获得原组分所不具备的性能。复合材料由增强相(增强体)、基体相(基体)和界面相组成。连续的基体称为基体相,具有支撑和保护增强相的作用。基体相在制造前形状有薄片、粉末、块体或无定形的流体,其状态可以是固态、气态、熔融态或半固一半液态。在与增强相固结后,成为包裹增强相的连续体。被基体包容的基体称为增强相,增强相是指复合材料的主要承载相,也称为增强体或分散相。其具有较高的强度、模量、硬度和脆性,在复合材料中呈分散形式,形态为细丝( 连续 的或断切的 )、薄片或颗粒状。增强相和基体相之间的交界面为复合材料的第三相,称为界面相。界面相为增强体和基体之间的结合面。其化学成分和力学性质与增强体和基体 有明显的区别,能够在相邻两相之间传递载荷。其厚度通常在亚微米以下,界面的特征对复合材料的性能、破坏行为及应用效能有很大的影响。

玻璃纤维的用途玻璃是一种以脆闻名的物质.有趣的是,玻璃一旦经加热,被拉制成比头发还要细得多的玻璃纤维之后,它仿佛就完全忘掉了自己的本性,变得像合成纤维那样柔软,而坚韧的程度甚至超过了同样粗细的不锈钢丝!那么,玻璃纤维有啥用处呢用玻璃纤维拧成的玻璃绳,可称是"绳中之王."一根手指那样粗的玻璃绳,竟能够吊起一辆载满货物的卡车!由于玻璃绳不怕海水腐蚀,不会生锈,因此用作船缆,起重机吊绳很合适的.合成纤维做的绳虽牢,但是它在高温下会熔化,而玻璃绳却不怕,因此,救护员使用玻璃绳特别安全.玻璃纤维经过组织,能织出各式各样的玻璃织物——玻璃布.玻璃布既不怕酸,也不怕碱,所以用作化学工厂的滤布,十分理想.近年来不少工厂纷纷采用玻璃布代替棉布,麻袋布,制作包装袋.这种袋不霉不烂,防潮防蚀,经久耐用,很受人们的欢迎,并且还能节约大量棉麻.有精美图案的大张玻璃贴墙布,用粘合剂往墙上一贴,美观大方,免去了粉刷和保养,脏了只要用布一抹,墙壁马上又变得干干净净了.玻璃纤维既绝缘,又耐热,所以它是非常优秀的绝缘材料.目前,我国多数电机和电器厂都已大量采用玻璃纤维做绝缘材料.一台6000千瓦的汽轮发电机,其中用玻璃纤维做的绝缘部件竟达到一千八百多件!由于采用了玻璃纤维做绝缘材料,既提高了电机的性能,又缩小了电机的体积,还降低了电机的成本,真是一举三得.玻璃纤维的另一个重要用途是和塑料合作,制造各种玻璃纤维复合材料.譬如,将一层层的玻璃布浸在热熔的塑料中,加压成型后就成了大名鼎鼎的"玻璃钢".玻璃钢甚至比钢还坚韧,既不会生锈,又耐腐蚀,而重量只有同体积钢铁的四分之一.因此用它来制造船只,汽车,火车的外壳以及机器的零件,不但可以节省大量的钢铁,同时还因减轻了车,船本身的重量,使有效载重量大为提高.由于不会生锈,可以免去许多保养费用.如果玻璃熔化后,用高速气流或火焰把它吹成又细又短的纤维,这就成了玻璃棉.有一种防潮超细的玻璃棉,200余条合在一起只有一根头发那么粗.玻璃棉具有极强的保温性质,3厘米厚的玻璃棉,它的保温能力竞相当于1米厚的砖墙!玻璃棉的吸音效果也很好.因此它在许多工业部门中用作保温,隔音,隔热,防震和过滤等材料.近年来出现的纤维内窥镜,使医生能够直接观察胃,十二指肠,心脏等内脏情况.这也是玻璃纤维的贡献.光线从玻璃纤维的一端进入一条弯曲的玻璃纤维时,当光线前进而到达玻璃纤维的内表面时,它会被全反射到斜对面的内表面,如此反复反射,光线就像走九曲桥似的曲折前进,终于从一端到达另一端.当然,实际使用时是以数万条玻璃纤维扎束在一起,组成一根玻璃纤维杆.为了防止光线在纤维杆间"泄漏",纤维杆外还要包上一层折射率很低的物质,只要在两端的玻璃纤维按相同的次序密集排列,光学图像就能不失真地从一端传到另一端.照明采用外接电源,纤维杆前端装有镜头,最新的"全视式"纤镜,观察窗既可向前看,也可以转动角度成为侧视,还可以装上微型相机或彩色电视机,以供教学或多人会诊之用.另外,利用玻璃纤维制成的光导纤维来进行电话通信,目前也已完全取得成功.它的容量大,输送损耗极微,不受电磁干扰,可节省金属铜,而且还能传输图像作电视电话.玻璃纤维的用途的确很多,随着现代科学技术的飞跃发展,玻璃纤维将做出更多的贡献.

这都不知道?

微晶玻璃原材料结构研究论文

呃,太专业了 == 头大了

微晶玻璃的初始原料矩阵 (标记)3S0粉煤灰Liepajas钢工厂” metalurgs”(拉脱维亚)和泥炭脱灰里加煤炭发电 站,以及limeless粘土,据其他地方 [1]10]。黏土增加一条,作为一个夹具提高焊接等 粒子之间的性能在紧迫的过程。 这些废料含有同样的主要化学元素:是的, 钙、铝、铁、锌、镁、铅以及微量的狭义相对论、锰、 镍、铜、镉和锡[11]。在过去的研究报道 [11、12),粉煤灰包含尖晶石(ZnAl2O4)闪锌矿中 (ZnS)、赤铁矿(2)和palmerite(K2Pb(SO4)2),而 泥炭灰分包含方解石(碳酸钙),硬石膏(CaSO4), 刚玉(氧化铝)、钠长石((钠、钾)AlSi3O8)和石英 二氧化硅)。生态相容元素领先, 储存在粉煤灰、已经发现包括在吗 palmerite阶段。二氧化矽含量相对较高的泥炭 灰表明应用的可行性,使用这种浪费成分 发展玻璃矩阵,在复合材料 名义上的最优微晶玻璃的化学成分 矩阵已经决定了在过去的研究[1、第十条、第十一条]。作为 另外,chamotte加固的提及 黏土使用。Limeless泥土存款Liepa(拉脱维亚) 治疗是900暖热在时间中,持续1(h和研磨使用吗 球磨机24小时平均粒度10毫米。 微粉的密度矩阵和 chamotte:由他pycnometry号, cm3 和克/ cm3,分别。从开始glassceramic 作文(3S0)上两批 复合混合物加20进行了 30 wt. % chamotte,这些都是标记的成分 3S2和3S3,分别。结合10成分 20 wt. % chamotte和增加10 wt. % 废玻璃(从Valmiera玻璃纤维植物、拉脱维亚

微晶玻璃,即玻璃陶瓷是综合玻璃和微瓷技术发展起来的一种新型材料。该材料经人工智能化设计,其理化性能集中了玻璃和陶瓷的双重优点,即具有陶瓷的强度,又具有玻璃的致密性和耐酸、碱、盐的耐蚀性。目前新开发出的防腐耐蚀微晶玻璃,已在实验室制备出防腐耐蚀微晶玻璃内衬复合钢管,主要技术指标达到: 抗弯强度:≥ 抗压强度: ≥400MPa 英氏硬度: ≥6 耐酸性(室温,1% H2SO4溶液浸泡20天后的失重率): 耐碱性(室温,1% NaOH溶液浸泡20天后的失重率): 吸水率 ≥

一、什么是微晶玻璃微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃、石材技术发展起来的一种新型建材。因其可用矿石、工业尾矿、冶金矿渣、粉煤灰、煤矸石等作为主要生产原料,且生产过程中无污染,产品本身无放射性污染,故又被称为环保产品或绿色材料。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优於天石材和陶瓷,可用於建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 二、微晶玻璃的组成 把加有晶核剂或不加晶核剂的特定组成的玻璃,在有控条件下进行晶化热处理,使原单一的玻璃相形成了有微晶相和玻璃相均匀分布的复合材料。微晶玻璃和普通玻璃区别是:前者部分是晶体,后者全是非晶体。微晶玻璃表面可呈现天然石条纹和颜色的不透明体,而玻璃则是各种颜色、不同程序的透明体。 微晶玻璃的综合性能主要决定三大因素:原始组成的成份、微晶体的尺寸和数量、残余玻璃相的性质和数量。 后两种因素是由微晶玻璃晶化热处理技术决定。微晶玻璃的原始组成不同,其晶相的种类也不同,例如有β硅灰石、β石英、氟金云母、二硅酸锂等,各种晶相赋予微晶玻璃的不同性能,在上述晶相中,β硅灰石晶相具有建筑微晶玻璃所需性能,为此常选用CaO-Al2O3-SiO2系统为建筑微晶玻璃原始组成系统,其一般成分如表一所示。表一: CaO-Al2O3-SiO2微晶玻璃组成颜色\组成 SiO2 Al2O3 B2O3 CaO ZnO BaO Na2O K2O Fe2O3 Sb2O3 白色 黑色 上述玻璃成份在晶化热处理后所析出的主晶相是:β——硅灰石(β——CaO、SiO2)。 三、建筑微晶玻璃性能 建筑用微晶玻璃装饰面板材与天然大理石、花岗岩性能列表二(见下页)。材料 微晶玻璃 大理石 花岗岩 特性 机械性能 抗弯强度①(Mpa) 40~50 8~15 抗压强度(Mpa) 67~100 100~200 抗冲击强度(Pa) 弹性模量(×104MPa) 5 莫氏硬度 6,5 3~5 ~ 维氏硬度(100g) 600 130 130~570 比重 化学性能 耐酸性②(1%H2SO4) 耐碱性②(1%NaOH) 耐海水性③(mg/cm2) 吸水率④(%) 0 抗冻性(%)⑤ 热学特性 膨胀系数(10-7/30℃ -380℃) 62 80~260 80~150 热导率(w/) 比热(Cal/q°.C) 光学特性 白色度(L度) 89 59 66 扩散反射率(%) 80 42 64 正反射率(%) 4 4 4 从表二中可以看出,建筑微晶玻璃在材料尺寸稳定性(热胀系数等的影响)耐磨性(硬度影响)、抗冻性、光泽度的持久性(耐酸耐碱影响)、强度(抗弯、抗冲击)等,均优於天在然的大理石及花岗岩。微晶玻璃与玻璃具有相同的成分,与硅酮结构胶和耐候胶相容性较好。 由于微晶玻璃是透明、半透明和不透明等多相组成均匀分布的复合材料,射入微晶玻璃的光线,不仅从表面反射,光线从材料内部反射出来,显得柔和,而且具有深度,产生类似钻石般晶莹剔透、璀璨发亮的光学效果。 同晶玻璃无吸水性、防冻、防铁锈、硅油等渗入,不溶易附着尘埃,纵然附着尘埃也容易清洗,有自净性。 微晶玻璃有令强度高,而且强度稳定,没有天然花岗岩那样的分散性大。组织均匀,各向强度同性,没有花岗岩那样的各向异性(层理性和焉理性)。 微晶玻璃的弧面或曲面,可将其加热到760℃~800℃左右。因此与天然石材相比,具有强度均匀、工艺简单、成本较低等优点。 生产白色或色彩鲜艳的微晶玻璃时,一般都使用矿物原料和化工原料,可以没有色差,也可以仿真成天然石材的各种色彩。这些色彩是用不变色的金属氧化物经高温加热形成,耐候性好,不会变色和退色。 微晶玻璃因其优良性能,在国内外已被广泛应用于宾馆、饭店、商店、机场、车站、影剧院以及其他高档建筑的外墙及室内装饰,是21世纪建筑的新材料。 四、微晶玻璃的生产工艺 建筑微晶玻璃生产工艺有两种,即压延示和烧结法,其工艺流程如图所示:目前建筑用微晶玻璃均采用烧结法,而且不加入晶核剂。它的基本原理是,玻璃是一种非晶态固体,从热力学观点看,它处于一种亚稳状态,较之晶体有较高的内能,所以在一定条件下,可以转化为结晶态。从动力学观点来看,玻璃熔体在冷却过程中,粘度急剧增加,抑制晶核的形成和晶体长大,阻止了结晶体的成长壮大。建筑用微晶玻璃利用了不加晶核剂的非均相结晶化机理,充分应用了热力学上的可能和动力学上的抑制,在一定条件下,使这种相反相成的物理过程,形成一个新的平衡,而获得的一种新材料。 烧结法工艺的微晶玻璃,有以下热点和难点: 一是玻璃熔融:除使用晒粉着色的微晶玻璃,通常用密封性好的坩锅内熔化外,其他色彩的微晶玻璃都使用池窑熔化。它的生产成本与质量均优于坩锅炉。但建筑微晶玻璃池窑不能照搬一般玻璃池窑,它要便于排料、换料、停炉。 二是晶化热处理:玻璃经晶化热处理后,才能形成微晶玻璃。热处理的工艺参数和工艺规范对主晶相的种类、大小、数量、制品的炸裂、平整度、气泡大小和数量、产量、燃气耗量和成本等,都有重要影响。晶化炉也不同於一般的热处理炉和陶瓷烧烤炉,其温度场和结构,要适合微晶玻璃晶化热处理的特点和工艺。 三是如何根据建筑师的美学要求,方便逼真调制各种色彩的微晶玻璃防止自爆和气孔,增加规格和品种,提高大面积板材平整度,降低成本,是进一步推广建筑微晶玻璃应用的热点和难点。 以上介绍,可以看出,微晶玻璃也是一种科技含量高的新产品。在国外,美国、俄罗斯率先起步开发和使用微晶玻璃,日本、西欧、亚太地区的一些国这也正在开发新型的微晶玻璃产品。我国目前已有3家公司批量生产建筑微晶玻璃,据了解,生产能力约为50万平方米,但由于产品规格、品种、花色和价格等,还不能满足建筑市场的要求,加之对微晶玻璃这种新型建筑材料推广、宣传力度不够,国内仅有少数工程,如人民大会堂广东枯、北京新机场候机楼、大连国际中心采用了微晶玻璃。每年我国从国外进口大量高档石材来满足国内市场的需求,微晶玻璃代替天然石材尤其是代替进口的高档天然石材,是建筑市场潜在的迫切要求。微晶玻璃不仅在建筑的内装饰会得到很大应用,而且在建筑石材幕墙中也值得大力发展和推广。 五、微晶玻璃幕墙要点 1.微晶玻璃属于脆性材料,开口部位施工后很容易破裂,不能完全照搬天然石材幕墙的节点,一般来讲,天然石材幕墙的短槽式和通槽式的结构不宜采用。 2.微晶玻璃板材做为幕墙面板,要求耐抗急冷、急热。其试验方法为:规格为100mm×80mm×板材厚度,每组五块试样,将试样放置在比室温水中冷却。然后用铁锤轻轻击试样各部位,如果声音变哑,表面有裂隙、掉边、掉角等情况,则判为不合格。 3.尽管要求微晶玻璃板材耐急冷、急热,但为了防止幕墙面板万一破裂时,碎片不会危及人,所以在微晶玻璃板的背面用多元板脂贴上一层玻璃纤维(FRP)以求安全。 4.用于幕墙的普型微晶玻璃板要求如下: (1)弯曲强度标准值不小于40MPa。试验方法按GB 中的规定进行。 (2)抗急冷、急热无裂隙。 (3)长度公差在±,平面度1/1000,厚度公差±1mm。 (4)无缺棱、缺角、气孔。表面无目视可观察到的杂质。 (5)镜面板材的光泽度不大于85光择单位。 (6)同一颜色、同一批号的板材色差不大于色差单位。 (7)用于幕墙面板的微晶玻璃板生产厂商应提供:型式试验报告;该批板材出厂检验报告,该报告应至少写明弯曲强度、长度、厚度及平面度公差,耐急冷、急热试验结果、色差及光泽度;并提供10年质量保证书等。 5.微晶玻璃幕墙必须100%进行全尺寸4项性能(耐风压、水密、气密、平面内变形)试验。试验合格后方能进行施工。 总之,微晶玻璃用于建筑幕墙,在国内还不多,今后在推广过程中,除了前述的微晶材料推广应用的热点和难点之外,对微晶玻璃幕墙而言,加强对其节点和构造、加工工艺、力学特性的开发研究,尢为迫切和重要。除了测定其弯曲度之外,最好能测定其断裂韧度,使微晶玻璃幕墙的强度,打下断裂力学设计基础。

碳纤维材料研究发展论文

前景非常好,但是成本太高,这个就是关键。国内技术差的比较远,短期内很难赶上日本。

适用于诸多领域,国内企业在技术上取得突破。1、“材料之王”碳纤维各项性能优势显著,适用于诸多领域。2、国内企业在技术上取得突破,碳纤维国产替代未来可期。3、欧美日企业很早就开始研发碳纤维技术,并将技术与产业发展相融合,具备先发优势,占据很大一部分的市场份额,对高端碳纤维的市场更是形成了垄断。

目前主要是由聚丙烯腈和沥青纺丝,再经预氧化、碳化(也可接着石墨化)、表面处理和上浆等工艺流程制备。国内外差距很大,国内低端产品差距较小,但高端的(既高性能的)根本不行,因为难度太大。

全球碳纤维分领域需求上升

碳纤维复合材料具有质量轻,强度高的特性,活跃在各种各样的用途上。包括用于追求轻且易用的高性能体育用品、追求在宇宙飞行用的轻量且高性能材料的航空航天飞行器,以及压力容器、汽车、风车、船舶、土木建筑等各种各样的一般产业用途。根据赛奥碳纤维技术统计,2018年全球碳纤维运用细分领域中风电叶片叶片和航天国防领域最多,分别达到22000吨、21000吨。而增长最为显著的是汽车零部件领域,2013-2018年需求复合增长率达到33%。

从全球市场看,2018年全球市场碳纤维需求为万吨,预计在2020年全球需求将达到万吨。

就需求结构而言,碳纤维材料总量一半以上应用在工业领域,风电叶片领域应用占比24%,航空航天领域应用占比23%,体育休闲领域占比15%,汽车工业领域占比12%,四者总计占比74%。其中,体育休闲用品所消耗的碳纤维呈逐年下降之势。

从产能的角度来看,全球碳纤维市场基本被日本和美国企业垄断。2018年世界碳纤维产能为万吨。从地区来看,美国生产万吨占24%,日本生产万吨,占比19%,中国生产碳纤维万吨,占比19%。

但是从企业来看,日本企业在全球小束丝碳纤维市场份额占到约58%,其中日本东丽占比27%、日本东邦占比18%、日本三菱占比13%;全球大束丝碳纤维市场集中度更高,基本被日本Zoltek和德国SGL两家控制(注:Zoltek2013年被东丽收购),Zoltek全球占比49%,德国SGL全球占33%。

中国碳纤维处于产能扩张阶段

从整体供需状况上看,目前世界上碳纤维的主要消费地区仍然集中在美国、欧洲和日本。根据赛奥碳纤维技术统计,中国碳纤维需求量一直维持稳步上升趋势,2018年国内碳纤维市场需求为万吨,同比增长32%,预计未来年复合增长率为12%,在2020年国内市场需求将达到万吨。

目前国内T300级碳纤维性能达到国际水平,主要运用于航空航天及体育休闲等领域;T700级碳纤维已建成千万吨级生产线,低成本干喷湿纺T700级碳纤维已经实现规模化生产;中国首条千吨级T800原丝生产线由中复神鹰生产线2016年投产;但T800级以上的碳纤维国内企业还处于小规模试验,技术相对东丽还是存在较大差距。中国在T800级别以上的碳纤维生产中都还是处于小批量试验生产阶段,而国外的东丽公司已经实现了比较成熟的高模产品。中国碳纤维公司产能前三名是:中复神鹰、江苏恒神以及精密集团。

——以上数据来源于前瞻产业研究院《中国碳纤维行业深度调研与投资战略规划分析报告》。

纤维复合材料模拟研究论文

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 ,断 裂伸长率为 。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 以上的强度 和 以上弹性模量, 经热处理后可得到强度不变、 模量达 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 抗拉强度(GPa) 拉伸模量(GPa) 180 280 断裂延伸率(%) 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 24 280 12 115 6 230 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 230 一 一 一 一 一 115 29 280 68 330 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5).简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性.除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好.文中还展望了M5纤维的应用前景.前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展.但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差.纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2].通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度.因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题.作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来.聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3].由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能.1高性能纤维 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成.TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应.若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用.另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键.因此,其压缩和扭曲性能为目前所有聚合物纤维之最.M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性.由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5].图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5].图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在.图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构.由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能.表2和表3所列出的实验结果也证实了这一结论[16,19].如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16].从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构.有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高.图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示).单斜和三斜的晶胞参数分别为:单斜结晶: a= ,b= ,c= ,=90°,=107°,=90°三斜结晶:a= ,b= ,c= ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a= ,b= ,c= ,=84°,=°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度.图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16] M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为×104~×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维.其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 m.所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥.图7 M5纤维的热处理示意图 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示.在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大.对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能.M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维.在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的.因此,热处理温度与热处理时间对M5纤维的模量影响很大.4 M5纤维的性能 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象.Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的提高到,而经过400℃热处理的初生纤维压缩强度由原来的提高到.显然对于PIPD的初生纤维来讲,并非热处理温度越高越好.通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高.表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等.与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17].表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/()回潮率/%纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高.图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构.而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11].如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多. 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值.纤维试样放在一块1cm2的线网上.试样原始重量在之间.从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料.PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维.SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维.同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为.从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景.M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性.从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟.M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近.M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]. 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂.M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]. 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图.研究发现将1g试样材料放在一个开放的测试槽内,以℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示.从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关.从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别.通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似.表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等.M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力.与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业.由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究.相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用.

从力学性能讲环氧的最好,而且日本的碳纤维上江剂也是基本满足环氧类的,但是在中国国内,上将剂的水平还是相对比较低的,一来国内碳纤维行业是个技术密集型产业,而且国产碳纤维也没有产业化,二来科研力度和资金的相对薄弱。说实话,乙烯基绝不是最佳的选择,界面的性能没有环氧的好,但是鉴于国内碳纤维的民用化以及低端化,对力学性能等不适要求很高,同时考虑到成型工艺常用手糊和导入,而很少用成本高的预浸料模压或者热压罐成型,比如汽车的引擎盖,尾翼之类,所以才使用乙烯基的树脂。 你需要进行浇注体,碳纤维复合材料力学性能测试,以及SEM电子显微镜查看界面。

你碳纤维的碳字写成炭,差距很大的哦

  • 索引序列
  • 玻璃纤维材料的研究论文
  • 玻璃纤维复合材料论文
  • 微晶玻璃原材料结构研究论文
  • 碳纤维材料研究发展论文
  • 纤维复合材料模拟研究论文
  • 返回顶部