首页 > 学术论文知识库 > 测厚仪毕业论文

测厚仪毕业论文

发布时间:

测厚仪毕业论文

。。。 光出百度分谁帮你写啊 。。。

杭州湾跨海大桥(以下简称大桥)全长36公里,其中跨越海域约32公里。大桥主体结构除南、北航道的钢箱梁外,其余均为混凝土结构,混凝土用量近250 万立方米。而杭州湾为世界三大强潮海湾之一,在自然条件方面,受风、流、潮、气的影响比较大,腐蚀环境比较恶劣[1]。特别是处于潮差区和浪溅区的大桥承台,由于氯离子侵蚀严重,且海水富含氧气,腐蚀相当严重,因此采取防腐措施显得尤为重要。涂层防护是一种保护钢筋混凝土结构较为方便和实用的方法,涂层的致密性远远大于混凝土结构,相当于大大增加了钢筋混凝土层的厚度,从而有效地阻止氯离子、氧气、二氧化碳和海水等腐蚀介质浸入。为了确保大桥的涂装质量,指挥部在选择涂料供应商和考察涂装效果时,在潮差区进行了现场涂装试验。有10 多家单位参加了试验,但现场涂装效果总体不够理想,仅少数试验性能达到要求,大多数试验片效果不好,有的试验片涂装不久后涂层就出现脱落现象。我单位的现场涂装效果比较理想,试验室检测性能优异,被选中为大桥涂Ⅰ、涂Ⅱ标段提供涂料,并且实际涂装效果很好。众所周知,提供性能优异的涂料和严格的施工工艺过程是确保涂装质量的两大关键因素。而大桥海中承台的表湿区涂装条件更为苛刻,可涂装时间短、表面含水率高、涂层不能在大气中彻底固化、施工环境恶劣等等因素影响着涂装效果。因此,系统地介绍大桥海中承台表面涂层质量控制对确保潮差区混凝土结构涂装质量具有十分重要的意义。1 腐蚀环境特点和涂层体系设计 腐蚀环境特点杭州湾腐蚀环境属于海洋腐蚀环境,氯离子渗透危害严重,夏季氯离子含量为5602~5864mg/L,冬季氯离子含量约为8220mg/L,而且海水溶解氧浓度约为~,属于富氧环境[1]。海水中氯离子含量较大,当含氯离子的溶液侵入砼中时,通常生成Friedel 盐C3A·CaCl2·H10,Friedel 盐会产生破坏性膨胀。在氯盐的作用下,水泥砼中不稳定产物可生成水化氯铝酸钙,固相体积可增大2 倍多[2]。同时,当氯离子渗透到钢筋表面时,钢筋表面局部的保护膜被破坏,使其成为活化态。在氧和水充足的条件下,活化的钢筋表面形成小阳极,未活化的钢筋表面成为阴极,发生电化学腐蚀从而使阳极金属铁被溶解,形成腐蚀坑。腐蚀过程主要涉及下列化学反应式:Fe2++2Cl-+2H2O = Fe(OH)2+2HCl4Fe(OH)2+O2+2H2O = 4Fe(OH)3(铁锈)Fe(OH)3若继续失水就形成水化氧化物FeOH(即为红锈),一部分氧化不完全的就变成Fe3O4(即为黑锈),在钢筋表面形成锈层。由于铁锈层呈多孔状,即使锈层较厚,其阻挡进一步腐蚀的效果也不明显,因而腐蚀将不断向内部发展。因此,抗氯离子渗透性是衡量涂层性能的重要指标。杭州湾为世界三大强潮海湾之一。在自然条件方面,受台风、热带风暴影响较大;平均水流速,实测最大流速5 m/s 以上,粉砂含量高,最高含沙量为 kg/m3,平均含沙量 kg/m3,潮流紊乱,冲刷严重 [1]。因此,涂层的附着力和耐磨性也是衡量涂层性能的重要指标。 涂层体系设计根据杭州湾跨海大桥的设计使用年限、环境状况以及《海港工程混凝土结构防腐蚀技术规范》(JTJ 275-2000)中的设计涂层系统要求,《杭州湾跨海大桥混凝土结构表面防腐涂装工程涂料采购(供应商)》招标文件上明确了表湿区混凝土表面涂层配套体系[3,4(] 见表1)。注:底层干膜平均厚度不大于50μm,底层和中间层干膜总平均厚度为310μm。 涂层性能要求根据《海港工程混凝土结构防腐蚀技术规范》(JTJ275-2000)对涂层性能基本要求,《杭州湾跨海大桥混凝土结构表面防腐涂装工程涂料采购(供应商)》招标文件上明确了表湿区混凝土表面涂层性能要求(见表2)。注:1. 涂层性能试验按涂层系统设计的底层+中间层+面层复合涂层组成。2. 涂层的耐老化性系采用涂装过的尺寸为70mm×70mm × 20mm 的砂浆试件,按现行国家标准《色漆和清漆—人工气候老化和人工辐射暴露(滤过的氙弧辐射)》(GB/T 1865-1997)测定。3. 涂层的耐碱性、涂层抗氯离子渗透性、涂层与混凝土表面的粘结强度,按现行行业标准《海港工程混凝土结构防腐蚀技术规范》(JTJ275-2000)附录C 的混凝土涂层试验方法测定。2 涂料产品质量控制大桥承台处于潮差区,混凝土表面常处于潮湿状态,混凝土露出水面可涂装的时间短,因此,要求采用的涂料应具有湿固化、快固结和附着力强的性能。 同时,所选用的配套涂料之间应有良好的相容性。因此,选择性能满足要求的涂料是整个涂装工程的基础,是防腐涂装成败的关键因素,涂料选择应满足以下主要要求:(1)封闭底漆应具有对潮湿混凝土基面良好的润湿铺展性,保证封闭涂料的高渗透性,从而增强混凝土表面的强度,提高涂层附着力,使其具有足够的能力抵抗来自背面的水压,以防止涂膜起泡和脱落。(2)所选涂料要有一定的固化速度,以便在潮差期内获得一定的漆膜强度,抵抗潮水的冲刷,并且漆膜在水下固化性能基本上不受影响。(3)涂层面漆应有较高的耐候性,在有效保护期内,面漆的粉化减薄速度较小;面漆还应具有较高的耐磨性,以抵抗含砂海水的冲刷。(4)涂层体系应具有优异的屏蔽效果,可以有效地抵抗氯离子、氧气、二氧化碳等腐蚀介质的渗透。(5)涂层体系应具有优异的附着力、韧性和抗冲击性能,从而有效地抵抗背水压以避免起泡,并能有效地抵抗混凝土的伸缩性。根据上述要求,我公司选用881-S01湿固化环氧封闭漆、881-S02湿固化厚浆型环氧涂料、881-Y01丙烯酸聚氨酯面漆组成了表湿区的涂层配套体系,涂层体系性能数据见国家涂料质量监督检验中心出具的检验报告(见表3)[5]。从表3可以看出,抗氯离子渗透性的检验结果比技术指标小约200 多倍,说明涂层体系抗渗透性非常好,从而能有效地阻止氯离子、氧气、二氧化碳和海水等腐蚀介质对混凝土结构的腐蚀。粘结强度的检验结果比技术指标大2 倍多,耐磨性也远远小于技术指标,说明涂层体系能更好地抵抗含沙量高的海水冲刷。同时,从人工气候老化检验结果可以看出,涂层体系耐老化性能优异。因此,从上述数据可以看出我单位选择的涂层体系完全能满足大桥涂装的特殊要求。3 施工质量控制 施工工艺流程。施工工艺流程图见图1。 涂装工艺关键控制因素为达到优质的涂装工程,仅依靠优质的材料是远远不够的,涂装工艺过程控制起着更加重要的作用, 因此涂装工艺关键控制因素如下:(1)采用高压淡水(压力不小于20MPa)清洁待涂混凝土表面,彻底除去混凝土表面上的不牢灰浆、尖角、碎屑、海生物、苔藓、油污等污染物及其它松散附着物。对施工接缝处和表面的一些蜂窝进行涂装前的预处理。在施工现场发现这些部位不断有水渗出,这些明水的存在对涂层防护是非常不利的,也是造成涂层起泡、脱落的主要因素。(2)采用外加热源或压缩空气除去残留在混凝土表面上的水珠、水迹,必要时可用棉布、海绵等吸湿工具抹去,涂装前的混凝土表面应无流水、渗水现象,尽可能使混凝土呈表干状态。虽然封闭底漆具有湿固化功能,但是潮湿的基面影响涂料的渗透性,从而影响附着力。(3)每道涂装前均要注意对漏涂的孔洞进行补涂。现场许多完工的试验片存在孔洞,有的孔洞直达混凝土表面,施工现场发现不断有水缓慢渗出。这样的涂装短期会影响防腐效果,长期还会造成涂层附着力下降,甚至脱落,导致防腐失败。(4)涂装下一道涂料前,应对上一道涂层进行表面清洁,使用饮用水彻底除去涂层表面的盐分、泥尘、油污等污染物,可用清洁剂清除油污。如上一道涂层太光滑影响下一道涂层的粘结强度,应对上一道涂层进行打毛处理。(5)要按规定的比例混合涂料,用机械式搅拌器搅拌3min 分钟以上。涂料混合均匀后,必经过熟化才能使用,配好的涂料必须在规定的适用期内使用,超过了适用期的涂料不得继续使用。表湿区涂装完毕后,涂膜在空气中固化时间应不少于。4 涂装质量检验 过程检验 产品检验涂装前核实涂料品种和数量,所用涂料应有出厂证明文件,且在有效期内使用。 施工过程检验施工过程中,按产品说明、推荐施工工艺、设计要求的涂装道数和涂膜厚度进行施工,随时用湿膜厚度规检查涂层湿膜厚度,以控制涂层的最终厚度及其均匀性。 涂料用量检验控制涂料实际用量是保证涂膜厚度和涂装的重要因素,涂料实际用量的计算方法如下:假设:第一:选择上下游两个承台作为一个具有代表性的参考涂装面积,准确计算出涂装的实际面积为X m2;第二:准确称出未使用时涂装容器和涂装工具的重量为a kg;第三:准确计算出调配涂料的重量为b kg;第四:在每个桥墩随机测出具有代表性的30 个点的湿漆膜的厚度为c μm;第五:每道漆涂装完毕后,立刻称出涂装容器和涂装工具的重量为d kg;第六:涂料的比重为e。计算:第一步:计算每道漆的要求湿膜厚度c:c=(干膜厚度÷体积固含量)×(1+稀释剂用量百分比)第二步:计算涂料的实际涂装用量Y:Y=X ×(c ÷ 106)× e第三步:环境损耗油漆量Z:Z=(a+b)- d - Y第四步:计算出符合涂装要求的X面积实际需要的漆量W:W=(d-a)+Y+Z第五步:计算出涂料的损耗系数f:f=W ÷涂料理论用量说明:①环境损耗漆量Z与当时的实际涂装环境有密切的关系,将来实际涂装时的施工环境与实验时的施工环境有差别,因此必须参考实验时的环境损耗油漆量Z,对实际涂装时的环境损耗油漆量作出相应的调整。②如果实际涂装时涂装工具与实验时的涂装工具不同时,相应的油漆损耗也要作出相应的调整。根据上述计算公式计算出的损耗系数f,可以计算出涂料的实际用量,从而控制涂料的实际用量。 涂层检验 涂层厚度检验涂层厚度是保证涂层体系设计寿命的关键因素,涂层的厚度控制与检验通常有下列几种方法:(1)湿膜测试法。此法局限性在于:由于混凝土表面的不平整以及施工条件的不同(比如气温高、有风的天气溶剂挥发快,反之溶剂挥发慢,同一湿膜在不同条件下测得结果可能不相同),导致湿膜测试法不准确。但湿膜测试法可以检测涂膜是否均匀,这是湿膜测试法的可取之处。(2)挂片对比测试法。此法局限性在于:由于现场监督不严或涂装工艺不同,有可能出现挂片比实际的混凝土面多涂的现象,所以此法也有可能不准确。(3)涂料用量控制法。此法局限性在于:由于无法控制涂料的使用情况,不能保证涂料完全用于涂装,所以此法也有可能不准确。但只要对涂料使用情况进行有力的监督,是可以保证涂层厚度的。(4)测厚仪测试法。此法局限性在于:由于测厚仪对基材的平整度非常敏感,而混凝土表面本身很不平整,所以此法测量的结果也不准确。鉴于以上各种测试方法的局限性,综合考虑认为用湿膜测试法、测厚仪测试法和涂料用量控制法相结合的方法是比较准确的方法。因为只要加强涂料使用情况的监督,可以通过涂料用量控制法保证涂层的厚度,又通过湿膜测试法可以控制涂膜的均匀性,以保证涂层的质量。 涂层体系粘结强度检验测定涂层系统的粘结强度。涂层经7d 自然养护后,用拉脱式涂层粘结强度测定仪测定涂层系统的粘结强度。以测点的粘结强度算术平均值为涂层系统的粘结强度代表值。涂层系统的粘结强度代表值应不小于,最小粘结强度测点值应不小于。涂层粘结强度测定后,应立即观察铝合金铆钉头型圆盘座的底面粘结物的情况,如果底面有75% 以上的面积粘附着涂层或混凝土,则试验数据有效。如果底面少于75% 的面积粘附着涂层或混凝土,而且粘结强度小于,则可在该测点的附近涂层面上重做粘结强度检测。如果涂层粘结强度不能达到 时,可在原检测点附近涂层面上,按加倍测点数量重做涂层粘结强度检测。如仍不合格,涂装施工应返工。 涂层外观检验涂装后应进行涂层外观目视检查。涂层厚度和色泽应均匀、无气泡、无针孔、无裂缝等缺陷。5 结束语混凝土表面防护虽然是辅助性防护措施,但它的防护机理就是物理隔绝腐蚀介质,与增加钢筋的混凝土保护层厚度是同样道理。因此,只要选材合理,施工过程控制到位,就能够取得理想的防护效果。参考文献:[1] 《杭州湾跨海大桥混凝土涂层防腐蚀技术文件》.[2] 梁定.跨海和沿海桥梁钢筋砼腐蚀与防腐。公路与海运,2003,10:60-62.[3]《杭州湾跨海大桥混凝土结构表面防腐涂装工程涂料采购(供应商)》招标文件.[4] 海港工程混凝土结构防腐技术规范》(JTJ 275-2000).[5]《国家涂料质量监督检验中心检验报告》(TW06998-5W1、TW06998-5W3、TW06998-5L1).

随着科学技术的飞速发展,塑料制品已经广泛应用到国民生产和生活的各个层面[1],下面是我整理的关于塑料拉伸性能测定技术论文,希望你能从中得到感悟!

拉伸速度对塑料拉伸屈服应力的影响

[摘 要]本文采用国家标准GB/T1040-2006对聚丙烯树脂进行了拉伸屈服应力的实验,研究不同拉伸速度下的拉伸屈服应力,并确定了最佳的拉伸实验速度为50 mm/min。同时对比了实验样条进行状态调节和未进行状态的拉伸屈服应力的差距。

[关键词]拉伸屈服应力 实验速度 状态调节

中图分类号:U958 文献标识码:A 文章编号:1009-914X(2015)22-0278-02

1.前言

随着科学技术的飞速发展,特别是聚烯烃工业的发展,塑料制品已经广泛应用到国民生产和生活的各个层面[1],那么对塑料的各种性能进行严格的测试就显得非常重要,根据不同测试项目的结果可以判定该种塑料适合用于生产哪种类型的产品。其中力学性能是一个很重要的方面,包括拉伸、弯曲、冲击、压缩、撕裂性能等。而影响塑料拉伸性能试验结果的因素有很多,内在因素有塑料组分变化、分子量大小及分布、分子结构、分子取向程度和内部缺陷等,外在原因有试验仪器、试样的制备与处理、试验环境、试验参数、操作过程、数据处理和人为因素等[2]。

力学性能是结构材料最重要的使用性能,拉伸实验是应用最广泛也是最基础的力学性能实验方法。拉伸性能会随着样品厚度、制备方法、试验速度、夹具种类和拉伸度测量方法等因素的变化而变化[3]。对于不同的材料,试验速度对性能的影响不同,铝及其合金受拉伸速度的影响较小,软钢、不锈钢受拉伸速度的影响较大,试验速度增加,则强度性能指标升高,延伸性能指标降低;反之,强度性能与延伸性能指标的变化与上述相反[4],而聚烯烃树脂的拉伸性能受拉伸速度的影响特别大,尤其是对拉伸屈服应力的影响最大,这是因为塑料属于粘弹性材料,其应力松弛过程与变形速率紧密相关,需要一个时间过程。

从分子运动机理角度来说,聚合物的拉伸过程包括弹性形变、屈服、应变软化、冷拉、应变硬化和断裂。屈服即是在应力作用下链段开始运动,因为链段运动是松弛过程,外力的作用使松弛时间下降,若链段运动的松弛时间与外力作用速度相适应,材料在断裂前可发生屈服,出现强迫高弹性,则表现为韧性断裂。若外力作用时间短,链段的松弛跟不上外力作用速度,为是材料屈服需要更大的外力,材料的屈服强度提高,材料在断裂前不发生屈服,则表现为脆性断裂。本文即主要研究实验速度对拉伸屈服应力的影响。

在材料拉伸或压缩过程中,当应力达到一定值时,应力有微小的增加,而应变却急剧增长的现象,称为屈服,使材料发生屈服时的正应力就是材料的屈服应力。

根据拉伸试验测出的应力、应变对应值,可绘制应力一应变曲线。从曲线上可得到材料的各项拉伸性能指标值。曲线下方所包括的面积代表材料的拉伸破坏能。它与材料的强度和韧性相关。强而韧的材料 ,拉伸破坏能大 ,使用性能也佳。不同类型的高分子材料的应力-应变曲线是不同,拉伸屈服应力的大小也不一样。典型的聚合物拉伸应力-应变曲线如图1所示。

在应力-应变曲线上,以屈服点为界划分为两个区域。屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。

根据拉伸过程中屈服点的表现,伸长率的大小以及其断裂情况,应力-应变曲线大致可分为如图2所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。

所谓的“软”和“硬”是用于区分模量的低或高,“弱”和“强”是指强度的大小,“脆”是指无屈服现象而且断裂伸长很小,“韧”是指断裂伸长和断裂应力都较高的情况。聚丙烯树脂和聚乙烯树脂就属于韧性材料,它们的拉伸应力-应变曲线就是图2中的第5种。从图2可以看出并不是所有的聚合物都有屈服点的,这也就说明不同类型的聚合物其拉伸屈服应力是不同的,有的甚至没用拉伸屈服应力。

2.实验方法

样品制备

本实验按照国家标准GB/T1040-2006[5]的要求对聚丙烯树脂进行了拉伸屈服应力的实验。实验所用的原料是神华包头煤化工有限责任公司生产的聚丙烯粒料,牌号是L5E89。样品制备所用的仪器是克劳斯玛菲注塑机,注塑温度为230℃,模温机温度是40℃,保压压力是60巴,保压时间是30秒,冷却时间是25秒。所用的模具是P003955/06。注塑成型的样品的尺寸是150 mm×10mm×4mm(平均值),属于GB/T1040-2006中的Ⅰ型试样。对注塑成型的样条进行严格的挑选,保证样条的表面和边缘无划痕、黑点、空洞、凹陷和毛刺,样条应无扭曲,相邻的平面要相互垂直。样条的数量要足够多,保证每种试验参数下至少有10个合格的样条来进行平行试验。

样品进行状态调节

按照GB/T2918-1998[6]规定,将样品放在23℃,相对湿度为50%RH的恒温恒湿箱内状态调节48小时后再进行拉伸试验。

样品进行拉伸试验

拉伸实验所用的仪器是美国Instron公司的Bluehill万能试验机,根据GB/T 1040-2006,热塑性增强塑料的实验速度有B、C、D、E、F,即2 mm/min、5 mm/min 10 mm/min、20 mm/min 和50 mm/min,每种速度下都测试了10个样条,而且测试时操作方法要保持一致。测试前用游标卡尺在样条中心位置附近取三个点准确测得样条的宽度,取其平均值作为最终代入计算的数值,用测厚仪在样条中心位置附近取三个点准确测得样条的厚度,取其平均值作为最终代入计算的数值。在夹持样条时为了保证结果的平行性,要求样条上面有数字的一面正对着操作者,样条的切口端朝下。在样条的同一位置画好标线以保证每个样条的夹持位置是一致的。将样条放到夹具中时,要保证使样条的长轴线与试验机轴线在同一条直线上。从试验结果中发现在拉伸速度为2 mm/min和5 mm/min时,样品未被拉断,而且结果差距很大,故将这两个速度下的实验结果舍去,不参与讨论。 3.实验结果与讨论

速度对拉伸屈服应力的影响

不同实验速度下的拉伸屈服应力见表1。

每种实验速度下测试了15个样品,将实验结果相差比较大的舍弃,最终选取重复性很好的10个结果进行讨论,上述条件下的结果的标准偏差(RSD)分别为:,和,均小于5%,所以实验结果是可取的。综上所述,随着拉伸速度的增加,样品的拉伸屈服应力是逐渐增加的。对于GB/T1040-2006中的Ⅰ型试样来说,最佳的拉伸速度是50 mm/min。

状态调节对拉伸屈服应力的影响

未进行状态调节和进行状态调节的样品的拉伸屈服应力见表2。

根据GB/T2918-1998规定,将样品放在23℃,相对湿度为50%RH的恒温恒湿箱内状态调节48小时。实验速度为20 mm/min和50 mm/min。每种测试条件下均测试了10个样品,将实验结果相差比较大的舍弃,最终选取重复性很好的5个结果进行讨论,上述条件下的结果的标准偏差(RSD)分别为:,,和,均小于5%,所以实验结果是可信的。从实验结果可以看出,状态调节后的样品的拉伸屈服应力明显的比为进行状态调节的样品的拉伸屈服应力要大。

4.结论

相同条件下,拉伸速度越大,样品的拉伸屈服应力越大。对于GB/T1040-2006中的Ⅰ型试样来说,最佳的拉伸速度是50 mm/min。样品经过状态调节后其拉伸屈服应力增大。

对于本公司生产的聚丙烯树脂的拉伸性能测试,要求拉伸实验的样条应该在注塑成型后进行状态调节48小时后再进行测试,测试的最佳速度为50 mm/min。

参考文献

[1] 周祥兴,郁文娟,张惠曦等.实用塑料包装制品手册.中国工业出版社,2000.

[2] 张怀志,阎功臣,景丽荣等.影响塑料拉伸试验结果的因素.工程塑料应用,2005年,第33卷,第10期.

[3] 王超先,蔡春飞.塑料拉伸屈服应力不确定度的评定.理化检验-物理分册,2004,7(40):341-343.

[4] 陆文华.影响拉伸试验结果的主要因素,广东交通职业技术学院学报,2004年12月第4期.

[5] 国家质量监督检验检疫总局和国家标准化管理委员会发布.GB/T1040-2006塑料 拉伸性能的测定[M].北京:中国标准出版社,2007.

[6] 国家质量技术监督局发布.GB/T2918-1998塑料试样状态调节和试验的标准环境[M].北京:中国标准出版社,1998.

点击下页还有更多>>>关于塑料拉伸性能测定技术论文

智能测厚仪毕业论文

人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!

摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。

关键词:人工智能;计算机科学;发展方向

中图分类号:TP18

文献标识码:A

文章编号:1672-8198(2009)13-0248-02

1人工智能的定义

人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

2人工智能的应用领域

人工智能在管理及教学系统中的应用

人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。

人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。

人工智能专家系统在工程领域的应用

人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。

人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。

人工智能在技术研究中的应用

人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。

人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。

3人工智能的发展方向

人工智能的发展现状

国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。

我国人工智能的研究现状。很长一段时间以来,机械

和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。

人工智能发展方向

在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。

基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。

人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。

4结语

由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。

下一页分享更优秀的<<<人工智能的毕业论文范文

摘要:文中结合天津地铁1号线改扩建工程,简要介绍了曲线地铁车站施工测量技术特点;施工控制测量及施工放样方法,确定了用精密导线作为施工控制测量线最为适宜关键词:工程测量;地铁;曲线1工程概况天津市地铁1号线西北角车站为原有站改扩建工程,位于北马路芥园道和西马路大丰路交口。全现浇钢筋混凝土箱型地下结构,双轨侧式站台车站起点里程k9+,终点里程k9+总长218 m,箱体最宽处28 m,结构净高 m,主要站段埋深 m,设4个出入口,2座风道,建筑总面积10 666 m2。2施土测量技术特点、难点工程平面位置该车站为全曲线站,地下结构中柱纵轴线、铁道左轨中线、右轨中线均由圆曲线和缓和曲线组成,三条线曲线元素各不相同,即缓和曲线起终点不在同一里程,圆曲线圆心各异,半径分别为800 m, m, m箱体侧墙均为圆曲线,并与同侧轨道中心线同圆心,但由于墙体的里凹和外凸形成多种不同半径的圆弧,平面定位放线作业相当复杂。高程工程箱体结构位于和两种不同坡度的坡度线上,两侧站台板也存在不同坡度的变换,且变坡点不在同一里程工程主体结构和站台板的标高必须由不同的坡度线控制。施工工程设计为明开挖分段施工,施工段最大长度不能超过25 m由于工斯和施工技术要求决定了工程必须多头开挖,点位的坐标和高程需多次向基坑内引测,多头贯通,给施工放线的精度提出了更高的要求。3施土控制测量测量仪器的选烈《地下铁道,轻轨交通测量规范》要求精密导线测量相对点位中误差≤±8 mm;精密水准测量附合路线闭合差≤8mm。设导线平均边长100 m,取II级全站仪,因边长较短设测角中误差mβ=±5",测距中误差ms=2+2 x10-6,佑算导线点相对点误差为:因此使用且级全站仪、DS1水准仪进行控制测量,完全满足地铁的施工测量精度要求。施工平面控制测量西北角车站施工作业面为长220 m,宽20-30 m的带状,因此用精密导线作为平面控制最为适宜,在考虑便于施工放样、点位保护和变形等诸多因素的前提下,在车站的起讫点及中点附近布置了3个精密导线点A,B,C,与已知点GPS515 , GPS550, GPS514组成附合导线,导线平均边长105m,工程位置及导线布置见图1。导线水平角采用II级全站仪6测回测定,边长取5次测量平均值,往返各两测回测定,外业观测成果精度如下:方位角闭合差;fβ==a始+∑(β±180°)-a终=5〃该导线用天津市测绘院提供的计算软件严密平差后,最大点位中误差,最大点间误差 mm,导线全长中误差达到1/180000。施工高程控制测量将精密导线点同时作为施工高程控制点与已知二等水准点JBM-3,JBM-4组成附和水准线路,水准线路总长度约600 m,其中最远点.4距已知水准点240 m高程控制测量采用带有平行玻I}板测微器的DS.水准仪和锢瓦水准尺按二等水准测量技术要求施测实测4个测段最大往返不符值 mm,附合水准路线闭合差 mm,每km水准测量高差偶然中误差4施土放样施工放样平面控制点的建立近井点的测设施工段开挖完毕,在基坑支护结构的压顶梁上选择适当位置建立近井点,并分别从两个地面控制点(GPS点或精密导线点)测定其坐标,两次测定坐标值较差在±10 mm之内,取其中数作为近井点坐标当两个以上施工段同时开挖完毕,可将各段近井点与地面控制点连成附合导线,取平差结果作为近井点的坐标.地下平面控制点的测设首段施工在施工段两端建立地下控制点,并与近井点组成闭合导线确定地下控制点坐标,后续施工布设的地下导线至少应联测一个先期建立的地下控制点当重合点测定的坐标值与原坐标值较差在±10 mm之内时,取其中数作为重合点坐标。 1也下高程控制点的测设高程传递测量采用吊钢尺法,地上地下安置两台DS1水准仪同时读数,观测三测回,测回间变动仪器高度,三测回测定的地下水准点高程较差应小于3 mm。考虑底板混凝土浇筑后的沉降,每个施工段的高程传递应独立进行并连测已建立的地下水准点,计算结构沉降量,同时对地下水准点的高程进行改正地下水准测量使用DS1水准仪、铟瓦、钢尺往返测定。5曲线的测定内业计算放样准备依据曲线要素计算曲线上每隔3m点的坐标(半径800m,3 m弧长以直代曲后的最大误差为 mm可忽略不计)。利用微机Excel表格处理计算软件,将曲线要素及线路曲线计算公式输入微机进行计算,并用手算进行核对无误后,再用CAD软件定点做图,观察曲线形状,量取相关结构尺寸和施工图对照,进行验证.计算曲线放样点在本段弦上的投影长度Si和弓高hi,见图曲线放样将地下控制点坐标、放样点坐标全部输入全站仪,用全站仪坐标放样程序在实地放样诸点,并弹线确定曲线位置检验:在直线A ,B上用钢尺量取S1,S2...,S3...,同时量取该的曲线弓高其值与计算值之差在±5 mm之内可不调整,否则查找原因重新测设。6坡度线的测设结构施工的标高放样采用DS3水准仪,按四等水准测量的精度要求施测,水准仪使用前进行i角检测(水准轴与视准轴夹角),其值必须小于±20〃,否则应进行校正。结构高程的测设除每个施工段的两个结构端点和变坡点必须测设外,余者每隔10m左右测设一点,点与点之间拉小线即可确定结构坡度具体测量方法是,依平面定位测量点确定高程放样点的里程位置,再按设计坡度计算出该点处结构高程依据地下水准点从一端逐个将计算高程测设到标桩酬钢筋上,测设到另一端点后与另一个地下水准点闭合,其闭合差应小于士5 mm否则查找原因重新测设。7地铁西北角车站施土测量效果及体会依设计要求西北角地铁站分为12个施工段,又由于施工条件限制和工斯要求没有按施工段顺序施工,这样共形成5个贯通面,由于采用上述测量方法,最大纵向贯通误差13mm,最大横向贯通误差9 mm,最大高程贯通误差10 mm,经竣工测量,轨道中心线点位中误差仅为8 mm ,测量精度完全满足了规范要求。(1)根据工程规模和精度要求,确定工程测量的控制等级,配置相应的仪器设备,严格按规范要求的相应控制等级技术要求施测,确保控制点的精度对于曲线型地铁站,用精密导线做为施工控制测量线最为适宜。(2)视工程具体情况,制定施工放线方法和验核方法,做到既切实可行,又能满足精度要求。(3)充分利用计算机和软件进行平差计算、放样计算、作图等内业工作,减少内业工作量,提高内业成果的可靠性。(4)所有工程平面位置或高程的放样必须设有多余观测,用以验证放样结果的正确与否。参考文献:[1] GB50308-1999,地下铁道轻轨交通工程测量规范[S].[2] GB 50299-1999,地下铁道施工及验收规范[S].[3] GB 50206-93,工程测量规范[S].

超声波测距仪仪毕业论文

好做。毕业论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。超声波测距是指将超声波用于测量距离。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。

2008-09-26 09:22

参考文献2008-09-26 09:22 翻译与原文2008-09-26 09:23 96,768 开题报告.doc2008-09-26 09:23 24,064 实习报告.doc2008-09-26 09:23 91,136 实习日记.doc2008-09-26 09:23 136,192 文献综述.doc2008-09-26 09:23 523,776 毕业论文.doc【摘要】超声波测距技术在当今社会生活中已有很广泛的应用,本论文在了解超声波测距原理的基础上,完成了基于时差测距原理的一种超声波测距系统的软硬件设计,其中的控制芯片是采用凌阳公司开发的SPCE061A系列单片机。论文着重介绍了SPCE061A与超声波测距模块组成的超声波测距系统的组成原理以及应用,另外也介绍了LED显示等模组的应用。该系统可广泛应用于小距离测距、机器人检测、车辆倒车雷达以及家居安防系统等应用方案。最后实际使用表明能实现基本测量。【关键词】SPCE061A 超声波 距离测量目 录一、 引言 4二、 凌阳SPCE061A简介 总述 性能 结构概览 61板卡说明 7三、 系统分析与设计 超声波测距基本原理 系统总体方案介绍 10四、 硬件电路设计 超声波发射模块 超声波接受模块 键盘模块 LED显示模块 超声波测距系统工作过程 14五、 以SPCE061A为核心的软件设计 总体设计 测距算法 系统调试 18六、 系统的测试与结果分析 系统误差分析 系统测试 21七、 结束语 22八、 参考文献 23九、 致谢 24十、附录(源程序)25

相关范文:基于单片机的超声波测距仪设计及其应用分析 [摘要] 本文利用超声波传输中距离与时间的关系,采用AT89C51单片机进行控制及数据处理,设计出了能精确测量两点间距离的超声波测距仪。该测距仪主要由超声波发射器电路、超声波接收器电路、单片机控制电路、环境温度检测电路及显示电路构成。利用所设计出的超声波测距仪,对不同距离进行了测试,并进行了详尽的误差分析。 [关键词] 超声波测距 单片机 温度传感器 随着社会的发展,人们对距离或长度测量的要求越来越高。超声波测距由于其能进行非接触测量和相对较高的精度,越来越被人们所重视。本设计的超声波测距仪,可以对不同距离进行测试,并可以进行详尽的误差分析。 一、设计原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。 通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为340m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 二、超声波测距仪设计目标 测量距离: 5米的范围之内;通过LED能够正确显示出两点间的距离;误差小于5%。 三、数据测量和分析 1.数据测量与分析 由于实际测量工作的局限性,最后在测量中选取了一米以下的30cm、50cm、70cm、80cm、90cm、100cm 六个距离进行测量,每个距离连续测量七次,得出测量数据(温度:29℃),如表所示。从表中的数据可以看出,测量值一般都比实际值要大几厘米,但对于连续测量的准确性还是比较高的。 对所测的每组数据去掉一个最大值和最小值,再求其平均值,用来作为最终的测量数据,最后进行比较分析。这样处理数据也具有一定的科学性和合理性。从表中的数据来看,虽然对超声波进行了温度补偿,但在比较近的距离的测量中其相对误差也比较大。特别是对30cm和50cm的距离测量上,相对误差分别达到了5%和。但从全部测量结果看,本设计的绝对误差都比较小,也比较稳定。本设计盲区在左右,基本满足设计要求。 2.误差分析 测距误差主要来源于以下几个方面: (1)超声波发射与接收探头与被测点存在一定的角度,这个角度直接影响到测量距离的精确值;(2)超声波回波声强与待测距离的远近有直接关系,所以实际测量时,不一定是第一个回波的过零点触发;(3)由于工具简陋,实际测量距离也有误差。影响测量误差的因素很多,还包括现场环境干扰、时基脉冲频率等等。 四、应用分析 采用超声波测量大气中的地面距离,是近代电子技术发展才获得正式应用的技术,由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,在较恶劣的环境(如含粉尘)具有一定的适应能力。因此,用途极度广泛。例如:测绘地形图,建造房屋、桥梁、道路、开挖矿山、油井等,利用超声波测量地面距离的方法,是利用光电技术实现的,超声测距仪的优点是:仪器造价比光波测距仪低,省力、操作方便。 超声测距仪在先进的机器人技术上也有应用,把超声波源安装在机器人身上,由它不断向周围发射超声波并且同时接收由障碍物反射回波来确定机器人的自身位置,用它作为传感器控制机器人的电脑等等。由于超声波易于定向发射,方向性好,强度好控制,它的应用价值己被普遍重视。 总之,由以上分析可看出:利用超声波测距,在许多方面有很多优势。因此,本课题的研究是非常有实用和商业价值。 五、结论 本设计的测量距离符合市场要求,测量的盲区也控制在23cm以内。针对市场需求,本设计还可以加大发射功率,让测量的距离更加的远。在显示方面,也可以对程序做适当改动,使开始发射超声波时LED显示出温度值,到超声波回波接收到以后通过计算得出距离值时,LED自动切换显示距离值,这样在视觉效果上得到更加直观的了解。 参考文献: [1]孙涵芳徐爱卿:MCS一51/96系列单片机原理及应用(修订版)[M].北京:北京航空航天大学出版社. [2]金篆芷王明时:现代传感器技术[M].电子工业出版社.—335 [3]孙涵芳徐爱卿:MCS一51/96系列单片机原理及应用(修订版)[M].北京:北京航空航天大学出版社. [4]路锦正王建勤杨绍国赵珂赵太飞:超声波测距仪的设计[J].传感器技术.2002 仅供参考,请自借鉴希望对您有帮助

你在将你焊的板子再焊焊,看有没有虚焊。或者用示波器进行测量看看是否是数码管出问题。这个我们刚刚焊完。仔细点应该就会好的。祝你成功!

测速仪毕业论文

以下均可参考,从参考网址进入,合适的话,给我加分!谢谢1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文电梯控制的设计与实现 6.恒温箱单片机控制7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文 变电所一次系统设计11.报警门铃设计论文 单片机交通灯控制13.单片机温度控制系统 通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统 16.基于单片机的电子密码锁17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计 20.基于LabVIEW的PC机与单片机串口通信设计的IIR数字高通滤波器 22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计 30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文 数字滤波器的设计毕业论文机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文变电站电气主接线设计 序列在扩频通信中的应用37.正弦信号发生器 38.红外报警器设计与实现39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材 42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护 46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现 48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计 50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文 52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文 54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文 56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器 58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文 60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文 62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文 64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计 66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计 68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究 70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计 72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计 74.空调器微电脑控制系统75.全自动洗衣机控制器 76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计 78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计 80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计 82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器 84.电阻炉温度控制系统85.智能温度巡检仪的研制 86.保险箱遥控密码锁 毕业设计变电所的电气部分及继电保护 88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统 90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统 92.继电器控制两段传输带机电系统93.广告灯自动控制系统 94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统 96.全自动车载饮水机97.浮球液位传感器水位控制系统 98.干簧继电器水位控制系统99.电接点压力表水位控制系统 100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置 102.直流操作电源监控系统的研究103.悬挂运动控制系统 104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置 型无功补偿装置控制器的设计电机调速 频段窄带调频无线接收机109.电子体温计 110.基于单片机的病床呼叫控制系统111.红外测温仪 112.基于单片微型计算机的测距仪113.智能数字频率计 114.基于单片微型计算机的多路室内火灾报警器115.信号发生器 116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计 118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计 120.电子万年历 121.遥控式数控电源设计 降压变电所一次系统设计 变电站一次系统设计 124.智能数字频率计 125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计 127.基于FPGA的电网基本电量数字测量系统的设计 128.风力发电电能变换装置的研究与设计 129.电流继电器设计 130.大功率电器智能识别与用电安全控制器的设计 131.交流电机型式试验及计算机软件的研究 132.单片机交通灯控制系统的设计 133.智能立体仓库系统的设计 134.智能火灾报警监测系统 135.基于单片机的多点温度检测系统 136.单片机定时闹钟设计 137.湿度传感器单片机检测电路制作 138.智能小车自动寻址设计--小车悬挂运动控制系统 139.探讨未来通信技术的发展趋势 140.音频多重混响设计 141.单片机呼叫系统的设计 142.基于FPGA和锁相环4046实现波形发生器 143.基于FPGA的数字通信系统 144.基于单片机的带智能自动化的红外遥控小车 145.基于单片机AT89C51的语音温度计的设计 146.智能楼宇设计 147.移动电话接收机功能电路 148.单片机演奏音乐歌曲装置的设计 149.单片机电铃系统设计 150.智能电子密码锁设计 151.八路智能抢答器设计 152.组态控制抢答器系统设计 153.组态控制皮带运输机系统设计 154..基于单片机控制音乐门铃 155.基于单片机控制文字的显示 156.基于单片机控制发生的数字音乐盒 157.基于单片机控制动态扫描文字显示系统的设计 158.基于LMS自适应滤波器的MATLAB实现 功率放大器毕业论文 160.无线射频识别系统发射接收硬件电路的设计 161.基于单片机PIC16F877的环境监测系统的设计 162.基于ADE7758的电能监测系统的设计 163.智能电话报警器 164.数字频率计 课程设计 165.多功能数字钟电路设计 课程设计 166.基于VHDL数字频率计的设计与仿真 167.基于单片机控制的电子秤 168.基于单片机的智能电子负载系统设计 169.电压比较器的模拟与仿真 170.脉冲变压器设计 仿真技术及应用 172.基于单片机的水温控制系统 173.基于FPGA和单片机的多功能等精度频率计 174.发电机-变压器组中微型机保护系统 175.基于单片机的鸡雏恒温孵化器的设计 176.数字温度计的设计 177.生产流水线产品产量统计显示系统 178.水位报警显时控制系统的设计 179.红外遥控电子密码锁的设计 180.基于MCU温控智能风扇控制系统的设计 181.数字电容测量仪的设计 182.基于单片机的遥控器的设计 电话卡代拨器的设计 184.数字式心电信号发生器硬件设计及波形输出实现 185.电压稳定毕业设计论文 186.基于DSP的短波通信系统设计(IIR设计) 187.一氧化碳报警器 188.网络视频监控系统的设计 189.全氢罩式退火炉温度控制系统 190.通用串行总线数据采集卡的设计 191.单片机控制单闭环直流电动机的调速控制系统 192.单片机电加热炉温度控制系统 193.单片机大型建筑火灾监控系统 接口设备驱动程序的框架设计 195.基于Matlab的多频率FMICW的信号分离及时延信息提取 196.正弦信号发生器 197.小功率UPS系统设计 198.全数字控制SPWM单相变频器 199.点阵式汉字电子显示屏的设计与制作 200.基于AT89C51的路灯控制系统设计 200.基于AT89C51的路灯控制系统设计 201.基于AT89C51的宽范围高精度的电机转速测量系统 202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计 204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计 206.新型自动装弹机控制系统的研究与开发 207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统

液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 全面理解设计要求 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有惯性负载、弹性负载、粘性负载、各种摩擦负载(如静摩擦、动摩擦等)以及重力和其它不随时间、位置等参数变化的恒值负载等。 拟定控制方案、绘制系统原理图 在全面了解设计要求之后,可根据不同的控制对象,按表6所列的基本类型选定控制方案并拟定控制系统的方块图。如对直线位置控制系统一般采用阀控液压缸的方案,方块图如图36所示。图36 阀控液压缸位置控制系统方块图表6 液压伺服系统控制方式的基本类型伺服系统 控制信号 控制参数 运动类型 元件组成机液电液气液电气液 模拟量数字量位移量 位置、速度、加速度、力、力矩、压力 直线运动摆动运动旋转运动 1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达 动力元件参数选择 动力元件是伺服系统的关键元件。它的一个主要作用是在整个工作循环中使负载按要求的速度运动。其次,它的主要性能参数能满足整个系统所要求的动态特性。此外,动力元件参数的选择还必须考虑与负载参数的最佳匹配,以保证系统的功耗最小,效率高。 动力元件的主要参数包括系统的供油压力、液压缸的有效面积(或液压马达排量)、伺服阀的流量。当选定液压马达作执行元件时,还应包括齿轮的传动比。 供油压力的选择 选用较高的供油压力,在相同输出功率条件下,可减小执行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,设备结构紧凑,同时油腔的容积减小,容积弹性模数增大,有利于提高系统的响应速度。但是随供油压力增加,由于受材料强度的限制,液压元件的尺寸和重量也有增加的趋势,元件的加工精度也要求提高,系统的造价也随之提高。同时,高压时,泄漏大,发热高,系统功率损失增加,噪声加大,元件寿命降低,维护也较困难。所以条件允许时,通常还是选用较低的供油压力。 常用的供油压力等级为7MPa到28MPa,可根据系统的要求和结构限制条件选择适当的供油压力。 伺服阀流量与执行元件尺寸的确定 如上所述,动力元件参数选择除应满足拖动负载和系统性能两方面的要求外,还应考虑与负载的最佳匹配。下面着重介绍与负载最佳匹配问题。 (1)动力元件的输出特性 将伺服阀的流量——压力曲线经坐标变换绘于υ-FL平面上,所得的抛物线即为动力元件稳态时的输出特性,见图37。 图37 参数变化对动力机构输出特性的影响a)供油压力变化;b)伺服阀容量变化;c)液压缸面积变化 图中 FL——负载力,FL=pLA; pL——伺服阀工作压力; A——液压缸有效面积; υ——液压缸活塞速度, ; qL——伺服阀的流量; q0——伺服阀的空载流量; ps——供油压力。 由图37可见,当伺服阀规格和液压缸面积不变,提高供油压力,曲线向外扩展,最大功率提高,最大功率点右移,如图37a。 当供油压力和液压缸面积不变,加大伺服阀规格,曲线变高,曲线的顶点A ps不变,最大功率提高,最大功率点不变,如图37b。 当供油压力和伺服阀规格不变,加大液压缸面积A,曲线变低,顶点右移,最大功率不变,最大功率点右移,如图37c。 (2)负载最佳匹配图解法 在负载轨迹曲线υ-FL平面上,画出动力元件输出特性曲线,调整参数,使动力元件输出特性曲线从外侧完全包围负载轨迹曲线,即可保证动力元件能够拖动负载。在图38中,曲线1、2、3代表三条动力元件的输出特性曲线。曲线2与负载轨迹最大功率点c相切,符合负载最佳匹配条件,而曲线1、3上的工作点α和b,虽能拖动负载,但效率都较低。 (3)负载最佳匹配的解析法 参见液压动力元件的负载匹配。 (4)近似计算法在工程设计中,设计动力元件时常采用近似计算法,即按最大负载力FLmax选择动力元件。在动力元件输出特性曲线上,限定 FLmax≤pLA= ,并认为负载力、最大速度和最大加速度是同时出现的,这样液压缸的有效面积可按下式计算: (37) 图38 动力元件与负载匹配图形 按式37求得A值后,可计算负载流量qL,即可根据阀的压降从伺服阀样本上选择合适的伺服阀。近似计算法应用简便,然而是偏于保守的计算方法。采用这种方法可以保证系统的性能,但传递效率稍低。 (5)按液压固有频率选择动力元件 对功率和负载很小的液压伺服系统来说,功率损耗不是主要问题,可以根据系统要求的液压固有频率来确定动力元件。 四边滑阀控制的液压缸,其活塞的有效面积为 (38) 二边滑阀控制的液压缸,其活塞的有效面积为 (39) 液压固有频率ωh可以按系统要求频宽的(5~10)倍来确定。对一些干扰力大,负载轨迹形状比较复杂的系统,不能按上述的几种方法计算动力元件,只能通过作图法来确定动力元件。 计算阀控液压马达组合的动力元件时,只要将上述计算方法中液压缸的有效面积A换成液压马达的排量D,负载力FL换成负载力矩TL,负载速度换成液压马达的角速度 ,就可以得到相应的计算公式。当系统采用了减速机构时,应注意把负载惯量、负载力、负载的位移、速度、加速度等参数都转换到液压马达的轴上才能作为计算的参数。减速机构传动比选择的原则是:在满足液压固有频率的要求下,传动比最小,这就是最佳传动比。 伺服阀的选择 根据所确定的供油压力ps和由负载流量qL(即要求伺服阀输出的流量)计算得到的伺服阀空载流量q0,即可由伺服阀样本确定伺服阀的规格。因为伺服阀输出流量是限制系统频宽的一个重要因素,所以伺服阀流量应留有余量。通常可取15%左右的负载流量作为伺服阀的流量储备。 除了流量参数外,在选择伺服阀时,还应考虑以下因素: 1)伺服阀的流量增益线性好。在位置控制系统中,一般选用零开口的流量阀,因为这类阀具有较高的压力增益,可使动力元件有较大的刚度,并可提高系统的快速性与控制精度。 2)伺服阀的频宽应满足系统频宽的要求。一般伺服阀的频宽应大于系统频宽的5倍,以减小伺服阀对系统响应特性的影响。 3)伺服阀的零点漂移、温度漂移和不灵敏区应尽量小,保证由此引起的系统误差不超出设计要求。 4)其它要求,如对零位泄漏、抗污染能力、电功率、寿命和价格等,都有一定要求。 执行元件的选择 液压伺服系统的执行元件是整个控制系统的关键部件,直接影响系统性能的好坏。执行元件的选择与设计,除了按本节所述的方法确定液压缸有效面积A(或液压马达排量D)的最佳值外,还涉及密封、强度、摩擦阻力、安装结构等问题。 反馈传感器的选择 根据所检测的物理量,反馈传感器可分为位移传感器、速度传感器、加速度传感器和力(或压力)传感器。它们分别用于不同类型的液压伺服系统,作为系统的反馈元件。闭环控制系统的控制精度主要决定于系统的给定元件和反馈元件的精度,因此合理选择反馈传感器十分重要。 传感器的频宽一般应选择为控制系统频宽的5~10倍,这是为了给系统提供被测量的瞬时真值,减少相位滞后。传感器的频宽对一般系统都能满足要求,因此传感器的传递函数可近似按比例环节来考虑。 确定系统方块图 根据系统原理图及系统各环节的传递函数,即可构成系统的方块图。根据系统的方块图可直接写出系统开环传递函数。阀控液压缸和阀控液压马达控制系统二者的传递函数具有相同的结构形式,只要把相应的符号变换一下即可。 绘制系统开环波德图并确定开环增益 系统的动态计算与分析在这里是采用频率法。首先根据系统的传递函数,求出波德图。在绘制波德图时,需要确定系统的开环增益K。 改变系统的开环增益K时,开环波德图上幅频曲线只升高或降低一个常数,曲线的形状不变,其相频曲线也不变。波德图上幅频曲线的低频段、穿越频率以及幅值增益裕量分别反映了闭环系统的稳态精度、截止频率及系统的稳定性。所以可根据闭环系统所要求的稳态精度、频宽以及相对稳定性,在开环波德图上调整幅频曲线位置的高低,来获得与闭环系统要求相适应的K值。 由系统的稳态精度要求确定K 由控制原理可知,不同类型控制系统的稳态精度决定于系统的开环增益。因此,可以由系统对稳态精度的要求和系统的类型计算得到系统应具有的开环增益K。 由系统的频宽要求确定K 分析二阶或三阶系统特性与波德图的关系知道,当ζh和K/ωh都很小时,可近似认为系统的频宽等于开环对数幅值曲线的穿越频率,即ω-3dB≈ωc,所以可绘制对数幅频曲线,使ωc在数值上等于系统要求的ω-3dB值,如图39所示。由此图可得K值。 图39 由ω-3dB绘制开环对数幅频特性a)0型系统;b)I型系统 由系统相对稳定性确定K 系统相对稳定性可用幅值裕量和相位裕量来表示。根据系统要求的幅值裕量和相位裕量来绘制开环波德图,同样也可以得到K。见图40。 实际上通过作图来确定系统的开环增益K,往往要综合考虑,尽可能同时满足系统的几项主要性能指标。 系统静动态品质分析及确定校正特性 在确定了系统传递函数的各项参数后,可通过闭环波德图或时域响应过渡过程曲线或参数计算对系统的各项静动态指标和误差进行校核。如设计的系统性能不满足要求,则应调整参数,重复上述计算或采用校正环节对系统进行补偿,改变系统的开环频率特性,直到满足系统的要求。 仿真分析 在系统的传递函数初步确定后,可以通过计算机对该系统进行数字仿真,以求得最佳设计。目前有关于数字仿真的商用软件,如Matlab软件,很适合仿真分析。

武汉工程大学邮电与信息工程学院毕业设计(论文) 摘 要 随着居民生活水平的不断提高,自行车不再仅仅是普通的运输、代步的工具,而是成为人们娱乐、休闲、锻炼的首选。自行车测速仪能够满足人们最基本的需求,让人们能清楚地知道当前的速度、里程、时间、温度等物理量。本论文主要阐述一种基于霍尔元件的自行车测速仪的设计。 本文以STC89C54RD+单片机为核心,霍尔传感器测转数,实现对自行车里程、速度、时间、温度的测量统计,能将自行车的里程及速度用LCD实时显示。文章详细介绍了自行车测速仪的硬件电路和软件设计。硬件部分利用霍尔元件将自行车每转一圈的脉冲数传入单片机系统,然后单片机系统将信号经过处理送LCD显示。软件部分用C语言进行编程,采用模块化设计思想。该系统硬件电路简单,子程序具有通用性,已达到设计目标。

天下没有免费的午餐

仪器检测毕业论文

测控二三事找去

论文关键字:工程测量监理 论文摘要:在目前工程建设施工监理行业中,测量是一项非常重要而又必不可少的工作。为了提高施工质量,规范工栏的作业标准,急需制定一个符合工程施工实际并切实可行的测量监理工作规程。...

摘要:文中结合天津地铁1号线改扩建工程,简要介绍了曲线地铁车站施工测量技术特点;施工控制测量及施工放样方法,确定了用精密导线作为施工控制测量线最为适宜关键词:工程测量;地铁;曲线1工程概况天津市地铁1号线西北角车站为原有站改扩建工程,位于北马路芥园道和西马路大丰路交口。全现浇钢筋混凝土箱型地下结构,双轨侧式站台车站起点里程k9+,终点里程k9+总长218 m,箱体最宽处28 m,结构净高 m,主要站段埋深 m,设4个出入口,2座风道,建筑总面积10 666 m2。2施土测量技术特点、难点工程平面位置该车站为全曲线站,地下结构中柱纵轴线、铁道左轨中线、右轨中线均由圆曲线和缓和曲线组成,三条线曲线元素各不相同,即缓和曲线起终点不在同一里程,圆曲线圆心各异,半径分别为800 m, m, m箱体侧墙均为圆曲线,并与同侧轨道中心线同圆心,但由于墙体的里凹和外凸形成多种不同半径的圆弧,平面定位放线作业相当复杂。高程工程箱体结构位于和两种不同坡度的坡度线上,两侧站台板也存在不同坡度的变换,且变坡点不在同一里程工程主体结构和站台板的标高必须由不同的坡度线控制。施工工程设计为明开挖分段施工,施工段最大长度不能超过25 m由于工斯和施工技术要求决定了工程必须多头开挖,点位的坐标和高程需多次向基坑内引测,多头贯通,给施工放线的精度提出了更高的要求。3施土控制测量测量仪器的选烈《地下铁道,轻轨交通测量规范》要求精密导线测量相对点位中误差≤±8 mm;精密水准测量附合路线闭合差≤8mm。设导线平均边长100 m,取II级全站仪,因边长较短设测角中误差mβ=±5",测距中误差ms=2+2 x10-6,佑算导线点相对点误差为:因此使用且级全站仪、DS1水准仪进行控制测量,完全满足地铁的施工测量精度要求。施工平面控制测量西北角车站施工作业面为长220 m,宽20-30 m的带状,因此用精密导线作为平面控制最为适宜,在考虑便于施工放样、点位保护和变形等诸多因素的前提下,在车站的起讫点及中点附近布置了3个精密导线点A,B,C,与已知点GPS515 , GPS550, GPS514组成附合导线,导线平均边长105m,工程位置及导线布置见图1。导线水平角采用II级全站仪6测回测定,边长取5次测量平均值,往返各两测回测定,外业观测成果精度如下:方位角闭合差;fβ==a始+∑(β±180°)-a终=5〃该导线用天津市测绘院提供的计算软件严密平差后,最大点位中误差,最大点间误差 mm,导线全长中误差达到1/180000。施工高程控制测量将精密导线点同时作为施工高程控制点与已知二等水准点JBM-3,JBM-4组成附和水准线路,水准线路总长度约600 m,其中最远点.4距已知水准点240 m高程控制测量采用带有平行玻I}板测微器的DS.水准仪和锢瓦水准尺按二等水准测量技术要求施测实测4个测段最大往返不符值 mm,附合水准路线闭合差 mm,每km水准测量高差偶然中误差4施土放样施工放样平面控制点的建立近井点的测设施工段开挖完毕,在基坑支护结构的压顶梁上选择适当位置建立近井点,并分别从两个地面控制点(GPS点或精密导线点)测定其坐标,两次测定坐标值较差在±10 mm之内,取其中数作为近井点坐标当两个以上施工段同时开挖完毕,可将各段近井点与地面控制点连成附合导线,取平差结果作为近井点的坐标.地下平面控制点的测设首段施工在施工段两端建立地下控制点,并与近井点组成闭合导线确定地下控制点坐标,后续施工布设的地下导线至少应联测一个先期建立的地下控制点当重合点测定的坐标值与原坐标值较差在±10 mm之内时,取其中数作为重合点坐标。 1也下高程控制点的测设高程传递测量采用吊钢尺法,地上地下安置两台DS1水准仪同时读数,观测三测回,测回间变动仪器高度,三测回测定的地下水准点高程较差应小于3 mm。考虑底板混凝土浇筑后的沉降,每个施工段的高程传递应独立进行并连测已建立的地下水准点,计算结构沉降量,同时对地下水准点的高程进行改正地下水准测量使用DS1水准仪、铟瓦、钢尺往返测定。5曲线的测定内业计算放样准备依据曲线要素计算曲线上每隔3m点的坐标(半径800m,3 m弧长以直代曲后的最大误差为 mm可忽略不计)。利用微机Excel表格处理计算软件,将曲线要素及线路曲线计算公式输入微机进行计算,并用手算进行核对无误后,再用CAD软件定点做图,观察曲线形状,量取相关结构尺寸和施工图对照,进行验证.计算曲线放样点在本段弦上的投影长度Si和弓高hi,见图曲线放样将地下控制点坐标、放样点坐标全部输入全站仪,用全站仪坐标放样程序在实地放样诸点,并弹线确定曲线位置检验:在直线A ,B上用钢尺量取S1,S2...,S3...,同时量取该的曲线弓高其值与计算值之差在±5 mm之内可不调整,否则查找原因重新测设。6坡度线的测设结构施工的标高放样采用DS3水准仪,按四等水准测量的精度要求施测,水准仪使用前进行i角检测(水准轴与视准轴夹角),其值必须小于±20〃,否则应进行校正。结构高程的测设除每个施工段的两个结构端点和变坡点必须测设外,余者每隔10m左右测设一点,点与点之间拉小线即可确定结构坡度具体测量方法是,依平面定位测量点确定高程放样点的里程位置,再按设计坡度计算出该点处结构高程依据地下水准点从一端逐个将计算高程测设到标桩酬钢筋上,测设到另一端点后与另一个地下水准点闭合,其闭合差应小于士5 mm否则查找原因重新测设。7地铁西北角车站施土测量效果及体会依设计要求西北角地铁站分为12个施工段,又由于施工条件限制和工斯要求没有按施工段顺序施工,这样共形成5个贯通面,由于采用上述测量方法,最大纵向贯通误差13mm,最大横向贯通误差9 mm,最大高程贯通误差10 mm,经竣工测量,轨道中心线点位中误差仅为8 mm ,测量精度完全满足了规范要求。(1)根据工程规模和精度要求,确定工程测量的控制等级,配置相应的仪器设备,严格按规范要求的相应控制等级技术要求施测,确保控制点的精度对于曲线型地铁站,用精密导线做为施工控制测量线最为适宜。(2)视工程具体情况,制定施工放线方法和验核方法,做到既切实可行,又能满足精度要求。(3)充分利用计算机和软件进行平差计算、放样计算、作图等内业工作,减少内业工作量,提高内业成果的可靠性。(4)所有工程平面位置或高程的放样必须设有多余观测,用以验证放样结果的正确与否。参考文献:[1] GB50308-1999,地下铁道轻轨交通工程测量规范[S].[2] GB 50299-1999,地下铁道施工及验收规范[S].[3] GB 50206-93,工程测量规范[S].

测控技术毕业论文摘要:随着电子信息技术的发展,各种实用控制技术已全面渗透到现代工业、农业、服务业的各个领域,越来越多的控制技术在走融合的道路,测控设备的发展也是越来越快,技术更新日新月异。电子和信息产业的高度繁荣和快速发展,已成为当今中国国民经济的第一支柱产业。根据目前测控技术发展趋势,培养具有测控产品生产过程管理、质量检测、工业测控设备维护、营销和具备智能化测控产品的初步设计能力的高素质技能型人才,已成为高等职业技术院校测控专业面对的新课题和新要求。测控技术毕业应具备精密仪器设计与制造以及测量与控制方面知识与应用能力,能在国民经济部门从事测量与控制领域内有关技术,仪器与系统的设计制造,科技开发,应用研究运行管理。该专业既可以在科研单位进行仪器仪表的开发和设计同时还可以在工程检测领域,计算机应用领域找到适合本专业个人发展空间。关键词:测控;仪器;设计与制造;检测;应用1、引言:本专业用具备精密仪器设计制造以及测量与控制方面基础知识应用能力,能在国民经济各部门从事测量与控制领域内有关技术,仪器与系统的设计制造,科技开发,应用研究管理等方面的高级工程技术人才。2、测控技术的作用学习精密仪器的光学,机械与电子学基础知识测量与控制理论和有关测控仪器的设计方法,受到现代测控技术予和仪器应用能力设计与开发。3、本专业毕业生应获得知识与能力(1)具有校扎实的自然科学基础较好的人文艺术和社会科学基础及正确运用本国语言文字的表达能力。(2)较系统的掌握本专业领域宽广的技术理论基础知识主要包括机械学、电子学、光学、测量与控制。市场经济及企业等管理基础知识;(3)掌握光、机、电、计算机相结合的当代测控技术和实验研究能力、具有本专业测控技术、仪器与系统的设计开发能力。(4)具有较强的外语应用能力(5)具有较强的自学能力、创新意识和较高的综合素质4、测控技术自古以来就是人类上火和生产的重要组成部分。最初的测量尝试都是来自于生产生活的需要,对时间的测量要求使人类有了日这一开始的时钟,对空间的测控要求使人类有了点线面的认识。现代社会对测控的要求当然不会停留在这些初级阶段,随着科技的发展,测控技术进入了全新时代。测控技术与仪器专业是信息科学技术的源头,是兴学、精密机械、电子、计算机与信息技术多学科互相参透而形成的一门高新技术密集型综合学科,她的专业面广,小到制造车间的检测,大到卫星火箭发射的监控。本专业最令人感兴趣的方向恐怕要数光盘生产了,很多同学认为这属于制造业,实际上由于对精度的严格要求,使她归于测控与仪器专业。5、总结从今天进入信息科技时代来看,仪器、仪表是实现信息的获取、持续、存贮和提示物质运动的必看工具,是当今普遍称之为时代标志的信息,科技的三大支柱的必要手段,也是新技术革命的一项重要内容。参考文献:[1]《测控技术与仪器》,百度百科[2]《应用文范文》这个符合吗?

  • 索引序列
  • 测厚仪毕业论文
  • 智能测厚仪毕业论文
  • 超声波测距仪仪毕业论文
  • 测速仪毕业论文
  • 仪器检测毕业论文
  • 返回顶部