首页 > 学术论文知识库 > 简谐振动研究论文

简谐振动研究论文

发布时间:

简谐振动研究论文

可怜的娃们、我弟今天也编这个这。还让我帮他办报纸,我就汗死

骨笛遐想——浅析小提琴发声、调音的物理原理一.选题意义据我国最早的物理史学家吴南薰先生考证,世界上第一个人工制作的物理仪器就是在兽骨或竹管上挖孔并能吹出声音来的笛子。这既是一种乐器,也是一种声学仪器;我国古代对共鸣、弦的振动、管的音调的研究等都是通过乐器来进行的;希腊哲学家毕达哥拉斯发现了琴弦的长短与音高有一定的关系;从近代物理学发展来看,声学依旧占据着相当重要的部分,且与我们的生活息息相关;……许多同学都会演奏一些乐器,但对于弦乐器的调试却无从下手。我们结合已经学过的振动学知识,浅析西洋擦弦乐器——小提琴的发声原理,并为演奏者检音、调试提供理论依据和实验结果参考。二.相关物理知识实际的乐音由基频、谐波(泛音)、分音三部分组成。每一个乐音即周期性的振动都可以分解为许多不同频率、不同相位、不同振幅的简谐振动的叠加。简单的简谐振动即正弦振动或余弦振动的传播产生的声波叫做纯音,实际的乐音如歌唱声、乐器声等都不是简单的纯音,而是许多的纯音的叠加。在这些简谐振动中,频率最低的叫做基频,基频的能量往往是最大的。频率是基频整数倍的叫做谐波,其余的高频振动叫做分音。现代的分析中表明,还有低于基频的次声。因此,从物理上讲,音乐声应由三部分组成:乐音、在音乐中使用的噪声(如锣、鼓、沙锤、梆子等没有固定音调的打击乐器和海涛、流水、风声等效果声音)以及对音色有影响的在谐波中存在的一部分超声。一般来说,发生体振动的频率越高,人们听起来音调也越高;发生体的振动频率越低,人们听起来音调就越低。但音调与频率之间并不是严格按比例对应的。一般认为,频率每增高一倍,音调听起来就高一个八度,这仅仅限于中频段。在高音部分,听感偏低,即频率增加一倍,听起来不到高八度,而是偏低,于是要把频率调高些,以适应人的听觉。低音段则听感偏高,于是需要把频率调低些。乐音听起来有一定的强弱,即音的响度,这是乐音的第二个主观量。声音的能量越大,声强越大,听起来响度就越大。但是,这二者也不是按比例一一对应的。至于音色,更是一种主观感觉了。从传统来讲,决定音色的主要因素是频谱,所以常常根据频谱模仿各种音色。但据资料显示,实践表明:音的起始与结尾的瞬间状况,即“音头”和“音尾”,也同音色大有关系。音色不仅与频谱的组成(即基频、谐波和分音的数目、长短、相对强度、分音的不谐和程度及瞬态)有关,还与基频和谐波在听音区的位置有关,这是由于人耳对于多种频率的响度反映不同。音色也与听者距声源的距离有关,这是因为一个音中的各种成分的衰减不同。三.相关音乐知识音程,就是两个音音高之间的距离。在音乐上,音程用“度”表示。几度就是把起始音算在内,沿着音阶数有几个音名。钢琴上相邻两个键(包括黑键)之间差半音,两个半音等于一个全音。这也是一种表示音程的方法。音程与频率基本上是一一对应的关系。把两个相差八度音程之间的音顺次排列,就成为音阶。规定音阶中各个音的由来及其精确音高的数学方法叫做律制。最常用的三种律制是十二平均律、五度相生律和纯律。音阶中的各个音都有音名,由于生律的方法不同,不同律制生成音律中的同名音(例如都是 )其频率是不一样的。十二平均律是我国明代科学家朱载堉最先发明的,比西欧早了几十年。他将一个八度音程(频率比为2)按等比数列均分为十二份,得十二律。当前的钢琴和所有键盘乐器以及带“品”的弦乐器等,用的都是这种律制。数学表示:相邻两音之间的频率比均为: 即从任何一个音开始,比该音高半音的音,其频率是该音的频率乘 ;比该音低半音的音,其频率是该音的频率乘 ;以此类推,可得出所有音的频率。十二平均律有许多优点,比如它易于转调,简化了不同调的升、降半音之间的关系。在小提琴中,假如以 音的弦长为基准,那么小字一组(其中的 比 高两个八度) 、 、 、 、 、 、 对应的弦长之间按照十二平均律可由频率关系确定一组固定比值。四.研究与实验小提琴的弦是一根两端固定的细钢丝。在拨、擦弦线时产生的波列经两固定端反射,叠加后形成驻波,但其中包含有许多频率的波。在这里,我们只对决定音调高低的基频振动做出分析研究。驻波的基频振动所对应的为波长最长的振动,即弦长 。提琴弦线与指板之间的距离很小,用手指在指板上压紧琴弦不同位置而使得弦产生的形变量很小,可以忽略不计。则可认为弦上张力 ,及弦的质量线密度 保持不变,可得弦线中波速 近似恒定。因此,可认为有如下比例关系成立: 实验过程:一把小提琴,经专业乐师调音后,定下 音,再由一位有多年演奏经验的同学拨奏单音,多位乐感敏锐、受过专业训练的同学一起听辨,配合其他乐器校对各音高。记录及计算数据如下表。表中的k值定义如下:相差一个半音的两个音高对应 相差一个全音的两个音高对应 序号n 音高音名 比下音程差 弦长/mm 总长: 上述k值 第一次 第二次 第三次 平均值 计算值 理论值 误差率1 全音 全音 半音 全音 全音 全音 半音 其中弦长一栏为小提琴 弦(四根弦由粗到细依次叫作 、 、 、 弦,指的是该弦的空弦音)上对应各音高压指与琴码两固定点之间的距离,即参加振动的部分弦长。如上数据显示,平均误差率为,基本符合前文理论分析。五.结论我们总结出对于一把小提琴(邻弦相差五度)的自我调试方法:以一根弦,例如 弦,的空弦音 为标准,按音高关系计算出同一根弦上 所对应的弦的长度。取 音高即与 弦空弦音等高(这是小提琴的制作要求)。依次调整 弦的松紧、长度后,再算出 弦上 的音高,作为 弦的空弦音。……同理进行下去。此种方法适用于各类提琴及吉他等擦、拨弦乐器,但须注意:①对于比空弦音高出许多的音,计算方法误差较大。实验中在一根弦上进行多组数据测量只是为了便于计算、对比,得出结论;实际操作中应对各相邻琴弦依次校对。②大提琴与吉他相邻的弦空弦音相差四度,计算时应注意数据与小提琴不同。希望我们的研究能够对广大演奏弦乐器的音乐爱好者提供帮助。

一、选题的背景与意义: 优秀的跳远选手在跳远时,是在追求快速及有效率的助跑以及强力有效的起跳动作,并以适当的起跳角度起跳,但是这两者同时成立是非常困难的,因为助跑速度越快,往上跳跃就会更加困难。 在人体起跳的肌肉变化及弹簧振子运动方面,许多学者都进行过深入研究,但很少将两者结合起来,采用物理方法分析人体起跳的运动过程。本研究正是针对这一问题提出,有一定的理论创新意义。同时,在国际跳高、跳远等运动项目中,我国选手较为落后,本课题的研究成果可作为运动员调高、跳远运动项目的理论参考,对提高我们运动员的成绩具有较大的现实意义。 二、研究的基本内容与拟解决的主要问题: 三、研究的方法与技术路线: 拟研究大纲: 第一章 绪论 压缩弹簧弹起的物理原理 人起跳的条件 分段速度 起跳动作 起跳水平速度利用率 起跳垂直速度利用率 起跳角度 助跑速度利用率 速度 起跳技术 第二章 人起跳的物理原理 影响跳远成绩的主要因素 有关跳远助跑与助跑速度利用率的研究 有关跳远踩板研究 有关跳远起跳技术的研究 第三章 实验方法与步骤 研究对象 实验时间与地点 实验时间 实验地点 实验仪器 压缩弹簧压力部分 测量助跑分段速度部份 测量起跳动作部分 实验场地布置 受试者选取 受试者填写同意书及基本资料 建立选手基本资料 仪器校正与测试 实验目的与方法说明 基本能力测试 排定实验顺序 前测与后测 数据纪录、整理与分析 资料收集与处理分析 结果与讨论 第四章 结论与建议 研究结论 研究建议 四、研究的总体安排与进度: 五、主要参考文献: [1] 谢利民.弹簧振子运动的实际动力学分析[J].上海师范大学学报(自然科学版),,31(2):91-94. [2] 基特尔C.伯克利物理学教程,第一卷,力学[M].北京:科学出版社,1979. [3] 药树栋,宫建平.弹簧振子振动的探讨[J].大学物理,(2):22-24. [4] 肖波齐.基于Matlab的弹簧振子简谐振动研究[J].陕西科技大学学报,,26(6):116-119. [5] 卢德明主编.运动生物力学测量方法[M].北京体育大学出版社, 2001 [6] 李建英,李磊,郭甫. 十运会男子三级跳远运动员三跳技术运动学分析[J].成都体育学院学报.2008(03) [7] 宋亮,丁磊,巩磊. 对世界优秀男子三级跳远运动员运动技术的比较分析[J].体育科技.2008(01) [8] 罗陵,刘春伟. 三级跳远运动员李延熙三跳起跳技术的运动学分析[J].北京体育大学学报.2008(02) [9] 宋惠娟,王亚军. 我国部分优秀女子运动员三级跳远起跳若干速度指标的运动学分析[J].安徽体育科技.2006(05) [10] 王琨等.对肌肉生物力学研究有关问题的探讨[J].上海体育学院学报,,25(1):36-40. [11] Norris, Dave. (1988). Run~ups in the horizontaal jumps. Track Technique. 104. [12] Tidow, G.(1990). Model for teachi ng techniques and assessing movememts in athletics:The Long Jump Track Technique .113, 3607~3620.

简谐振动论文模板3000字

21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!

中学物理中的物理模型

摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。

关键词:中学物理;教学;物理模型

一、物理模型的概念及功能

物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。

物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。

人们建立和研究物理模型的功能主要在于:

一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;

二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;

三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。

二、中学物理教材中经常碰到的几种物理模型

物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:

1.物理对象模型 即把物理问题的研究对象模型化。

例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。

另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。

2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。

如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。

教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。

3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。

4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。

5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。

如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。

再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。

6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。

三、物理模型在中学物理教学中的地位和作用

1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一

物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。

如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。

2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托

人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。

爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。

诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。

3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化

例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。

四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法

物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:

1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。

2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。

3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。

4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。

总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。

物理猜想与中学物理教学

【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。

【关键词】中学 物理猜想 物理教学

【中图分类号】 G 【文献标识码】 A

【文章编号】0450-9889(2014)11B-0076-02

随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。

一、物理猜想对中学物理教学有着重要的意义

新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。

1.提高学生学习兴趣和增进学生学习主动性

学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。

2.提高学生的思维能力

在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。

3.有利于学生巩固所学的物理知识

物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。

4.培养学生创新能力

在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。

二、教师在物理课堂教学中引导学生进行物理猜想的方法

教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。

1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想

科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。

2.激励学生讨论,诱发物理猜想

在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。

3.鼓励学生大胆猜想

在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。

4.创造良好的猜想条件

在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。

物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。

【参考文献】

[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)

[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012

[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)

[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)

高一物理知识点总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 动能保持不变,向心力不做功,但动量不断改变。

骨笛遐想——浅析小提琴发声、调音的物理原理一.选题意义据我国最早的物理史学家吴南薰先生考证,世界上第一个人工制作的物理仪器就是在兽骨或竹管上挖孔并能吹出声音来的笛子。这既是一种乐器,也是一种声学仪器;我国古代对共鸣、弦的振动、管的音调的研究等都是通过乐器来进行的;希腊哲学家毕达哥拉斯发现了琴弦的长短与音高有一定的关系;从近代物理学发展来看,声学依旧占据着相当重要的部分,且与我们的生活息息相关;……许多同学都会演奏一些乐器,但对于弦乐器的调试却无从下手。我们结合已经学过的振动学知识,浅析西洋擦弦乐器——小提琴的发声原理,并为演奏者检音、调试提供理论依据和实验结果参考。二.相关物理知识实际的乐音由基频、谐波(泛音)、分音三部分组成。每一个乐音即周期性的振动都可以分解为许多不同频率、不同相位、不同振幅的简谐振动的叠加。简单的简谐振动即正弦振动或余弦振动的传播产生的声波叫做纯音,实际的乐音如歌唱声、乐器声等都不是简单的纯音,而是许多的纯音的叠加。在这些简谐振动中,频率最低的叫做基频,基频的能量往往是最大的。频率是基频整数倍的叫做谐波,其余的高频振动叫做分音。现代的分析中表明,还有低于基频的次声。因此,从物理上讲,音乐声应由三部分组成:乐音、在音乐中使用的噪声(如锣、鼓、沙锤、梆子等没有固定音调的打击乐器和海涛、流水、风声等效果声音)以及对音色有影响的在谐波中存在的一部分超声。一般来说,发生体振动的频率越高,人们听起来音调也越高;发生体的振动频率越低,人们听起来音调就越低。但音调与频率之间并不是严格按比例对应的。一般认为,频率每增高一倍,音调听起来就高一个八度,这仅仅限于中频段。在高音部分,听感偏低,即频率增加一倍,听起来不到高八度,而是偏低,于是要把频率调高些,以适应人的听觉。低音段则听感偏高,于是需要把频率调低些。乐音听起来有一定的强弱,即音的响度,这是乐音的第二个主观量。声音的能量越大,声强越大,听起来响度就越大。但是,这二者也不是按比例一一对应的。至于音色,更是一种主观感觉了。从传统来讲,决定音色的主要因素是频谱,所以常常根据频谱模仿各种音色。但据资料显示,实践表明:音的起始与结尾的瞬间状况,即“音头”和“音尾”,也同音色大有关系。音色不仅与频谱的组成(即基频、谐波和分音的数目、长短、相对强度、分音的不谐和程度及瞬态)有关,还与基频和谐波在听音区的位置有关,这是由于人耳对于多种频率的响度反映不同。音色也与听者距声源的距离有关,这是因为一个音中的各种成分的衰减不同。三.相关音乐知识音程,就是两个音音高之间的距离。在音乐上,音程用“度”表示。几度就是把起始音算在内,沿着音阶数有几个音名。钢琴上相邻两个键(包括黑键)之间差半音,两个半音等于一个全音。这也是一种表示音程的方法。音程与频率基本上是一一对应的关系。把两个相差八度音程之间的音顺次排列,就成为音阶。规定音阶中各个音的由来及其精确音高的数学方法叫做律制。最常用的三种律制是十二平均律、五度相生律和纯律。音阶中的各个音都有音名,由于生律的方法不同,不同律制生成音律中的同名音(例如都是 )其频率是不一样的。十二平均律是我国明代科学家朱载堉最先发明的,比西欧早了几十年。他将一个八度音程(频率比为2)按等比数列均分为十二份,得十二律。当前的钢琴和所有键盘乐器以及带“品”的弦乐器等,用的都是这种律制。数学表示:相邻两音之间的频率比均为: 即从任何一个音开始,比该音高半音的音,其频率是该音的频率乘 ;比该音低半音的音,其频率是该音的频率乘 ;以此类推,可得出所有音的频率。十二平均律有许多优点,比如它易于转调,简化了不同调的升、降半音之间的关系。在小提琴中,假如以 音的弦长为基准,那么小字一组(其中的 比 高两个八度) 、 、 、 、 、 、 对应的弦长之间按照十二平均律可由频率关系确定一组固定比值。四.研究与实验小提琴的弦是一根两端固定的细钢丝。在拨、擦弦线时产生的波列经两固定端反射,叠加后形成驻波,但其中包含有许多频率的波。在这里,我们只对决定音调高低的基频振动做出分析研究。驻波的基频振动所对应的为波长最长的振动,即弦长 。提琴弦线与指板之间的距离很小,用手指在指板上压紧琴弦不同位置而使得弦产生的形变量很小,可以忽略不计。则可认为弦上张力 ,及弦的质量线密度 保持不变,可得弦线中波速 近似恒定。因此,可认为有如下比例关系成立: 实验过程:一把小提琴,经专业乐师调音后,定下 音,再由一位有多年演奏经验的同学拨奏单音,多位乐感敏锐、受过专业训练的同学一起听辨,配合其他乐器校对各音高。记录及计算数据如下表。表中的k值定义如下:相差一个半音的两个音高对应 相差一个全音的两个音高对应 序号n 音高音名 比下音程差 弦长/mm 总长: 上述k值 第一次 第二次 第三次 平均值 计算值 理论值 误差率1 全音 全音 半音 全音 全音 全音 半音 其中弦长一栏为小提琴 弦(四根弦由粗到细依次叫作 、 、 、 弦,指的是该弦的空弦音)上对应各音高压指与琴码两固定点之间的距离,即参加振动的部分弦长。如上数据显示,平均误差率为,基本符合前文理论分析。五.结论我们总结出对于一把小提琴(邻弦相差五度)的自我调试方法:以一根弦,例如 弦,的空弦音 为标准,按音高关系计算出同一根弦上 所对应的弦的长度。取 音高即与 弦空弦音等高(这是小提琴的制作要求)。依次调整 弦的松紧、长度后,再算出 弦上 的音高,作为 弦的空弦音。……同理进行下去。此种方法适用于各类提琴及吉他等擦、拨弦乐器,但须注意:①对于比空弦音高出许多的音,计算方法误差较大。实验中在一根弦上进行多组数据测量只是为了便于计算、对比,得出结论;实际操作中应对各相邻琴弦依次校对。②大提琴与吉他相邻的弦空弦音相差四度,计算时应注意数据与小提琴不同。希望我们的研究能够对广大演奏弦乐器的音乐爱好者提供帮助。

简谐运动研究的论文

[原名直译简单和谐运动]是最基本也最简单的机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。它是一种由自身系统性质决定的周期性运动。(如单摆运动和弹簧振

这明显不是微积分出来的,要是的话高一的学生怎么可能听得懂啊……简谐是在一个水平线上的,其水平线上的位移等同于一个匀速圆周运动的投影,其中圆的半径等于振幅。你自己画下图。x=R*cosθ其中R=A(振幅),θ是此时圆周运动的位置与水平位置的夹角,θ=ωt所以x(t)=Acoswt

千字三百,若需联系

简谐振动的究 班级:电子信息工程 2009-1 实验序号:19 姓名:刘珂瑞摘要; 振动推导弹簧振子周期公式,使用天平测量两弹簧质量之和,在振动A<25cm的情况下,改变滑块配重质量m五次,应用光电计时器测量相应振动周期T。引入等效质应用滑块在气垫导轨上做往复震动,由滑块所受合力验证滑块运动是简谐量后的周期公式,求出两弹簧等效劲度系数k,等效质量m0相对误差的大小。关键词:气垫导轨 光电计时器 滑块 配重 弹簧正文(一)引言 通过对《大学物理实验》的学习,我设了对简谐振动的研究,由学校提供气垫导轨等设备,在老师帮住下,通过实验方法求出两弹簧等效的劲系数k和等效质量m0(二)实验原理1. 振子的简谐振动本实验中所用的弹簧振子是这样的:两个劲度系数同为 的弹簧,系住一个装有平板档光片的质量为m的滑块,弹簧的另外两端固定。系统在光滑水平的气轨上作振动, 在水平气垫导轨上的滑块的两端联接两根相同的弹簧,两弹簧的另一端分别固定在气轨的两端点。选取水平向右的方向作 X 轴的正方向,又设两根弹簧的倔强系数均为 k0 ,就是说,使弹簧伸长一段距离 l时,需加的外力为 k0x 在质量为 m 的滑块位于平衡位置 O 时,两个弹簧的伸长量相同,所以滑块所受的合外力为零。当把滑块从 O 点向右移距离x时,左边的弹簧被拉长,它的收缩力达到 k0x,右边的弹簧被压缩x,它的膨胀力达到 k0x ,结果滑块受到一个方向向左、大小为 2 k0x的弹性力 F 作用。 考虑到弹性力 F 的方向指向平衡位置 O ,且跟位移 x 的方向相反,故有 F=-2k0x如果上述两根弹簧的倔强系数不相同,而分别为 k 1 和 k 2 ,显然,这时式中的 2 k 应换为k1+k2。于是有 F=-( k1+k2)x=-kx当忽略弹簧质量时振幅周期有:T=2π√ m/k若考虑两弹簧质质量对周期的影响,等于在滑块上加了m0,振幅周期公式变为 T=2π√(m+m0)/k等效劲度系数k:T2=4π2(m+m0)/k => k=4π2(m+m0)/T2 等效质量m0: T2=4π2(m+m0)/k => m0=(kT2-4π2m)/4π2在振幅A<25cm的情况下,改变滑块质量m五次得到,m1,m2,m3,m4,m5,m6。和周期T1~T6,由式可得 ,因此可以用逐差法处理数据, T42-T12=4π2 (m4-m1)/k; T52-T22=4π2(m5-m2)/k; T62-T32=4π2(m6-m3)/k; 求出平均值 ;将 代入式 求出平均值 。 求相对误差:Er=δx/x0×100%其中 ,称为弹簧的有效质量,c为一常数。对绕制均匀圆筒状的弹簧,c的理论值为 ,即弹簧的自身质量是其有效质量的3倍。理论值m0,=(1/3)m,; m,为两弹簧质量 Er=(m0-m0,)/m0,×100%=(m0-1/3m,)/(1/3)m,×100%(三)实验内容准备工作1用酒精棉球擦拭气轨表面(在供气时)以及滑块内表面,用薄的小纸条检查气孔是否有堵塞。 2记下不带挡光片的滑块的净质量(由实验室给出),并用天平称量平板挡光片以及两个弹簧的质量。将平板挡光片固定在滑块上,其总质量即为滑块质量 。测定滑块振动的周期 1 .实验前,将光电门卡在导轨上,接通计时仪电源。打开电源,将MUJ-5B型计时计数测速仪的“功能”选为“ 周期”。2 .气轨调至水平,调平:接通气源,给气轨通气,把滑块放置与导轨上,纵向水平调节支架螺钉,横向水平调节支点螺钉,直至滑块(在实验段内保持不动,或稍有滑动,但不总是向一个方向滑动,即认为已基本调平。3 .如图 7-1 所示,在水平气垫导轨上的滑块的两端联接两根相同的弹簧,两弹簧的另一端分别固定在气轨的两端点把振动滑块放在气轨上,并给滑块一个位移(A<25cm),令其振动。 当滑块振动1-2周期后,按光电计数器“功能”键,测出滑块振动30 周所用的时间30T ,算出周期 T2 ,测量滑块质量。并记录在实验表格内 4 .在滑块上加配重铁片(每一次加一片),并测量滑块改变后的不同质量,分别改变滑块的质量大小五次,重复步骤 3 ,求出不同质量的周期T,5 .测量两弹簧质量之和m,(四)实验数据m, = ×10-3kg; k= N/s; m0= ×10-3kgi m/(10-3kg) 30T/s T2/S2 m0/(10-3kg) i m/(10-3kg) 30T/s T2/S2 m0/(10-3kg) k/(N/m) 1 4 2 5 3 6 (五)实验数据处理及结果 1)弹簧等效劲度计算: T42-T12=4π2(m4-m1)/k;T52-T22=4π2(m5-m2)/k; T62-T32=4π2(m6-m3)/k;k1=4π2(m4-m1)/(T42-T12)= 4π N/mk2=4π2(m5-m2)/(T52-T22)= 4π N/mk3=4π2(m6-m3)/(T62-T32)= 4π N/mk=k1+k2+k3=()= N/m2)弹簧等效质量计算:m01=(k1T2-4π2m1)/4π2=; m04=(k1T2-4π2m4)/4π2=(k2T2-4π2m2)/4π2 =; m05 =(k2T2-4π2m5)/4π2=(k3T2-4π2m3)/4π2 =; m06 =(k3T2-4π2m6)/4π2=(m01+m02+m03+m04+m05+m06)/6= g= ×10-3kg 3)相对误差: Er=δx/x0×100% Er=(m0-m0,)/m0,×100%=(m0-1/3m,)/(1/3)m,×100%=(六)结束语 由于气垫的漂浮作用,滑块与导轨平面间的摩擦阻力已经非常小,但上滑块运动时受到的空气阻力,导轨不是水水平的,导至滑块运动的是阻尼运动;在着实验时,没等滑块振动稳定后就开始计时,与理论值偏差较大参考文献:张彦纯 主编, 《大学物理实验》,机械工业出版社; 马文蔚等,《物理学》,北京:高等教育出版社,1999;林抒 龚镇雄,《普通物理实验》,北京:人民教育出版社,1982

rlc串联谐振电路的研究论文

KK文案 专业 信誉 质量 助你无忧

串联谐振时阻抗最小,电压过大的话电流也过大,能量消耗大,同时也损伤元器件。所以不能过大量限为0~20v

谐振时,理论上是相等的,但由于元件参数并非理想参数,尤其是电感元件有一定的等效电阻,而非理想的纯电感。所以实验时,数据与理论值有一定差距。

UR与输入电压相等\x0dUL与UC大小相等,相位相反\x0d因为电路发生谐振的时候,有ωL=1/ωC\x0d电路中的总阻抗=R+jωL+1/(jωC)=R,相当于只有电阻R存在\x0d因此R上的压降UR就等于输入电压\x0d由于感抗和容抗的大小相等,但相位相反(一个是j,一个是-j),所以UL与UC大小相等,相位相反

弦振动研究论文

可怜的娃们、我弟今天也编这个这。还让我帮他办报纸,我就汗死

古代方程发展史中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。

一、函数的起源(产生) 十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。 十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。 人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。 二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。 十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。 实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。 1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。 函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释 十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。 十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6) 1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。 ⒉以“集合”为基础的函数概念 函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( )提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。 二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。 随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。 对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。 对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。 为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。 到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。 三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。 ⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。

骨笛遐想——浅析小提琴发声、调音的物理原理一.选题意义据我国最早的物理史学家吴南薰先生考证,世界上第一个人工制作的物理仪器就是在兽骨或竹管上挖孔并能吹出声音来的笛子。这既是一种乐器,也是一种声学仪器;我国古代对共鸣、弦的振动、管的音调的研究等都是通过乐器来进行的;希腊哲学家毕达哥拉斯发现了琴弦的长短与音高有一定的关系;从近代物理学发展来看,声学依旧占据着相当重要的部分,且与我们的生活息息相关;……许多同学都会演奏一些乐器,但对于弦乐器的调试却无从下手。我们结合已经学过的振动学知识,浅析西洋擦弦乐器——小提琴的发声原理,并为演奏者检音、调试提供理论依据和实验结果参考。二.相关物理知识实际的乐音由基频、谐波(泛音)、分音三部分组成。每一个乐音即周期性的振动都可以分解为许多不同频率、不同相位、不同振幅的简谐振动的叠加。简单的简谐振动即正弦振动或余弦振动的传播产生的声波叫做纯音,实际的乐音如歌唱声、乐器声等都不是简单的纯音,而是许多的纯音的叠加。在这些简谐振动中,频率最低的叫做基频,基频的能量往往是最大的。频率是基频整数倍的叫做谐波,其余的高频振动叫做分音。现代的分析中表明,还有低于基频的次声。因此,从物理上讲,音乐声应由三部分组成:乐音、在音乐中使用的噪声(如锣、鼓、沙锤、梆子等没有固定音调的打击乐器和海涛、流水、风声等效果声音)以及对音色有影响的在谐波中存在的一部分超声。一般来说,发生体振动的频率越高,人们听起来音调也越高;发生体的振动频率越低,人们听起来音调就越低。但音调与频率之间并不是严格按比例对应的。一般认为,频率每增高一倍,音调听起来就高一个八度,这仅仅限于中频段。在高音部分,听感偏低,即频率增加一倍,听起来不到高八度,而是偏低,于是要把频率调高些,以适应人的听觉。低音段则听感偏高,于是需要把频率调低些。乐音听起来有一定的强弱,即音的响度,这是乐音的第二个主观量。声音的能量越大,声强越大,听起来响度就越大。但是,这二者也不是按比例一一对应的。至于音色,更是一种主观感觉了。从传统来讲,决定音色的主要因素是频谱,所以常常根据频谱模仿各种音色。但据资料显示,实践表明:音的起始与结尾的瞬间状况,即“音头”和“音尾”,也同音色大有关系。音色不仅与频谱的组成(即基频、谐波和分音的数目、长短、相对强度、分音的不谐和程度及瞬态)有关,还与基频和谐波在听音区的位置有关,这是由于人耳对于多种频率的响度反映不同。音色也与听者距声源的距离有关,这是因为一个音中的各种成分的衰减不同。三.相关音乐知识音程,就是两个音音高之间的距离。在音乐上,音程用“度”表示。几度就是把起始音算在内,沿着音阶数有几个音名。钢琴上相邻两个键(包括黑键)之间差半音,两个半音等于一个全音。这也是一种表示音程的方法。音程与频率基本上是一一对应的关系。把两个相差八度音程之间的音顺次排列,就成为音阶。规定音阶中各个音的由来及其精确音高的数学方法叫做律制。最常用的三种律制是十二平均律、五度相生律和纯律。音阶中的各个音都有音名,由于生律的方法不同,不同律制生成音律中的同名音(例如都是 )其频率是不一样的。十二平均律是我国明代科学家朱载堉最先发明的,比西欧早了几十年。他将一个八度音程(频率比为2)按等比数列均分为十二份,得十二律。当前的钢琴和所有键盘乐器以及带“品”的弦乐器等,用的都是这种律制。数学表示:相邻两音之间的频率比均为: 即从任何一个音开始,比该音高半音的音,其频率是该音的频率乘 ;比该音低半音的音,其频率是该音的频率乘 ;以此类推,可得出所有音的频率。十二平均律有许多优点,比如它易于转调,简化了不同调的升、降半音之间的关系。在小提琴中,假如以 音的弦长为基准,那么小字一组(其中的 比 高两个八度) 、 、 、 、 、 、 对应的弦长之间按照十二平均律可由频率关系确定一组固定比值。四.研究与实验小提琴的弦是一根两端固定的细钢丝。在拨、擦弦线时产生的波列经两固定端反射,叠加后形成驻波,但其中包含有许多频率的波。在这里,我们只对决定音调高低的基频振动做出分析研究。驻波的基频振动所对应的为波长最长的振动,即弦长 。提琴弦线与指板之间的距离很小,用手指在指板上压紧琴弦不同位置而使得弦产生的形变量很小,可以忽略不计。则可认为弦上张力 ,及弦的质量线密度 保持不变,可得弦线中波速 近似恒定。因此,可认为有如下比例关系成立: 实验过程:一把小提琴,经专业乐师调音后,定下 音,再由一位有多年演奏经验的同学拨奏单音,多位乐感敏锐、受过专业训练的同学一起听辨,配合其他乐器校对各音高。记录及计算数据如下表。表中的k值定义如下:相差一个半音的两个音高对应 相差一个全音的两个音高对应 序号n 音高音名 比下音程差 弦长/mm 总长: 上述k值 第一次 第二次 第三次 平均值 计算值 理论值 误差率1 全音 全音 半音 全音 全音 全音 半音 其中弦长一栏为小提琴 弦(四根弦由粗到细依次叫作 、 、 、 弦,指的是该弦的空弦音)上对应各音高压指与琴码两固定点之间的距离,即参加振动的部分弦长。如上数据显示,平均误差率为,基本符合前文理论分析。五.结论我们总结出对于一把小提琴(邻弦相差五度)的自我调试方法:以一根弦,例如 弦,的空弦音 为标准,按音高关系计算出同一根弦上 所对应的弦的长度。取 音高即与 弦空弦音等高(这是小提琴的制作要求)。依次调整 弦的松紧、长度后,再算出 弦上 的音高,作为 弦的空弦音。……同理进行下去。此种方法适用于各类提琴及吉他等擦、拨弦乐器,但须注意:①对于比空弦音高出许多的音,计算方法误差较大。实验中在一根弦上进行多组数据测量只是为了便于计算、对比,得出结论;实际操作中应对各相邻琴弦依次校对。②大提琴与吉他相邻的弦空弦音相差四度,计算时应注意数据与小提琴不同。希望我们的研究能够对广大演奏弦乐器的音乐爱好者提供帮助。

  • 索引序列
  • 简谐振动研究论文
  • 简谐振动论文模板3000字
  • 简谐运动研究的论文
  • rlc串联谐振电路的研究论文
  • 弦振动研究论文
  • 返回顶部