首页 > 学术论文知识库 > 遥感信息和遥感学报

遥感信息和遥感学报

发布时间:

遥感信息和遥感学报

你好!应该是中文核心期刊,国内学术机构承认,但外国不一定承认。仅代表个人观点,不喜勿喷,谢谢。

很高的层次。1、《遥感学报》综合2013年度审稿数量、质量以及审稿时效等多项指标,评出了《遥感学报》2013年度优秀审稿专家共26位。2、《遥感学报》由中国科学院遥感与数字地球研究所、中国地理学会环境遥感分会主办。作为中国遥感领域唯一一本国家级综合性学术期刊,《遥感学报》致力于报道遥感领域及其相关学科具有创新性的研究报告和阶段性研究简报以及学术价值较高的述评,刊登了大量国内最新科研成果和国家重点支持的研究项目的成果论文,对中国遥感科学技术的发展和人才培养发挥了巨大作用,是目前中国遥感和地理信息科学领域最有影响的学术期刊。

比较容易发表论文的测绘类期刊有《测绘科学技术学报》、《遥感学报》、《地理科学进展》创、《地理与地理信息科学》。

1、《测绘科学技术学报》创于1984年,是由中国人民解放军信息工程大学主管、信息工程大学测绘学院主办的测绘科学学术期刊。本刊在国内外有广泛的覆盖面,题材新颖,信息量大、时效性强的特点,其中主要栏目有:学科进展、学术研究、应用工程等。

办刊宗旨:本刊以马列主义、毛泽东思想、邓小平理论为指针,贯彻执行江主席“三个代表“重要思想,坚持以建设有中国特色社会主义理论为指导,积极报道和反映测绘科学最新研究成就,传播和积累军事测绘科学知识。

2、《遥感学报》创刊于1997年,由中国科学院遥感应用研究所,中国环境遥感学会主办。致力于报道遥感领域及其相关学科具有国际、国内先进水平的研究报告和阶段性研究简报以及高水平的述评。着重反映本领域的新概念、新成果、新进展。

内容涉及遥感基础理论,遥感技术发展及遥感在农业、林业、水文、地矿、海洋、测绘等资源环境领域和灾害监测中的应用,地理信息系统研究,遥感与GIS及空间定位系统(GPS)的结合及其应用等方面。

3、《地理科学进展》创刊于1982年,是由中国科学院地理科学与资源研究所主办、科学出版社出版的综合性学术刊物。获奖情况:全国中文核心期刊。

主要刊登地理学及其分支学科的研究成果,反映国内外地理学研究动态。发表论文的领域为资源与环境、全球变化、可持续发展、区域研究及地理信息系统等方面的成果与新技术。

4、《地理与地理信息科学》创刊于1985年,由河北省地理科学研究所主办。包括地理学和地理信息科学两大部分,具体栏目有:3S研究与应用、数字城市与数字国土、区域经济、环境与生态、旅游开发、可持续发展研究等。

基本涵盖了地理学、地理信息科学的前沿与热点,侧重报道国家自然科学基金、国家重点实验室基金项目、国家科技攻关项目和国际合作项目的新研究成果。

有必要。根据查询相关资料信息,遥感学报属于国家核心期刊,专业认可度很高,同时也很难发。遥感学报由中国科学院遥感应用研究所、中国地理学会环境遥感分会主办,是中科双效期刊。

遥感信息投稿

学科专业大体差不多就行了,现在很多行业都在用遥感,至于格式,按照要求即可,记得投稿完成后给编辑打电话确认下,保险。

《遥感信息》是由中国科学技术部国家遥感中心与国家测绘局主办,国内外公开发行的专业技术综合类刊物。《遥感信息》创刊与1986年,目前为季刊。 本刊办刊宗旨为探讨遥感、地理信息系统、全球定位技术及相关空间信息技术的新理论、新方法;交流推新成果;介绍国外发展动向;普及科学技术知识。 《遥感信息》注重学术性与技术性并重的办刊风格,刊物栏目设置:论坛与综述;理论研究;应用技术;专题报道;企业之窗;知识之窗;遥感图象;国际动态;译文选登;技术市场;简讯;名词解释。 本刊已被认定为《中国科学引文数据库》、《中国学术期刊综合评价数据库》来源期刊,并为中国科技论文统计源期刊。从《中国科技期刊引证报告》中,可查阅比较本刊的各类评价指标。 《遥感信息》是广大作者、读者共同建设的知识共享平台,我们真诚期待学者、工程技术人员、技术用户踊跃投稿。

1.运动会闭幕词 各位老师、同学们: 我校第二十二届田径运动会暨第十二届达标运动会,在组委会的精心组织下,经过全体工作人员、裁判员的辛勤工作和全体运动员的奋力拼搏,较为圆满地完成了预定的各项比赛任务,现在就要闭幕了。在此,我代表学校,向为这次运动会做出不懈努力的全校师生表示深深的谢意!向取得名次的同学和获奖的班级表示衷心的祝贺! &nb…… 2.运动会广播稿--致运动员 致运动员 不为掌声的诠释, 不伟刻意的征服, 只有辛勤的汗水化作追求的脚步。 心中坚定的信念, 脚下沉稳的步伐, 你用行动诉说着一个不变的真理。 没有比脚更长的路, 没有比人更高的山, 希望在终点向你招手。 努力吧!用你坚韧不拔的意志, 去迎接终点的掌声, 相信成功属于你。 致运动员 一个盼望出发, 一个盼望到达。 烈日骄阳下…… 3.运动会稿件(加油篇) 超越极限 或许你努力过,争取过,但还是与成功的掌声和鲜花擦肩而过。 或许你尝试过,失败过,但成功的火焰就是无法熊熊燃烧。 或许你面对沟壑时,犹豫过,害怕过,徘徊过,伤心过,滞步过···但朋友,你是否冷静 地思考过,或许你再往前一步,或许成功便正好与你握手呢?你是否平静地反问过,或许跨越 这道沟就是圣洁的梦的故乡呢? 鼓起勇气吧,再向前迈出一步吧,超越梦的界限,超越自己的极限,打…… 4.大学运动会入场式解说词 院系解说词 在我们翘首以盼的期待中,遥感信息工程学院春季运动会正式开幕了。首先走向主席台的是院旗和宣传板方队。在过去的一年里,遥感信息工程学院全体师生精诚团结,努力工作,结合我院实际,大胆开拓,勇于创新,在教学、科研等方面均取得良好成绩。在2001年校运会及院运会中,我院健儿本着永争第一的精神,勇于拚搏,英勇无畏,充分展现出我院学生勇往直前、积极上进的精神面貌。我们期待着本次运动会上,运动…… 5.运动会广播稿--致田赛运动员 致铅球运动员 手握铅球,心有成竹 虽有几分沉重,几分辛苦 正现人之本色,豪情万丈 一声嚎去,只见铅球已飞出 呀,太棒了,我为你欢呼 我为你骄傲 致铅球运动员 铅球从你手里抛出, 在空中划过一条, 优美的抛物线。 铅球从空中划过, 落在竞赛场上, 留下一个精彩的痕迹。 每一次的投掷, 都是激情的展现; 每一次的落地, 都是努力的结果。 &n…… 6.运动会广播稿-致中长跑运动员 致400米运动员 面对的 依然是蓝色的天空, 依然是金色的阳光, 依然是绿色的草地, 依然是红色的跑道, 依然是你, 勇敢的你, 坚强的你。 不同的是, 天空更加蔚蓝,阳光更加灿烂, 草地更如翡翠一般, 跑道更加的鲜艳, 而你,定会更加的自信, 你的成绩,必然更加辉煌。 悔的选择——致长跑运动员 望着你赛场上愈渐沉重的步伐, 曾用来鼓励你的豪言壮语, 此刻变得那么脆弱无力。 于是我…… 7.运动会广播稿-致接力赛运动员 致400*100米接力运动员 这是速度与毅力的接力, 这是期望与祈盼的接力, 时间在这里凝固, 几分几秒也变得如此漫长。 千百双眼睛注视着你那矫健的身影, 近了,近了, 你可曾听到 那山呼海啸般的加油声? 近了,近了, 前方就是终点, 加油啊,运动员, 成功和失败就在转瞬之间。 接力棒 红与白 截然不同的两个世界 在手中传递 传递着成功或失败 你充满激情地颠簸着 …… 8.运动会广播稿--致失败者 致失败者--扬起风帆 虽然你我都已尽力 最终事实却是残酷的 毕竟冠军只有一个 然而我们就这样心灰意冷了? 不!决不! 我们会再次扬起风帆 向着终点冲刺 我们坚信 胜利会再次向我们招手的 致失败者 过去的,让它过去 不要去思念,不要去挽留 更不要去追溯那不该你的邂逅 让金色的阳光 埋没心中的内疚 淡紫色的咖啡 涂抹脸上的哀愁 请相信 …… 9.运动会广播稿--致工作人员/观众 掌声响起 观众席上 掌声雷动 热热烈烈 划破长空 他们的灵魂在叫 血在烧 都是渴望有无限的希望 掌声响起来 为新的力量喝彩 掌声响起来 每一棵都精彩 致幕后工作者 象一出舞台剧,有主角,配角,也有无名的幕后工作者,我们的运动会也在这样的配合中进行着,在赛场上展现英姿的是 那些运动…… 10.运动会广播稿--致裁判员教练员 赞裁判 您是运动场上正义的化身, 您是比赛场中公证的使者, 您手中挥动的令旗, 为比赛增添综合体育 秋季运动会投稿词【4乘100接力】

遥感信息论文模板

森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048) Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。 2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想: 遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 3. 结果和讨论 几何精度 利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,3-4. 2.赵英时.《遥感应用分析原理与方法》,科学出版社,北京, 3.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,68-70. 4.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079) 摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208; 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全

森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048)Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想:遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 3. 结果和讨论 几何精度 利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,3-4. 2.赵英时.《遥感应用分析原理与方法》,科学出版社,北京, 3.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,68-70. 4.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079)摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208; 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全、保密及技术服务标准以及元数据标准等;(3)地球空间信息的时空变化理论,包括时空变化发现的方法和对时空变化特征的和规律的研究;(4)地球空间信息的认知,主要通过各目标各要素的位置、结构形态、相互关联等从静态上的形态分析、发生上的成因分析、动态上的过程分析、演化上的力学分析以及时态上的演化分析达到对地球空间的客观认知;(5)地球空间信息的不确定性,包括类型的不确定性、空间位置的不确定性、空间关系的不确定性、逻辑的不一致性和信息的不完备性;(6)地球空间信息的解译与反演,包括定性解译和定量反演,贯穿在信息获取、信息处理和认知过程中;(7)地球空间信息的表达与可视化,涉及到空间数据库多分辨率表示、数字地图自动综合、图形可视化、动态仿真和虚拟现实等。目前,这些方面的研究对建立完备的理论尚嫌不足,需要在今后加强这方面的基础研究。 关于遥感与GIS的集成,涉及到GPS和通信技术的集成,本文未作具体讨论,其具体内容可参见文献[4—6]。 3 结语 遥感与GIS在20世纪出现,在21世纪不仅将形成自身的理论体系和技术体系,而且将形成天地一体化的空间信息服务产业,为国民经济建设、国家安全、社会可持续发展和提高人民生活质量做出愈来愈大的贡献。 参考文献: [1] Li D R, Sui H G. Automatic Change Detection of Geospatial Data from Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002,34(II):245—251 [2] 龚健雅. 地理信息系统基础. 北京:科学出版社,2001 [3] 邸凯昌. 空间数据发掘与知识发现(第一版). 武汉:武汉大学出版社,2000. 182 [4] 李德仁,关泽群. 空间信息系统的集成与实现(第一版). 武汉:武汉测绘科技大学出版社,2000. 244 [5] 李德仁,李清泉. 论地球空间信息技术与通信技术的集成. 武汉大学学报(信息科学版),2001,26(1):1—7 [6] 李德

森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要:目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048)Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing前言卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。1.SPOT5卫星遥感数据特点SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。2.SPOT5数据的处理方法和过程SPOT5数据处理工作流程: 遥感数据的订购订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。几何正射校正正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想:遥感影像地图将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。3. 结果和讨论 几何精度利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。参考文献1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,.赵英时.《遥感应用分析原理与方法》,科学出版社,北京,.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 7921世纪遥感与GIS的发展李德仁(武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079)摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。关键词:发展趋势;航空航天遥感;地理信息系统;对地观测中图法分类号:P208;随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率)从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用“数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。“数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2]GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全

洋河流域遥感图像土地利用分类方法研究 【摘要】遥感影像分类方法的确定是LUCC研究中的关键步骤。文章以洋河流域为研究区,分别进行了非监督分类和监督分类。针对监督分类结果中存在的误差,对水域、植被、城镇与工矿用地三种类型地物的提取分别选择了综合阈值法、植被指数法、DEM数据辅助分析法进行了改进,结果表明改进后的提取结果较监督分类直接得到的结果有了很大的改善。【关键词】遥感图像;监督分类;综合阈值法;植被指数法【中图分类号】TP79 【文献标识码】A【文章编号】1671-5969(2007)16-0164-03一、研究区域概况及图像资料(一)研究区域概况洋河流域是张家口经济发展的中心地带,水资源相对丰富。洋河发源于山西省阳高县和内蒙古兴和县,是永定河上游的一大支流,流域面积约14600km2 。在张家口市流域面积为9762km2,流经万全县、怀安县、张家口市区、宣化县、宣化区、下花园区、怀来县等,干流全长106 km,在朱官屯于桑干河汇合后流至官厅水库,是官厅水库的重要水源。洋河流域形状东西向较长,南北向较短,地形总趋势西北高、东南低。流域的东北、北部和西北沿坝头一带海拔高程1200~1500m之间,西部和南部边界海拔高程一般在500~1000m之间。流域内80%以上为丘陵山区,绝大部分为荒山秃岭。流域内大部分为黄色沙壤土,并有部分砂砾土及黄粘土,沿河川地层厚且较肥沃[1]。(二)信息源遥感信息源的选择要综合考虑其光谱分辨率、空间分辨率、时间分辨率等因素, 这是利用遥感图像进行土地利用分类的关键问题。美国的Landsat TM 图像是当前应用最为广泛的卫星遥感信息源之一,它可提供7个波段的信息, 空间分辨率为30~120m。TM数据源各波段各有特点,可进行不同地物类型的信息提取。相关资料表明TM遥感数据各波段间的信息相关关系为:TM1与TM2,TM5与TM7高度相关,相关系数达以上,信息冗余大,可以考虑不选取TM1波段。另外由于第6个波段的分辨率为120m,不利于地物信息的提取,所以亦不选取TM6波段。一般来说, 选择图像类型时,应考虑研究区域的大小、研究的目的,以及要达到的精度要求,另外不同时相遥感图像的选择对分类精度也具有很大的影响。为了能把水域、城市与工矿用地、林地、耕地、裸地区分开,以洋河流域1987年9月17日的TM图像为信息源进行研究。本文中所使用的遥感图像处理工具为美国ERDAS公司的ERDAS 软件,它是一个功能完整的、集遥感与地理信息系统于一体的专业软件,具有数据预处理、图像解译、图像分类、矢量功能、虚拟gis等多个功能。二、现有遥感图像土地利用分类的主要方法及其分析遥感图像土地利用分类就是利用计算机通过对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征,并用一定的手段将特征空间划分为互不重叠的子空间,然后将图像中的各个像元划归到各个子空间中以实现分类[2]。按照是否有已知训练样本的分类数据,将其分为非监督分类和监督分类。它们最大的区别在于监督分类首先给定类别,而非监督分类则由图像数据本身的统计特征来确定。(一)非监督分类非监督分类是在多光谱特征空间中通过数字操作搜索像元光谱属性的自然群组的过程,这种聚类过程生成一副有m个光谱类组成的分类图。然后分析人员根据后验知识将光谱类划分或转换成感兴趣的专题信息类[3]。洋河流域内有很多山地,在图像上会产生大量的阴影,导致了像元灰度值的空间变化,这对分类结果有很大的影响。为此可以通过比值运算来去除阴影的影响,使向阳处和背阴处都毫不例外地只与地物的反射率的比值有关。常用算法:近红外波段(TM4)/红外波段(TM3),这样所得到的效果比较好,从原始图像和比值运算后的图像(图像略)中,可以清楚地看到山体阴面的阴影得到了有效的去除。经过比值运算后, 就可以对图像进行非监督分类。得到的分类结果如图1所示。非监督分类只根据地物的光谱特征进行分类,受人为因素的影响较少,不需要对地面信息有详细的了解,但由于“同物异谱、异物同谱”等现像的存在,其结果一般不如监督分类令人满意。比如官厅水库旁边的大量建筑物被分到水体一类。是因为在TM3波段上,水体和建筑物的灰度值相近, 同样在TM7波段上,裸山和建筑物的灰度值也相近。总之,在TM的6个波段上,无论采用哪个波段进行非监督分类,总有几种地物的光谱值接近,因此单纯依靠计算机自动分类取得很好的效果是非常困难的。

遥感信息投稿经验

遥感图像分析的目的是通过各种方法手段对遥感图像进行有用信息的提取和解译。遥感图像解译中,通常将表征地物和地质现象遥感信息的影像特征称之为图像解译标志;将提取遥感信息的过程称之为图像解译(判译、判读);而将遥感图像信息提取的种种手段称之为遥感图像解译方法。

目前,遥感图像信息提取的手段主要有三种:一是遥感图像的目视解译,它借助于简单的观察工具(如立体镜、放大镜等)凭肉眼鉴别影像,判断目标物的属性特征;二是遥感图像的光学处理,即采用光学仪器改进图像质量,压抑噪声,突出目标影像,提取有关信息;三是遥感图像的数字处理,即用计算机对数字化了的影像进行几何校正、增强等专门处理,达到提取目标物属性特征信息的目的。三种方法各有所长,但目视解译是基础,光学处理和数字处理是深入解译和提高解译水平不可缺少的技术手段,但其效果仍需要专业人员目视解译判断。随着计算机技术的高速发展,遥感信息已越来越多地采用数字记录和储存,故数字图像处理已经成为当今遥感图像处理的主要手段。本节主要介绍遥感图像的目视解译和遥感数字图像处理的基本方法。

遥感图像目视解译

目视解译法的基本特点是能高度发挥解译者所掌握的专业基础知识和思维判断能力,降低判错概率,且具有简便易行的优点。只要有遥感图像资料,在任何场合都可以进行解译。遥感图像的目视解译中,解译效果取决于解译者的知识、技能和经验水平。

遥感图像的地质解译标志

地质解译标志是表征地质体及地质形象遥感信息的影像特征。据其表现形式的不同,地质解译标志又分成为直接解译标志和间接解译标志两大类。前者是地质体及地质现象本身属性特征在遥感图像上的直接反映,如影像形状、大小、色调和阴影等;后者则是与地质体或地质形象具有相关关系的其他物体或现象所呈现出的影像特征,如地貌特征、水系格局、植被、土壤、水文和人类活动遗迹等,通过对它们的相关分析,也能判别这些地质体或地质形象的属性特征。

不同类型的地物,其电磁辐射特性不同。在影像上的反映就是形成各种各样的色、形信息:色,就是色调、颜色、阴影和反差等;形,就是形状、大小、空间布局、纹理等。“色”只有依附在“形”上来解译才有意义。色形差异也常常显示深部现象的“透视”信息。采取由此及彼、由表及里的综合分析和对比,从已知推未知,解译才会有好的效果。

遥感图像目视解译的基本方法

目视解译最基本的方法是立体观察。它使用简单的光学立体镜,将二维平面图像转化为三维空间的立体光学模型,从而突出了地物的空间特征,使人眼睛易于辨认目标和确定其空间位置。

进行立体观察必须满足两个基本条件:一是具有立体像对,二是具有立体镜。立体像对指在相邻两个摄影基站对同一地面获取的一对具有相同比例尺和一定重叠的像片(图像)。立体镜是用来进行立体观察的专门仪器,它的主要作用是迫使观察者做到左眼只看左片(图像),右眼只看右片(图像),以获得良好的立体观察效果。

随着遥感技术的发展,遥感解译所使用的不仅是摄影方法得到的像片,而且还有红外扫描成像和雷达成像的图像等。应该指出,虽然它们的影像要素或特征也是形状、大小、阴影、周围环境、空间布局、色调等等,但是它们在不同波段成像的图像中所表达的含义有所不同。

目视解译的方法与原则

(1)解译方法

对于各种不同的遥感图像的解译,主要差别在于目标物的具体解译标志有所不同;而解译的原则与方法则是一致的。目视解译中常用的方法主要是以下三种。

① 直判法。指运用直接解译标志来判断地质体或地质现象。这种方法简便可靠,但必须在地质体直接出露于地表,或覆盖很少,而且解译标志比较稳定时,才宜应用。如我国西北地区大多具备这种条件,许多地质体可用直判法予以确定。

② 对比法。这是最常用的一种方法。它通常包括几种情况,一是将遥感影像与地质实体进行对比;二是与已经工作过的邻区图像对比;三是与前人资料对比。通过对比,建立本区适用的确切可靠的解译标志。对比法也用于解译成果的野外验证。

③ 逻辑推理法。根据地质体和地质现象与地表其他景观要素的相关关系,运用地质学、地貌学、水文学、土壤学、地植物学等有关学科的理论进行综合分析、逻辑推理,从而确定目标物的属性。这里,主要是运用各种间接标志来判断被掩盖的地质体或地质现象,对我国南方地区的图像进行解译时,常常用到这种方法。

(2)解译原则

遥感图像解译的原则可概略如下。

① 宏观原则。在任何地区进行解译时,应先采用卫星图像或小比例尺航片略图,对影像总体轮廓进行研究。以获取整个工作区宏观构造格架的正确概念。这是下一步详细解译能否快速、准确地取得成果的关键,具有重大的指导意义。在此前提下,方能有效地开展各个局部的详细解译。

② 先易后难,循序渐进原则。整个解译工作必须做到循序渐进,方能提高工作效率,收到事半功倍之效。下面是一些实践经验的总结,可供参考。ⓐ 从比较了解的地段入手,向较陌生的地段推进,即从已知到未知。ⓑ 先解译影像清晰部分,后解译模糊部分。ⓒ 先山地,后平原;先构造,后岩性。ⓓ 先断裂,后褶皱。ⓔ 先线性构造,后环形构造。ⓕ 先岩浆岩,后沉积岩,再变质岩。ⓖ 先解译显露的,后解译隐伏的。其中,ⓓ、ⓔ、ⓕ三点灵活性较大,需根据影像显示程度决定先后。解译中,交错进行的情况也是常见的。

遥感数字图像处理

遥感图像处理,特别是数字图像处理是增强、提取成矿环境地质、构造、矿化等有用信息的重要手段,同时也在资源、环境、农、林、牧、渔、国土整治、工程地质等领域中广泛应用,潜力很大。尤其是随着新一代遥感图像光谱分辨率、空间分辨率的提高,多时相、多类型遥感图像数据的融合以及遥感图像与其他数据的融合,将显得越来越重要。由于遥感图像记录了大量肉眼以及常规仪器难以发现的微弱的地物特征信息,如目标物的红外波谱信息、微波信息等,通过遥感图像数字处理提取这些标志信息,尤其是弱成矿标识信息,可大大增加人们鉴别目标的能力。实际上,当前随着计算机技术的发展,遥感图像处理的内容已远远超出了宏观图像的范畴,对遥感、物探、化探及地质、矿产数据都可以用图像处理方法来进行有效组合、综合与复合或进行增强、变换、分类及模式识别,提取一组特征标志进而形成找矿综合信息图(或图像)。

数字图像

数字图像是一种以二维数组(矩阵)形式表示的图像。该数组由对连续变化的空间图像作等间距抽样所产生的抽样点——像元(像素)组成,抽样点的间距取决于图像的分辨率或服从有关的抽样定律;抽样点(像元)的量值,通常取抽样区间内色调(色彩)连续变化之地物的平均值,一般称作亮度值或灰度值;它们的最大、最小值区间代表该数字图像的动态范围。数字图像的物理含义取决于抽样对象的性质。对于遥感数宇图像,就是相应成像区域内地物电磁辐射强度的二维分布。在数字图像中,像元是最基本的构成单元。每一个像元的位置可由行、列(x,y)坐标确定;亮度值(z)通常以0(黑)到255(白)为取值范围。因此,任何一幅数字图像都可以通过X、Y、Z的三维坐标系表示出。例如,陆地卫星的MSS图像(图20-1),便可看作x=2340(行),y=3240(列),Z=0~255的三维坐标系。TM、SPOT等亦然,只是行、列数不同而已。

数字图像可以有各种不同的来源。大多数卫星遥感,如MSS、TM、SPOT、SAR图像等,地面景象的遥感信息都直接记录在数字磁带上。有关的遥感卫星地面站或气象卫星接收站均可提供相应的计算机兼容数字磁带(CCT)或数据光盘及其记录格式。应用人员只要按记录格式将图像数据输入计算机图像处理系统,即可获得数字图像,并进行各种图像处理。对于像片或胶片影像,则可通过电子-光学透射密度计和扫描器以及扫描仪等,将影像密度转换为数值,进而形成数字图像;对于非遥感的地学图件,如地形图、地质图、航磁图、重力图、化探元素异常图等等,也可通过数字化仪或扫描仪,转换为数字图像。同一地区不同来源的数字图像都可精确配准,并作复合处理。

图20-1中左图是一条扫描线上亮度值产生原理。左图中图像坐标和像元参考系与光学图像相比,数字图像量化等级高(256级)、失真度小、不同图像的配准精度高、传输及储存方便,尤为重要的是可由计算机进行各种灵活、可靠、有效的处理,使遥感图像获得更好的判读、分析等应用效果。

数字图像处理

数字图像以不同亮度值像元的行、列矩阵组织数据,其最基本的特点就是像元的空间坐标和亮度取值都被离散化了,即只能取有限的、确定的值。所以,离散和有限是数字图像最基本的数学特征。所谓数宇图像处理,就是依据数字图像的这一数字特征,构造各种数学模型和相应的算法,由计算机进行运算(矩阵变换)处理,进而获得更加有利于实际应用的输出图像及有关数据和资料。故数字图像处理通常也称为计算机图像处理。

数字图像处理在算法上基本可归为两类:一类为点处理,即施行图像变换运算时只输入图像空间上一个像元点的值,逐点处理,直到所有点都处理完毕,如反差增强、比值增强等。另一类为邻域处理,即为了产生一个新像元的输出,需要输入与该像元相邻的若干个像元的数值。这类算法一般用作空间特征的处理,如各种滤波处理。点处理和邻域处理有各自不同的适应面,在设计算估时,需针对不同的处理对象和处理目标加以选择。

图20-1 陆地卫星MSS数字图像的构成原理

遥感数字图像处理,数据量一般很大,往往要同时针对一组数字图像(多波段、多时像等)做多种处理。因此,需要依据遥感图像所具有的波谱特征、空间特征和时间特性,按照不同的对象和要求构造各种不同的数学模型,设计出不同的算法;它不仅处理方法非常丰富,而且形成了自身的特色,已发展为一门专门的技术方法。

根据处理目的和功能的不同,目前遥感数字图像处理主要包括以下四方面的内容。

(1)图像恢复处理。旨在改正或补偿成像过程中的辐射失真、几何畸变、各种噪声以及高频信息的损失等。属预处理范畴,一般包括辐射校正、几何校正、数字放大、数字镶嵌等。

(2)图像增强处理。对经过恢复处理的数据通过某种数学变换,扩大影像间的灰度差异,以突出目标信息或改善图像的视觉效果,提高可解译性。主要包括有反差增强,彩色增强、空间滤波、图像变换增强等方法。

(3)图像复合处理。对同一地区各种不同来源的数字图像按统一的地理坐标作空间配准叠合,以进行不同信息源之间的对比或综合分析。通常也称多源(元)信息复合,既包括遥感与遥感信息的复合,也包括遥感与非遥感地学信息的复合。

(4)图像分类处理。对多重遥感数据,根据其像元在多维波谱空间的特征(亮度值向量),按一定的统计决策标准,由计算机划分和识别出不同的波谱集群类型,据此实现地质体的自动识别分类。有监督和非监督两种分类方法。

需要指出,数字图像处理经过近10多年的高速发展,其理论和方法逐步得到完善与发展,已经形成为一门研究内容丰富多彩的学科——数字图像处理学。限于篇幅,这里仅列出了遥感数字图像处理的一般过程(图20-2)。

数字图像处理系统

遥感数字图像处理不仅数据量大,而且数据传输频繁,专业性强。因此,一般都要在专门的处理设备上进行。用以进行数字图像处理的专门计算机及其外围设备和有关的软件,即构成了数字图像处理系统,通常由硬件系统和软件系统两大部分组成。其中硬件系统,按目前国内外的发展趋势可分为大型专用机系统和微机图像处理系统两类。一般情况下,它们都包括以下一些基本的部件。

图20-2 遥感图像数字处理基本流程

(1)主机。进行各种运算、预处理、统计分析和协调各种外围设备运转的控制中心,是最基本的设备。一般为速度快、内存大的专用计算机。

(2)磁带机和光盘刻录机。连结数字磁带(CCT)或图像数据光盘和主机的数据传输装置,既可以输入原始图像数据,也可以将中间处理和最终处理的结果再转存记录到磁带上或光盘上。目前的微机图像处理系统大多都带有光盘刻录机,图像数据的输入和输出较为方便。

(3)图像处理机。是数字图像处理专用的核心设备,既具体承担各种图像处理功能的实施,如进行图像复原、几何校正、增强和分类等各种处理的数学运算,也是主机和各种输出输入设备的纽带。

(4)输出设备。用作处理结果的显示分析及记录和成图,包括彩色监视器或彩显,各种类型的打印机、绘图仪、胶片记录仪和扫描仪等等。

对于功能齐全的系统,除上述外,通常还包括有胶片影像的摄像或扫描数字化仪、图形数字化仪等输入设备。

软件系统系指与硬件系统配套的用于图像处理及操作实施的各种软件。一般包括系统软件和应用软件两部分。前者又包括操作系统和编译系统,主要用于输入指令、参数及与计算机“对话”;后者则是以某种语言编制的应用软件,存于硬件系统的应用程序库中,用户可按研究任务采用对话方式或菜单方式,发出相应的指令使用这些程序,由主机作运算处理,获得所需的结果。不同专业往往设计有各自的应用软件系统,故国际上已开发出各种各样的图形图像处理软件系统,针对微机也开发了一系列建立在Windows上的图形图像处理软件,如Photoshop等等,功能强大,操作也非常方便。

遥感图像光学处理

光学图像处理是指以胶片方式记录的遥感影像或由数字产品转换来的影像胶片为处理对象,通过光学或电子光学仪器的加工改造,对遥感图像进行变换和增强的一种图像处理技术。

用作光学处理的仪器和技术手段很多,包括摄影处理、光电处理和相干光处理等等;处理方法上,则有密度分割、彩色合成、边缘增强、反差增强、光学图像比值、光学变换、光学编码等。其中较常用的是假彩色等密度分割和假彩色合成。

值得指出,随着计算机硬件和软件技术的高速发展,造价昂贵的光学图像处理系统基本上由计算机图像处理系统取代。因此,这里不再介绍。

《遥感信息》是由中国科学技术部国家遥感中心与国家测绘局主办,国内外公开发行的专业技术综合类刊物。《遥感信息》创刊与1986年,目前为季刊。 本刊办刊宗旨为探讨遥感、地理信息系统、全球定位技术及相关空间信息技术的新理论、新方法;交流推新成果;介绍国外发展动向;普及科学技术知识。 《遥感信息》注重学术性与技术性并重的办刊风格,刊物栏目设置:论坛与综述;理论研究;应用技术;专题报道;企业之窗;知识之窗;遥感图象;国际动态;译文选登;技术市场;简讯;名词解释。 本刊已被认定为《中国科学引文数据库》、《中国学术期刊综合评价数据库》来源期刊,并为中国科技论文统计源期刊。从《中国科技期刊引证报告》中,可查阅比较本刊的各类评价指标。 《遥感信息》是广大作者、读者共同建设的知识共享平台,我们真诚期待学者、工程技术人员、技术用户踊跃投稿。

期刊简介: 《测绘科学》(月刊)创刊于1976年,是由中华人民共和国自然资源部主管,由中国测绘科学研究院主办的高层次测绘类一流学术和技术核心期刊。主要刊登以下内容:大地测量学同其他相关学科的综合研究、卫星导航定位研究、数字摄影测量、遥感图像处理的智能化研究、遥感器原理和技术、激光扫描技术与应用、地图和地理的理论和技术、地图数据的符号化和可视化研究、GPS、RS、GIS集成的理论和技术、基础地理信息的综合分析与集成应用、地图印刷的新技术和新方法等。主要栏目:院士特稿、基础研究、创新应用、研究进展、网络探索、交叉学科、产品分析、测绘观察。 经验分享:见图 如果想看其他刊物投稿经验分享的,可以给我留言噢~

遥感信息期刊好中吗

高级测绘工程师测绘职称论文一般发表在以下几个刊物:《测绘学报》《测绘通报》《测绘科学》《遥感信息》《测绘文摘》《地理信息世界》《中国测绘》《现代测绘》等

投稿命中率: 经验分享:客观说,针对遥感学科的话,ieee期刊的质量都是比较过硬的,也是不太好中的。

ecological indicators比较好中。

ECOLOGICAL INDICATORS是SCI期刊,的影响因子,影响因子是比较高的。

从2021 年1 月起,Ecological Indicators将成为开放获取期刊。在Ecological Indicators 中发表文章的作者将能够立即、永久且免费地访问他们的作品。

在线投稿网址: 。

生态指标继续保持相同的目标和范围、编辑团队、提交系统和严格的同行评审。

生态指标作者将支付文章出版费 (APC),可选择许可选项,并保留其已发表作品的版权。APC 将在同行评审和接受后申请。

2020 年 9 月 30 日之后提交的所有被接受的文章都需要支付 APC 费用。APC 用于生态指标为 2500 美元(不含税)。

偏重的研究方向: 地球科学(15) ,地理学(10) ,土壤学(3), 生命科学(3) ,大气科学(3) ,工程与材料(2) ,水利科学与海洋工程(2) ,化学科学(2), 地球化学(2) 。

生态学(2) ,人文社科(2), 应用气象学(2) ,管理综合(2), 宏观管理与政策(1) ,资源环境政策与管理(1), 水环境与生态水利(1) ,水文,水资源(1) ,林学(1), 森林经理学(1) 。

遥感机理与方法(1) ,景观地理学(1) ,环境变化与预测(1), 化学工程及工业化学(1) ,能源化工(1), 计算机应用技术(1) ,计算机科学(1) ,信息科学(1), 景观与区域生态学(1) 。

种群生态学(1) ,自然地理学(1), 环境地球化学(1) ,人文地理学(1), 生物地球化学(1) ,大气环境与全球气候变化(1), 区域可持续发展(1), 地理信息系统(1), 环境化学(1) ,化学环境污染与健康(1)。

投稿录用比例: 91%,审稿速度: 平均 5 个月的审稿周期。

  • 索引序列
  • 遥感信息和遥感学报
  • 遥感信息投稿
  • 遥感信息论文模板
  • 遥感信息投稿经验
  • 遥感信息期刊好中吗
  • 返回顶部