数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!
数学史的教育功能
摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。
关键词数学史教育功能创新思维功能体现
1 数学史的教育功能之一 ——提高学生们学习数学的兴趣
兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。
例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。
2 数学史的教育功能之二——培养学生们的数学应用意识
数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。
例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;
又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。
再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。
从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。
3 数学史的教育功能之三——提高学生们的数学素养
对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。
4 数学史的教育功能之四——培养学生们对世界观的正确认知
从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。
总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。
参考文献
[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.
[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.
[3]李正银.数学史与数学教育[J].海南师范学院学报,(3):98-10.
[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).
[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).
[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).
数学史在大学数学教学中的意义与价值
摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。
关键词: 数学史 高等数学 教学改革
1.数学史
数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
2.数学史在大学数学教学中的意义与价值
我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。
数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。
(1)数学史是数学文化的最佳载体
传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。
(2)数学史是激发兴趣的有效途径
几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。
纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。
数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。
(3)数学史是理解数学的必由之路
数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。
从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。
(4)数学史是思想教育的良好素材
数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。
欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。
3.结语
数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”
参考文献
[1]靳玉乐.现代教育学[M].四川教育出版社,2006.
[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.
[3]杨泰良.以史为鉴 注重反思[J].数学通报..
[4].数学家谈数学本质[M].北京大学出版社,1989.
[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.
2017大学数学论文范文
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。
几类特殊函数的性质及应用
【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。
【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分
1.引言
特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。
特殊函数定义及性质证明
特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。
特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。
2.伽马函数的性质及应用
伽马函数的定义:
伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。
Г函数在区间连续。
事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。
,伽马函数的递推公式
此关系可由原定义式换部积分法证明如下:
这说明在z为正整数n时,就是阶乘。
由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....
用Г函数求积分
贝塔函数的性质及应用
贝塔函数的定义:
函数称为B函数(贝塔函数)。
已知的定义域是区域,下面讨论的三个性质:
贝塔函数的性质
对称性:=。事实上,设有
递推公式:,有事实上,由分部积分公式,,有
即
由对称性,
特别地,逐次应用递推公式,有
而,即
当时,有
此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为
由上式得以下几个简单公式:
用贝塔函数求积分
例
解:设有
(因是偶函数)
例贝塔函数在重积分中的应用
计算,其中是由及这三条直线所围成的闭区域,
解:作变换且这个变换将区域映照成正方形:。于是
通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。
贝塞尔函数的性质及应用
贝塞尔函数的定义
贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。
贝塞尔函数的'递推公式
在式(5)、(6)中消去则得式3,消去则得式4
特别,当n为整数时,由式(3)和(4)得:
以此类推,可知当n为正整数时,可由和表示。
又因为
以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。
为半奇数贝塞尔函数是初等函数
证:由Г函数的性质知
由递推公式知
一般,有
其中表示n个算符的连续作用,例如
由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。
贝塞尔函数在物理学科的应用:
频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令
称为的Fourier变换。它的逆变换是
若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,
这就是Shannon取样定理。Shannon取样定理中的母函数是
由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:
以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。
首先建立取样定理
设:
其中是零阶贝塞尔函数。构造函数:
令
经计算:
利用分部积分法,并考虑到所以的Fourier变换。
通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:
类似地
经计算:
经计算得:
则有:设是的Fourier变换,
记则由离散取样值
因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。
例,利用
引理:当
当
因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式
首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:
(1)
其中
函数的幂级数展开式为:
则关于幂级数展开式为: (2)
由引理及(2)可得
(3)
由阶修正贝塞尔函数
其中函数,且当为正整数时,取,则(3)可化为
(4)
通过(1)(4)比较系数得
又由被积函数为偶函数,所以
公式得证。
3.结束语
本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。
参考文献:
[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.
[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)
[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.
[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.
[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.
[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.
[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.
[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.
[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.
[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文
数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学!
大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。下面是我为大家整理的大一数学论文,供大家参考。大一数学论文 范文 篇一:《数学学科德育 教育 渗透思考》 摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。 关键词:数学学科;渗透;德育教育 我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主 渠道 作用。数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的 方法 和能力。这些数学能力包括:空间想象能力、 逻辑思维 能力、基础运算能力和数学建模能力等。第三,数学课作为职业学校 文化 基础课之一,所用资源少,易开展教学活动。结合数学学科的特点,笔者认为可以从以下几点进行德育教育。 1根据中职学校数学学科的特点和数学课的现状,教师的人格 品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。德育要讲究艺术性,要充分发挥情感的感染作用。作为一名数学教师在数学课上每位教师尊重和顺应人性、同学的个性,保护同学的尊严,发掘和表扬学生的内在情感,调动他们积极的心理因素。教师动之以情,才能激发学子之情,使之乐其所学。学生感受到教师对他们的关心,从心底上认可这个教师,从而真正建立起新型的科学的师生关系。 2结合数学教材内容,向学生进行爱祖国和爱科学的教育 在用到正负数及运算法则时,教师给学生说明或是让学生自己上网查找相关内容,可以知道在世界闻名的数学典籍《九章算术》中,就已经提出了相关概念,使得代数学早于西方于公元前2000年就已经产生了;著名的勾股定理、“杨辉三角”、圆周率的计算以及著名数学家陈景润的“陈氏定理”、华罗庚发起和推广的优选法等,我国科学的成就令世界各地的每个炎黄子孙自豪,可以激发起学生强烈的爱科学、爱国情和民族自豪感,同时激励学生学习的进取向上精神。 3培养正确的学习动机和目的,提高学生学习数学兴趣,增强社会责任感 我们学习数学的最终目的是能用数学,因而不管是教师还是学生都应该知道数学在我们生活中或是我们所学专业课上的应用。例如我们在学习圆柱时,就可以和汽车专业所学的发动机上的气缸联系起来讲解表面积和体积相关知识;我们在学习分段函数时,就可以和与我们生活相关的水费、电费、出租车收费联系起来等。 4结合数学学科的特点,培养学生理智的思考、按客观规律办事的良好的人格特征 数学是一门自然科学,科学的问题来不得半点虚假,数学语言的精确性使得数学中的结论不会模棱两可。伽利略:世界的奥秘是本巨大的书,而这本书是用数学语言写成的。越来越多的人认为数学语言是各种科学的通用语言,可见数学语言的精确性。在数学的观点下,一加一只能等于2不可能是其他结果,但在其他的学科就不一定了。不管是数学语言还是通过数学推理得到的结果都不允许有任何弄虚作假的行为存在。我们在日常教学中,应该结合数学的思考方式与 学习方法 ,培养学生事实求是,有根有据,勇于改正错误的科学态度和自觉按客观规律办事习惯。 5结合数学学科的特点,对学生进行辩证唯物主义世界观的教育 数学本身的发生和发展过程中就充满着唯物辩证法。恩格斯曾把数学作为“辩证的辅助工具和表现方式”。数学从实践中发现了问题,然后分析已知存在的问题,找出它们间的关系,利用数学知识, 总结 出来的规律,然后回到实践中检验和运用,这正是体现了辩证唯物主义中从感性—理性—实践的认识论观点。 6挖掘数学教材中的美育素材,通过美学教育,培养学生高尚情操和思想道德修养 我国著名数学家华罗庚说:“数学本身也有无穷的美妙。”数学中的符号、图形、数字排列等都蕴藏着丰富的美育因素。可以告诉学生,圆就代表我们的班集体或者是我们的国家,每个同学就像圆上一个个离散的点,集体的形象与荣誉与我们每个人都是息息相关的。在学习集合的交、并、补的运算时,除了说明符号的简洁、和谐美的同时也可灌输团体意识。在学习直角坐标系时,就可以给学生灌输我们做人也应该方方正正坚持自己的原则。学习点的时候,每个点都是由一对有序的实数组成的,可以把坐标看成是在社会中影响我们自身发展的先天因素和后天因素,而后天因素主要决定了我们未来的发展,从而鼓励每个学生从现在开始努力学习、认真做人、锻炼各种能力,一定会有美好的将来。在教学过程中引导学生发现美、欣赏美、讨论美,逐步培养学生的审美意识审美情趣,培养学生高尚情操和思想道德修养,有助于学生全面发展。 综上所述,结合数学学科的特点对学生进行德育教育是可行的。在数学学科教学中,虽然不能像语文、政治那样直接、系统地对学生进行德育教育,但只要我们善于挖掘教材中的德育因素,在教学过程中实事求是,联系实际,善于引导,就能行之有效地进行德育渗透,使学生学习知识的同时各方面的素质不断提高。 参考文献: [1]中等数学教学中的德育新论,网络. [2]高等数学教学中的德育渗透[J].吉林省经济管理干部学院学报. 大一数学论文范文篇二:《浅谈数学教学德育教育的渗透》 摘要:德育在学校教育中占有举足轻重的地位,是方向、是灵魂,位居各育之首。数学作为基础教育的一门重要学科,在培养学生德育方面,应发挥重要的作用。因此,教师应在数学教学中努力寻找德育点,有机渗透德育,把教书与育人紧密地结合在一起。 关键词:小学数学;数学教学;德育教育; 一、引言 有句话说“百年教育、德育为先”,可见学校教育将德育教育放在相当重要的位置。如今,随着社会的快速进步和科学技术的迅猛发展,小学数学德育教育如何从传统的教育模式中挣脱出来,注入完善的、科学性的内涵,形成一套行之有效的新教育模式。数学虽作为一门理性学科,却蕴含着丰富德育内容。可以根据这门学科的特点,进行德育渗透的教育,使得小学生不仅学到书本的知识,还懂得做人的道理! 二、将德育教育渗透到数学学科教材中 根据数学这门学科的特点,以及小学生的接受能力,注入德育教育的、形象生动的图画和有说服力的内容。做到有机结合,自然渗透的效果。众所周知,小学阶段是 儿童 、青少年身心发展的关键时期,对于刚刚步入学校的低年级学生来说,是认知社会和接受新鲜事物的萌芽期,所以小学数学德育教育工作从此刻开始,进行渗透德育教育。小学数学德育教育如细雨,润物无声,数学学科是沙土。在数学教学过程中,教师无时无处不渗透着细雨之水。而小学生犹如长在沙土里的嫩草,吸吮着沙土中的水分。因此,小学数学中德育渗透,就是将德育本身的因素与数学学科所具有的因素有机地结合起来,使德育内容在潜移默化中逐步形成学生个体内在的思想品德。而数学教材是教学工作主要使用的教学工具,也是授课的依据,更是小学生获取知识与理解做人的来源,由此,编制科学有效的数学教材为课堂授课提供有益的方式。在人们以往的观念中,德育教育应该只是和语文、思想品德等学科有关,以目前的教育内涵来看,这种观念是落后的,也是十足错误的。教育学家赫尔巴特曾有教育 名言 :“教学如果没有进行道德教育,只是一种没有目的的手段,道德教育如果没有教学,就是一种失去了手段的目的”。由此可见,将德育教育渗透到数学教学课堂中来是最为重要的,也是最具有原则性的教育。 三、将德育教育渗透到数学教学课堂中 教师在课堂上教学时,充分挖掘数学教材中的德育因素与知识,渗透德育教育。诸如小学数学教材中的例题、习题、注释、解析中,融入不少进行德育的、形象生动的图画,以及由说服力的数学数据或知识点。将德育因素融合数学知识进行传授、能力培养和思想品德教育为一体的综合性教学模式。把显性的教学问题和隐性的德育教育有机地结合起来,从而实现数学的育人功能。无论是在备课中,还是在课堂上,教师要善于找准在数学教学中德育渗透的切入点,以提高课堂教学实效。可以结合教学内容进行德育渗透中华民族悠久灿烂的数学史源远流长,博大精深。也可以运用现代信息技术、多媒体教学手段,将要授课的内容加入生动的德育元素。重要的是在小学数学教学中,要充分联系教材,联系小学生生活实际,善于将渗透德育教育延申到课堂内外。 四、课堂内外相结合,通过数学活动进行渗透德育教育 在小学数学教学的过程中,德育渗透不能只局限在课堂上,还应该与课外学习有机结合,教师可以开展一些课外数学活动渗透德育。要增强数学课堂的趣味性与实践性,营造一种轻松愉快的情境,注重数学知识与现实生活的联系,使学生意识到数学并不是枯燥无味的,数学离不开生活,生活中处处有数学,从而让学生乐此不疲地致力于学习内容。引导学生学会学以致用将知识回归生活,做到学以致用是数学学习的本质归宿,学生要有将数学知识运用到生活中的意识。如在学习乘法估算后,让学生回家后调查每个人一天的用水量,回学校后估算全班60人一天的用水量,再估算全校三千多人的用水量。在巩固新知的同时让学生体会到了水资源的宝贵,珍惜水资源、节约水资源的思想就会在小学生们小小的心灵扎根。又如,在学生学过统计后,让学生回家后调查自己家庭每天使用垃圾袋的数量,然后通过计算一个班的家庭,一个星期,一个月,一年使用垃圾袋的数量,结合我校附近的垃圾场影响环境的现象,最终总结出垃圾袋对环境造成的影响,这样让学生既可以掌握有关数学知识,又对他们进行了环保教育。再比如,培养小学生动手动脑的能力时,督促小学生手、口、脑、眼、耳多种感官并用,这样做,不但能扩大小学生的信息源,创设良好的思维情境。也能满足小学生好动、好奇的特性。例如:教学“长方体认识”,可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒等),通过感知实物,学生对什么样的物体是长方体获得了初步的感性认识,从而感受美、享受美。 五、结合数学学科特点,通过德育渗透,培养良好习惯 数学是一门严谨的学科,科学性与逻辑性很强,但可以让小学生在学好数学的同时从中养成严格、认真的好习惯。显而易见,小学生计算粗心,错误率高。而提高计算能力就一定要养成仔细计算的习惯。在平时的教学训练中,教师要时时提醒学生不要抄错数,看清是什么运算,加减时注意进位和退位等等,在这里就不一一举例了。简而言之,只要教师善于挖掘、善于捕捉,时时注意、注重在数学课堂中对学生的德育渗透,数学学科的的德育教育一定会取得很好的成效,最终达到德育、智育的双重教育目的。 参考文献: [1]齐建华.数学教育学[M].郑州大学出版社. [2]管建福.小学数学教学艺术[M]2000 大一数学论文范文篇三:《浅谈大学数学素质拓展课程的教学实践》 0 引言 数学不仅是一种科学的语言和工具,是众多科学与技术必备的基础,而且是一门博大精深的科学,更是一种先进的文化,在人类认识世界和改造世界的过程中一直发挥着重要的作用与影响。建设创新型国家的战略构想,需要大批拔尖创新人才,作为大学中重要基础课的大学数学课程,对此负有重要的责任。数学中许多新概念、新方法的引入和发展,众多数学问题和相关实际问题的解决,十分有利于大学生创新精神、 创新思维 和创新能力的培养[1]。 在大学数学课程学习的过程中,培养学生应用数学的意识和兴趣,逐步提高学生的应用能力是大学数学课程教学改革的重要方向。当前大学数学课的教学,大多仍是以教材为中心,以课堂为中心,实践教学较少,课外科技活动的配合注意不够。这些也都是影响学生数学应用意识和应用能力培养的重要因素,应当有所改革。多年来的教学改革实践表明:开设数学拓展课程与数学选修课程,是激发学生学习数学积极性,培养学生数学应用能力和创新能力的一条行之有效的重要途径。 1 开设数学选修课程的必要性 数学的教学不能仅仅是看出知识的传授,而应该使学生在学习知识、培养能力和提高素质诸方面都得到教益,兼顾数学文化和教学素养方面的要求。 大学非数学专业数学课程分为必修和选修课程,一般工科的本科学生高等数学,线性代数,概率论与数理统计为必修课程。而选修课程则由学生依据自身发展需求和学习时间规划,自主选择。选修型课程以拓展知识结构。数学类选修课的目的是引导学生广泛涉猎不同学科领域[2],拓宽知识面,学习不同学科的思想和方法,进一步打通专业,拓宽知识结构,强化素质,自觉养成主动学习、独立思考的习惯,不断提高自我建构知识、能力和素质的本领,培养探索和创新精神。全面提升素养。促进学生个性的发展和学校办学特色的形成,是一种体现不同基础要求、具有一定开放性的课程。 大学数学教育应以培养学生数学能力和提高学生的数学素养为目标。当前,数学课程教学内容与社会的发展不适应问题主要表现在课程教学内容未能及时反映数学发展的最新成果,依然固守形式演绎体系而忽略了非常重要但非演绎的、非严格的重要内容;局限于于课本,只讲课本中呈现的内容而忽略了课程内容的来源与出处的讲解[3]。在教学上,大学数学教学方式单一,越来越形式化,过于注重概念、定理的推导和证明、计算以及解题的技巧,使得数学远离我们周围的世界,远离我们的日常生活。过分强调数学的逻辑性和严密性,导致学生觉得数学过于抽象无法理解[4]。在教学过程中采用传统陈旧的教育理念:重理论轻计算、重技巧轻思想、重推理轻应用。 在具体教学过程中,多数教师仍局限于传授知识本身,特别是局限于解题方法与技巧的训练,而对于如何在知识载体上培养学生的数学思想、 理性思维 和审美情操,提高他们的数学素养,却重视不够。应积极引导教师运用自己的科研能力去深入钻研教学内容,改进 教学方法 ,在传授数学知识的过程中落实数学在培养学生能力和素质方面的作用。应全面落实“知识传授,能力培养,素质提高”三位一体的教育理念[5]。 数学上的不少概念、方法或理论,有些本身就来自其在现实生产和生活中的原型,并且和人文、管理、工程技术有着密不可分的联系,发现并指出这些的联系,对激发学生学习数学的兴趣,增强他们对数学的理解,是大有益处的。当然这也要求教师广泛的涉猎不同的学科领域,对大学数学教师无疑是一个新的挑战。 2 已开设的拓展课程及模块建设 在上述思想指引下,同时为了适应社会的更高要求和不同层次学生的自身需求,结合我校的实际情况,学校出台相应课程改革 措施 ,主要开展了两个方面的建设工作: 拓展课程的模块建设:在现有的工科数学必修课《高等数学》、《线性代数》、《概率论与数理统计》等课程的基础上,开设了《数学建模》、《工程数学中的理论与方法》、《数学文化》、《投资理财常识》等课程,建立并完善了各门课程的课程简介、教学大纲、教学进度及推荐参考书目等,并结合多媒体的教学手段,搭建并完成了《数学建模》课程的网络教学平台,已对全校师生开放。现正在进行《数学文化》、《工程数学中的理论与方法》两门课程的网络平台建设工作。所开设的《工程数学中的理论与方法》,拟开设的《工程问题中的数学计算-MATLAB》主要针对我校的理、工、农、医专业的学生;《投资理财常识》及拟开设的《运筹学》主要针对我校管经类、质量工程类的学生。 拓展实践的模块建设:以素质拓展作为目标的课程设置,旨在提高学生应用数学知识解决实际问题的动手能力和创新能力,我们主要加强了以下几个方面的工作: ①以项目管理的方式鼓励学生积极参加各类科技活动:提倡学生积极申报项目,如大创项目等,鼓励学生积极参与教师的各类研究项目中,以科研小组或科技小组的形式,发表小论文、小发明、小制作、小专利等; ②以培养学生创新意识为导向的各类学科竞赛活动:为进一步培养学生利用理论知识来解决实际问题的分析能力和应用能力,积极鼓励学生参加各类学科竞赛,如:大学生数学建模比赛、大学生统计建模比赛、大学生创业设计大赛等; ③以学习的态度鼓励学生参加 社会实践 和社会调查活动。社会是一个丰富的大舞台,只有融入社会这个大舞台,才能不断积累社会 经验 ,不断增长社会实践的活动能力,从而提高自身的社会管理和适应能力,将来能更快和更好的为社会服务。 3 取得的成绩和存在的不足 数学建模课程是以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力,提高他们学习数学的兴趣和应用数学的意识与能力。 工程中的数学理论与方法主要在我校特定的环境下,在学习完工程类数学必修课的基础上,针对高年级学生,加深和延拓数学的理论知识和计算方法,为数学知识要求高的专业(如工程力学专业、通信工程专业等)及准备报 考研 究生的同学提供数学帮助。 数学文化课程在探讨数学文化的起源、收集了众多的数学 故事 和数学家的故事基础上,结合数学思想、数学方法的形成和发展,阐述了数学发展和数学教育中的人文成分,揭示了数学与社会、数学与其他文化的关系。通过该门课程的学习,让学生更进一步了解生活中的数学、数学中的美,学会欣赏数学文化及弘扬数学文化,推动数学教学的进程。 投资理财常识主要向学生介绍股票基金,期货彩票等的基础知识和交易技巧,教学中用到一些基础性的数学知识如差分方程,大数定理等,更多的则是经济、管理人文知识的熏陶,通过学习该课程,学生感觉数学的应用领域广泛,从而进一步激发学生学习数学的积极性。 通过对我校教学情况的初步了解,尤其是针对昆明理工大学数学类拓展课程开设情况的深入调查,发现大多数的学生对课程满意或非常满意。学生感觉最大的收获在于拓展了知识层面,开拓了视野,感觉数学比以前教材中的内容要丰富和有趣的多。但在《数学文化》这类知识性比较强的课程上,学生输入的多,输出的少,不利于学生知识水平的提高。另外,学生对所开设的选修课程知识了解甚少。这表明,学生进行学习所依托的课程知识基础薄弱。通过统计《数学建模》课程学生对课程、教师和自己的期望中了解到,大多数的学生期望通过老师的讲授,能够在课堂上全面了解所学课程知识。只有半数学生希望老师给学生提供自己动手的机会,更多的学生还是习惯于在课堂上扮演倾听的角色,缺乏用数学解决实际问题的意识和能力。最后,担任选修课程的大学数学教师自身的课程水平和教学能力也有待进一步提高。开设大学数学选修课程对广大数学教师也是一个很大的挑战。尤其是在开设的初期,教师除了要改变自己的教学理念和教学方法,还要努力扩大自己的知识面,制定教学大纲,完善教材和教学内容。 4 结束语 大学数学教学是高等教育的一个有机的组成部分,大学数学选修课程是以数学知识与应用技能、学习策略和跨学科运用为主要内容。如何建立和完善行之有效的大学数学提高阶段的课程体系,以满足新时期学生对数学学习的需求以及国家和社会对人才培养的需要,成为当今高校大学数学教学管理部门越来越关注的问题。大学数学选修课程的开设,适应了社会的更高需求,同时也满足了更高层次学生的自身需要。但是,要真正实现课程开设的目的,仍需更多的努力,不断的完善。 首先,急需向各高校教学管理部门、教师,尤其是学生传达课程改革的必要性,提供良好的改革环境和条件。 其次,要用科学的教学理念改革数学选修课程教学实践,完善教学内容,改善教学方法,实施科学的课程评估方式。如“投资理财常识”之类的课程,已不是单纯的数学基础课程,除用到一些基础性的数学知识外,更多的则是经济、管理人文知识,能否将这类课程纳入人文类选修课程,使学社学习知识的同时,获得相应的学分,这是教学管理部门需要解决的问题。 第三,时刻以学生为中心,所开设课程要能够满足学生的需要,能够激发学生的学习兴趣。 第四,教师要进一步提高和完善自己,适应学生的个性要求,改善教学方法,开发学生的主动性和创造性,全面提高学生的综合素质。 最后,针对课程教学中出现的问题,和课程教学效果要能够做到及时调查,不断对课程及教学做出相应调整和改善。大学数学选修课程的开设顺应了时代的要求和学生的需要,只要对之进行不断的完善,必然能够为较高层次的学生开拓出一片新的天地,为他们将来更好地适应社会的需求做好储备。 猜你喜欢: 1. 学习大学数学的心得 2. 数学文化论文3000字 3. 数学大学本科生毕业论文 4. 大学数学科技论文范文 5. 大学数学教育论文范文
关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的.爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
1000字,这么少分.爱莫能助呀
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
数学,一个多么熟悉的字眼,平凡而又美丽。你也许会说:“数学不就是几个阿拉伯数字嘛,那也谈得上美丽?”然而,正是它的简洁,才造就了它的美丽与神奇。初识数学,是再简单不过的“1、2、3”,难道这就是我想象中的数学?可是,我错了,我看到的仅仅是一个表面,它有着更深层的含义。数学的难度渐渐的加深。从加、减、乘、除到小数、分数,数学的奥妙与美丽正逐渐向我展现。数学就像一个大集体,而那一个个数字则像一个个快活的小精灵,整天舞动着。“1”是它们的大哥,将身体挺得笔直,显得威风凛凛;而“2”则像个恬静的少女,扭曲着身体,显得羞答答的;“3”是个健壮的小伙子,天性乐观,怀抱远大的理想……其他几个兄妹更是俊俏、清秀,个个身怀绝技。这十个小精灵朝夕相处,团结一心,见姐妹太少,它们还会进行自我组合,产生新的数字呢!看,“1”见“0”一个人太寂寞,胆子又小,便主动与它组合,陪伴在它身边,便产生了“10”。其他兄妹受到启发,纷纷响应,庞大的数字从此遍布天下。有数字还不够,小精灵们觉得不够热闹,便请来了更多的玩伴。于是,小数点来了、分数带着家人来了、字母们也应邀而来……凡是受到邀请的,都从四面八方赶来了。数学王国热闹极了!可是,尽管来了,调皮的本性依旧改不了。瞧,“顽皮鬼”小数点趁主人不注意,从“2”的身边一蹦蹦到了“3”的前面。见主人心急火燎地寻找,它却在一旁哈哈大笑,活像是在与主人捉迷藏。为此,我也没少被它愚弄。见它“胜利”后得意洋洋的模样,我暗下决心:一定要养成细心的好习惯,抓住这调皮的小数点!很快,在考试时,我俩又相遇了,一见是我,小数点轻蔑地说道:“嘿嘿,手下败将,怎么又回来了?”说着,又想使用“看家本领”来迷惑我。早有防备的我一举看穿它的诡计,迅速将它揪住,将它放回原位去了。调皮的小数点终于被制服了,望着它那垂头丧气的模样,一丝快慰不禁涌上心头。如果仅仅是外表,数学还不足以称得上美丽,它那独特的内在美,更是使它留名千古。数学的范围很广,得到的传播空间也较多,几千年前,印度人创造了它,阿拉伯人将期修正,它有着很强的表达力,形象以及快捷铸就它不朽的历史。古今中外,它成就了多少事物的诞生,世界七大奇迹,有哪一样不是在数学的熏陶下完成的?从祖冲之精密的推算到陈景润的哥德巴赫猜想,从爱迪生数千种发明到高科技世界,数学都起了决定性的作用!如果没有数学,哪有许许多多的发明?哪来猜想与定理?会有哪一个工程能顺利进展?数学是无私的,它将自己的一切奉献给大家,从不索取什么;数学是公平的,它只将自己奉献给勤奋努力的人,鼓励他们继续奋斗;数学是“无情”的,它憎恨懒惰,面对那一只只贪婪而不肯付出的手,它一概置之不理。数学就像一根丝带,将自己与人们的生活紧紧地连在一起。如果没有这根丝带,世界将会是怎样呢?其实,数学的美丽还远远不只这些。它带给人们独立性,带给人们成功的喜悦,带给人们探索与发现的精神,它将自己的“美”献给每一位热爱数学的人。数学是春天的第一滴春雨,滋润大地;数学是夏日的太阳,充满激情;数学是深秋丰收的田野,带给人无限喜悦;数学是寒冬的一片雪花,洁白无暇。它是智慧与汗水的结晶,它是送给奋斗者最好的礼物,它是千古文化不朽的功臣。啊,朋友,爱上数学,播下智慧的种子,洒下辛勤的汗水,收获成功的喜悦吧!
数学在人类文明的发展中起着非常重要的作用,数学推动了重大的科学技术进步。但在历史上, 限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现。数学为人类生产和生活 带来的效益容易被忽视。进入二十世纪,尤其是到了二十世纪中叶以后,科学技术发展到这一步:数 学理论研究与实际应用之间的时间差已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化 和信息通道的大规模联网,依据数学所作的创造设想已经达到可即时试验、即时实施的地步。数学技 术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术, 一、数学与科学技术进步 二十世纪科学技术进步给人类生产和生活带来的巨大变化确实令人赞叹不已。从远古时代 起一直是人们幻想的“顺风耳”,“千里眼”,“空中飞行”和“飞向太空”都在这一世纪成为现实。回 顾二十世纪的重大科学技术进步,以下几个项目元疑是影响最大的,而数学的预见和推动作用是 非常关键。 (1)先有了麦克斯韦方程人们从数学上论证了电磁波,其后赫兹才有可能做发射电磁波的实 验,接着才会有电磁波声光信息传递技术的发展。 (2)爱因斯但相对论的质能公式首先从数学上论证了原子反应将释放出的巨大能量,预示了 原子能时代的来临.随后人们才在技术上实现了这一预见,到了今天,原子能已成为发达国家电 力能源的主要组成部分。 (3)牛顿当年已经通过数学计算预见了发射人造天体的可能性,差不多过了将近三个世纪, 人们才实现了这一预见。 (4)电子数字计算机的诞生和发展完全是在数学理论的指导下进行的。数学家图灵和冯诺依 曼的研究对这一重大科学技术进步起了关键性的推动作用。 (5)遗传与变异现象虽然早就为人们所注意。生产和生活中也曾培养过动植物新品种。遗传 的机制却很长时间得不到合理解释,十九世纪60年代,孟德尔以组合数学模型来解释他通过长 达8年的实验观察得到的遗传统计资料,从而预见了遗传基因的存在性。多年以后,人们才发现 了遗传基因的实际承载体,到了本世纪50年代沃森和克里发现了DNA分子的双螺旋结构。这以 后,数学更深刻地进入遗传密码的破译研究。 数学是人类理性思维的重要方式,数学模型,数学研究和数学推断往往能作出先于具体经验 的预见。这种预见并非出于幻想而是出于对以数学方式表现出来的自然规律和必然性的认识,随 着科学技术的发展,数学、预见的精确性和可检验性日益显示其重意义。 二、时代大潮的潮头 我们面临一个科学技术迅猛发展的时代。信息的数字化和信息的数学处理已经成为几乎所 有高科技项目共同的核心技术。从事先设计、制定方案,到试验探索、不断改进,到指挥控制、具体 操作,处处倚重于数学技术。众多新闻报道反映出这一时代大潮汹涌澎湃的势头。下面列举的仅 仅是其中一小部分。 (1)数学技术已经成为工业新产品研制设计的重要关键技术。1994年4月9日,被称为“百 分之百数字化确定”的波音777型飞机举行盛大隆重的出厂典礼.在过去,进行新机型设计,必须 对模型构件和样机反复作强度试验和空气动力学性。:试验。稍有不妥,就必须改变设计再来一轮 试验。新机种的研制周期长达十余年,消耗大量原材料和能源,采用了数学技术以后,所有的试验 可以通过精确设定的数学模型在计算机中进行,探索和修改都可以通过数学指令去实现。新机种 的研制周期从十多年缩短到三年半,大幅度节约了原材料和能源。 (2)许多国家认识到,发展高清晰度电视是未来经济技术竞争的主战场之一。日本和美国都 投入大量资金和人力进行有关研究,日本起步最早,但所研究的是模拟式的;美国虽然起步稍晚, 但所研究的是数字式的。经过多年的较量,数字式研究以其高度优越性取得关键性胜利。1994年 2月24日《人民日报》报道:日本政府正式宣布,转向研究数字式高清晰度电视,承认数字式因其 优越性而得到世界多数国家赞同,很可能成为未来的国际标准。 应该指出,电视屏幕不仅是现代人们日常生活所不可缺少的,而且可能通过联网成为信息传 递处理的工作面。几乎所有重要的工作岗位都将与之有关。数学技术在如此重要项目的激烈较量 中起了决定作用。 (3)199=年的海湾战争是一场现代高科技战争,其核心技术竟然也是数学技术。这一事实引 起人们不小的惊讶。美国总结海湾战争经验得出结论是:“未来的战场是数字化的战争”。干扰和失真是电磁波通信的一大难题。早在六十年代太空开发竞争的初期,美国施行。‘阿波罗登登月计划时,就已经意识到:由于太空中过强的干扰,无论依靠怎样精密的电子硬件设备 ,也 无法收到任何有用的信息,更不用说操纵控制了,采用了信息数字化、纠错编码、数字滤波等一整套数学通讯技术和数学控制技术之后,送人登月的计划才得以顺利完成,二十年后,在海湾战争 中,多国部队方面使用这一套技术把对方干扰得既聋又瞎,却能让自己方面的信息畅通无阻。采 用精密酌数学技术,可以在短短数十秒的时间内准确拦截对方发射的导弹,又可以引导对方发射 导弹准确击中对方的目标。也正是这一套信息数字化的数学技术,在开发高清晰度电视的竞争中 取得压倒性的胜利。开发一种数学技术可以在,。此众多方面施展效用,足见数学的广泛适用性。 (4)1995年1月,在贩神大地震之后,美国利用数学模型进行地震预测,预告本世纪末加州南部可能发生大地震。 (5)1995年3月,我国中央人民广播电台宣布启用数字式转播方式,指出以前的模拟式转播 方式效果差,所以改用新的转播方式。 (6)1995年6月,欧州联盟开会研讨未来数字化通信的统一制式。 (7)1996年2月,我国电子工业部宣布“九五计划”开发重点:数字化信息技术。所订的两个重 点研制项目是:数字式高清晰度电视接受机样机和数字式激光盘。 (8)1996年4月,我国国家科委发布招标公告,正式宣布数字式高清晰度电视开发项目。 三、当代与未来的发展倚重数学 仅以几件事为例就能清楚地看到数学对当代人们的生产和生活所起的重要作用。当代的生 产和生活离不开石油,石油勘探和生产需要了解地层结构。多年以来已经发展了一整套数学模型 和数学程序。人们发射地震波,然后将各个层面反射回来的信息收集起来力。以数学处理,就能将 地层各个剖面的图像和地层结构的全貌展现出来。这已是目前石油勘探与生产普遍采用的数学 技术。无独有偶,涉及到人的生命也有类似的情况,医生需要了解病人躯体内部和器官内部的状 况与变异,以前的调光片将骨骼和各种器官全都重叠在一起,往往难以辨认)现在也有了一整套 数学方案。借助了精密设备收集射线穿透人体或核磁共振带出的信息力。以数学处理就能将人体各个削面的状况清晰地层现出来,需要了解哪个层面就可以调出哪个层面的图片来,关系到人们 的生产与生活,这样的例证很多很多。在涉及生存与发展的关键时刻,特别是在涉及人类命运的紧要关头,数学也起着非常重要的 作用。在进入本世纪最后十年的时候,美国国家研究委员会公布了两份重要报告《人人关心数学 教育的未来》和《振兴美国数学—— 90 年代的计划》.两份报告都提到:近半个世纪以来,有三个时 期数学的应用受到特别重视,促进了数学的爆炸性发展,“第二次世界大战促成了许多新的强有 力数学方法的发展……“由于苏联人造卫星发射的刺激,美国政府增加投入促进了数学研究与数 学教育的发展”,“计算机的使用扩大了对数学的需求”.在二次世界大战太平洋战场的关键时刻, 由于采用数学方法破译日军密码,美国海军才能在舰只力量对比绝对劣势的情况下,赢得中途岛 海战的胜利,歼灭日本联合舰队的主力,扭转整个太平洋战局。在关系人类命运的二次世界大战 中,美国几乎是整个反法西斯战线的后勤补给基地。到了反攻阶段,要组织跨越两个大洋的大规 模行动,物资调运和后勤支援成了非常关键的问题,这刺激了有关数学方法的迅速发展。这期间 发展起来并且在战后迅速普及到各个方面的线性规划实用数学技术,为人类带来了数以千亿计 的巨大效益。到了1957年,苏联将第一颗人造卫星迭人太空,震撼了美国朝野。意识到有关数学 应用方面的差距,美国政府加大投入,促进了数学研究与数学教育的迅速发展,随着计算机的发 展,对数学有了空前的需求,刺激数学进入了第三个大发展的时期。 已经有了很多很多极有说服力的例证,说明无论在日常的生产和生活中,还是在涉及生存和 发展的关键时刻,数学都起着非常重要的作用,在新世纪即将到来之前科学技术和生产的发展对 数学提出了空前的需求,我们必须把握时机增大投入,加强数学研究与数学教育,提高全民族的 数学素质,才能更好地迎接未来的挑战。
从数学学习的过程上来分析,我们往往会看到这样的现象,一个孩子的数学学习较好,他的思维灵活性就比较强,在这种情况下,他的热情和积极性就很高,善于表达自己的思想与方法,这样这个孩子的交往能力就会得到一定程度的锻炼,他的自信心也必然会逐步得到加强。
我写了很多,不过是小学生的,不知道你要不要? 数学小论文 最近,我从一个简单的算式中发现了两个新公式,这使我非常高兴。下面,我就讲一下它的思考过程: 现在,有这么一个算式:1+3+5+7=?这么简单的题目,我想一年级的小朋友都能有死办法做出来,那么请看这组算式:1+3=4=22、 1+3+5=9=32、1+3+5+7=16=42…这些算式的和都是一个数的平方,并且这些和的平方根就是这个算式的项数,所以,我得出一个结论:一组差为2的奇数等差数列的和就等于项数×项数。那么,求项数有没有更简单的方法呢?有!再来看一下求和算式:1+3+5+7= (1+7)×4÷2=8×4÷2=16,如果把它的第三步转为简便方法的话,就是:8÷2×4=4×4=42=16,也就是说(1+7)÷2就等于项数,因此得出:在一组差为2的奇数等差数列中,项数=(首项+末项)÷2。 这些就是我对这些公式的思考过程,听起来不是很难吧!本来嘛,发现,就在我们身边。 抓住数的整除特征 [问题]用1、2、3、4、6、7、8、9这样的8个数组成一个多位数,使这个多位数能被1、2、3、4、6、7、8、9中的每一个数整除;其中每一个数字至少使用一次,可以重复使用(如6478319232)。请问:组成的多位数最小是多少? [思路点睛]首先我们要想到能被一些数整除的特征,能被2整除就要是偶数,被3、9整除的各个位上之和要是它们的倍数,能被4整除的数末两位上就是4的倍数,能被8整除的末三位上要是8的倍数。把这8个数加起来,得40,但能被9、3整除至少要是45,也就要加5,5不出现在这些数中,我们就选择重复使用1和4。要最少的话就可以确定前几位要从小到大,我们取112344□□□□。我们再考虑能被4、8整除,那末两位只能是68,那末四位就有两种可能:7968、9768,已知划线部分都能被8整除,接着,我们只要看能不能被7整除,最后确定1123449768是这样的多位数中最小的,不信你们试试?
关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。下面是我为大家整理的大一数学论文,供大家参考。大一数学论文 范文 篇一:《数学学科德育 教育 渗透思考》 摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。 关键词:数学学科;渗透;德育教育 我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主 渠道 作用。数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的 方法 和能力。这些数学能力包括:空间想象能力、 逻辑思维 能力、基础运算能力和数学建模能力等。第三,数学课作为职业学校 文化 基础课之一,所用资源少,易开展教学活动。结合数学学科的特点,笔者认为可以从以下几点进行德育教育。 1根据中职学校数学学科的特点和数学课的现状,教师的人格 品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。德育要讲究艺术性,要充分发挥情感的感染作用。作为一名数学教师在数学课上每位教师尊重和顺应人性、同学的个性,保护同学的尊严,发掘和表扬学生的内在情感,调动他们积极的心理因素。教师动之以情,才能激发学子之情,使之乐其所学。学生感受到教师对他们的关心,从心底上认可这个教师,从而真正建立起新型的科学的师生关系。 2结合数学教材内容,向学生进行爱祖国和爱科学的教育 在用到正负数及运算法则时,教师给学生说明或是让学生自己上网查找相关内容,可以知道在世界闻名的数学典籍《九章算术》中,就已经提出了相关概念,使得代数学早于西方于公元前2000年就已经产生了;著名的勾股定理、“杨辉三角”、圆周率的计算以及著名数学家陈景润的“陈氏定理”、华罗庚发起和推广的优选法等,我国科学的成就令世界各地的每个炎黄子孙自豪,可以激发起学生强烈的爱科学、爱国情和民族自豪感,同时激励学生学习的进取向上精神。 3培养正确的学习动机和目的,提高学生学习数学兴趣,增强社会责任感 我们学习数学的最终目的是能用数学,因而不管是教师还是学生都应该知道数学在我们生活中或是我们所学专业课上的应用。例如我们在学习圆柱时,就可以和汽车专业所学的发动机上的气缸联系起来讲解表面积和体积相关知识;我们在学习分段函数时,就可以和与我们生活相关的水费、电费、出租车收费联系起来等。 4结合数学学科的特点,培养学生理智的思考、按客观规律办事的良好的人格特征 数学是一门自然科学,科学的问题来不得半点虚假,数学语言的精确性使得数学中的结论不会模棱两可。伽利略:世界的奥秘是本巨大的书,而这本书是用数学语言写成的。越来越多的人认为数学语言是各种科学的通用语言,可见数学语言的精确性。在数学的观点下,一加一只能等于2不可能是其他结果,但在其他的学科就不一定了。不管是数学语言还是通过数学推理得到的结果都不允许有任何弄虚作假的行为存在。我们在日常教学中,应该结合数学的思考方式与 学习方法 ,培养学生事实求是,有根有据,勇于改正错误的科学态度和自觉按客观规律办事习惯。 5结合数学学科的特点,对学生进行辩证唯物主义世界观的教育 数学本身的发生和发展过程中就充满着唯物辩证法。恩格斯曾把数学作为“辩证的辅助工具和表现方式”。数学从实践中发现了问题,然后分析已知存在的问题,找出它们间的关系,利用数学知识, 总结 出来的规律,然后回到实践中检验和运用,这正是体现了辩证唯物主义中从感性—理性—实践的认识论观点。 6挖掘数学教材中的美育素材,通过美学教育,培养学生高尚情操和思想道德修养 我国著名数学家华罗庚说:“数学本身也有无穷的美妙。”数学中的符号、图形、数字排列等都蕴藏着丰富的美育因素。可以告诉学生,圆就代表我们的班集体或者是我们的国家,每个同学就像圆上一个个离散的点,集体的形象与荣誉与我们每个人都是息息相关的。在学习集合的交、并、补的运算时,除了说明符号的简洁、和谐美的同时也可灌输团体意识。在学习直角坐标系时,就可以给学生灌输我们做人也应该方方正正坚持自己的原则。学习点的时候,每个点都是由一对有序的实数组成的,可以把坐标看成是在社会中影响我们自身发展的先天因素和后天因素,而后天因素主要决定了我们未来的发展,从而鼓励每个学生从现在开始努力学习、认真做人、锻炼各种能力,一定会有美好的将来。在教学过程中引导学生发现美、欣赏美、讨论美,逐步培养学生的审美意识审美情趣,培养学生高尚情操和思想道德修养,有助于学生全面发展。 综上所述,结合数学学科的特点对学生进行德育教育是可行的。在数学学科教学中,虽然不能像语文、政治那样直接、系统地对学生进行德育教育,但只要我们善于挖掘教材中的德育因素,在教学过程中实事求是,联系实际,善于引导,就能行之有效地进行德育渗透,使学生学习知识的同时各方面的素质不断提高。 参考文献: [1]中等数学教学中的德育新论,网络. [2]高等数学教学中的德育渗透[J].吉林省经济管理干部学院学报. 大一数学论文范文篇二:《浅谈数学教学德育教育的渗透》 摘要:德育在学校教育中占有举足轻重的地位,是方向、是灵魂,位居各育之首。数学作为基础教育的一门重要学科,在培养学生德育方面,应发挥重要的作用。因此,教师应在数学教学中努力寻找德育点,有机渗透德育,把教书与育人紧密地结合在一起。 关键词:小学数学;数学教学;德育教育; 一、引言 有句话说“百年教育、德育为先”,可见学校教育将德育教育放在相当重要的位置。如今,随着社会的快速进步和科学技术的迅猛发展,小学数学德育教育如何从传统的教育模式中挣脱出来,注入完善的、科学性的内涵,形成一套行之有效的新教育模式。数学虽作为一门理性学科,却蕴含着丰富德育内容。可以根据这门学科的特点,进行德育渗透的教育,使得小学生不仅学到书本的知识,还懂得做人的道理! 二、将德育教育渗透到数学学科教材中 根据数学这门学科的特点,以及小学生的接受能力,注入德育教育的、形象生动的图画和有说服力的内容。做到有机结合,自然渗透的效果。众所周知,小学阶段是 儿童 、青少年身心发展的关键时期,对于刚刚步入学校的低年级学生来说,是认知社会和接受新鲜事物的萌芽期,所以小学数学德育教育工作从此刻开始,进行渗透德育教育。小学数学德育教育如细雨,润物无声,数学学科是沙土。在数学教学过程中,教师无时无处不渗透着细雨之水。而小学生犹如长在沙土里的嫩草,吸吮着沙土中的水分。因此,小学数学中德育渗透,就是将德育本身的因素与数学学科所具有的因素有机地结合起来,使德育内容在潜移默化中逐步形成学生个体内在的思想品德。而数学教材是教学工作主要使用的教学工具,也是授课的依据,更是小学生获取知识与理解做人的来源,由此,编制科学有效的数学教材为课堂授课提供有益的方式。在人们以往的观念中,德育教育应该只是和语文、思想品德等学科有关,以目前的教育内涵来看,这种观念是落后的,也是十足错误的。教育学家赫尔巴特曾有教育 名言 :“教学如果没有进行道德教育,只是一种没有目的的手段,道德教育如果没有教学,就是一种失去了手段的目的”。由此可见,将德育教育渗透到数学教学课堂中来是最为重要的,也是最具有原则性的教育。 三、将德育教育渗透到数学教学课堂中 教师在课堂上教学时,充分挖掘数学教材中的德育因素与知识,渗透德育教育。诸如小学数学教材中的例题、习题、注释、解析中,融入不少进行德育的、形象生动的图画,以及由说服力的数学数据或知识点。将德育因素融合数学知识进行传授、能力培养和思想品德教育为一体的综合性教学模式。把显性的教学问题和隐性的德育教育有机地结合起来,从而实现数学的育人功能。无论是在备课中,还是在课堂上,教师要善于找准在数学教学中德育渗透的切入点,以提高课堂教学实效。可以结合教学内容进行德育渗透中华民族悠久灿烂的数学史源远流长,博大精深。也可以运用现代信息技术、多媒体教学手段,将要授课的内容加入生动的德育元素。重要的是在小学数学教学中,要充分联系教材,联系小学生生活实际,善于将渗透德育教育延申到课堂内外。 四、课堂内外相结合,通过数学活动进行渗透德育教育 在小学数学教学的过程中,德育渗透不能只局限在课堂上,还应该与课外学习有机结合,教师可以开展一些课外数学活动渗透德育。要增强数学课堂的趣味性与实践性,营造一种轻松愉快的情境,注重数学知识与现实生活的联系,使学生意识到数学并不是枯燥无味的,数学离不开生活,生活中处处有数学,从而让学生乐此不疲地致力于学习内容。引导学生学会学以致用将知识回归生活,做到学以致用是数学学习的本质归宿,学生要有将数学知识运用到生活中的意识。如在学习乘法估算后,让学生回家后调查每个人一天的用水量,回学校后估算全班60人一天的用水量,再估算全校三千多人的用水量。在巩固新知的同时让学生体会到了水资源的宝贵,珍惜水资源、节约水资源的思想就会在小学生们小小的心灵扎根。又如,在学生学过统计后,让学生回家后调查自己家庭每天使用垃圾袋的数量,然后通过计算一个班的家庭,一个星期,一个月,一年使用垃圾袋的数量,结合我校附近的垃圾场影响环境的现象,最终总结出垃圾袋对环境造成的影响,这样让学生既可以掌握有关数学知识,又对他们进行了环保教育。再比如,培养小学生动手动脑的能力时,督促小学生手、口、脑、眼、耳多种感官并用,这样做,不但能扩大小学生的信息源,创设良好的思维情境。也能满足小学生好动、好奇的特性。例如:教学“长方体认识”,可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒等),通过感知实物,学生对什么样的物体是长方体获得了初步的感性认识,从而感受美、享受美。 五、结合数学学科特点,通过德育渗透,培养良好习惯 数学是一门严谨的学科,科学性与逻辑性很强,但可以让小学生在学好数学的同时从中养成严格、认真的好习惯。显而易见,小学生计算粗心,错误率高。而提高计算能力就一定要养成仔细计算的习惯。在平时的教学训练中,教师要时时提醒学生不要抄错数,看清是什么运算,加减时注意进位和退位等等,在这里就不一一举例了。简而言之,只要教师善于挖掘、善于捕捉,时时注意、注重在数学课堂中对学生的德育渗透,数学学科的的德育教育一定会取得很好的成效,最终达到德育、智育的双重教育目的。 参考文献: [1]齐建华.数学教育学[M].郑州大学出版社. [2]管建福.小学数学教学艺术[M]2000 大一数学论文范文篇三:《浅谈大学数学素质拓展课程的教学实践》 0 引言 数学不仅是一种科学的语言和工具,是众多科学与技术必备的基础,而且是一门博大精深的科学,更是一种先进的文化,在人类认识世界和改造世界的过程中一直发挥着重要的作用与影响。建设创新型国家的战略构想,需要大批拔尖创新人才,作为大学中重要基础课的大学数学课程,对此负有重要的责任。数学中许多新概念、新方法的引入和发展,众多数学问题和相关实际问题的解决,十分有利于大学生创新精神、 创新思维 和创新能力的培养[1]。 在大学数学课程学习的过程中,培养学生应用数学的意识和兴趣,逐步提高学生的应用能力是大学数学课程教学改革的重要方向。当前大学数学课的教学,大多仍是以教材为中心,以课堂为中心,实践教学较少,课外科技活动的配合注意不够。这些也都是影响学生数学应用意识和应用能力培养的重要因素,应当有所改革。多年来的教学改革实践表明:开设数学拓展课程与数学选修课程,是激发学生学习数学积极性,培养学生数学应用能力和创新能力的一条行之有效的重要途径。 1 开设数学选修课程的必要性 数学的教学不能仅仅是看出知识的传授,而应该使学生在学习知识、培养能力和提高素质诸方面都得到教益,兼顾数学文化和教学素养方面的要求。 大学非数学专业数学课程分为必修和选修课程,一般工科的本科学生高等数学,线性代数,概率论与数理统计为必修课程。而选修课程则由学生依据自身发展需求和学习时间规划,自主选择。选修型课程以拓展知识结构。数学类选修课的目的是引导学生广泛涉猎不同学科领域[2],拓宽知识面,学习不同学科的思想和方法,进一步打通专业,拓宽知识结构,强化素质,自觉养成主动学习、独立思考的习惯,不断提高自我建构知识、能力和素质的本领,培养探索和创新精神。全面提升素养。促进学生个性的发展和学校办学特色的形成,是一种体现不同基础要求、具有一定开放性的课程。 大学数学教育应以培养学生数学能力和提高学生的数学素养为目标。当前,数学课程教学内容与社会的发展不适应问题主要表现在课程教学内容未能及时反映数学发展的最新成果,依然固守形式演绎体系而忽略了非常重要但非演绎的、非严格的重要内容;局限于于课本,只讲课本中呈现的内容而忽略了课程内容的来源与出处的讲解[3]。在教学上,大学数学教学方式单一,越来越形式化,过于注重概念、定理的推导和证明、计算以及解题的技巧,使得数学远离我们周围的世界,远离我们的日常生活。过分强调数学的逻辑性和严密性,导致学生觉得数学过于抽象无法理解[4]。在教学过程中采用传统陈旧的教育理念:重理论轻计算、重技巧轻思想、重推理轻应用。 在具体教学过程中,多数教师仍局限于传授知识本身,特别是局限于解题方法与技巧的训练,而对于如何在知识载体上培养学生的数学思想、 理性思维 和审美情操,提高他们的数学素养,却重视不够。应积极引导教师运用自己的科研能力去深入钻研教学内容,改进 教学方法 ,在传授数学知识的过程中落实数学在培养学生能力和素质方面的作用。应全面落实“知识传授,能力培养,素质提高”三位一体的教育理念[5]。 数学上的不少概念、方法或理论,有些本身就来自其在现实生产和生活中的原型,并且和人文、管理、工程技术有着密不可分的联系,发现并指出这些的联系,对激发学生学习数学的兴趣,增强他们对数学的理解,是大有益处的。当然这也要求教师广泛的涉猎不同的学科领域,对大学数学教师无疑是一个新的挑战。 2 已开设的拓展课程及模块建设 在上述思想指引下,同时为了适应社会的更高要求和不同层次学生的自身需求,结合我校的实际情况,学校出台相应课程改革 措施 ,主要开展了两个方面的建设工作: 拓展课程的模块建设:在现有的工科数学必修课《高等数学》、《线性代数》、《概率论与数理统计》等课程的基础上,开设了《数学建模》、《工程数学中的理论与方法》、《数学文化》、《投资理财常识》等课程,建立并完善了各门课程的课程简介、教学大纲、教学进度及推荐参考书目等,并结合多媒体的教学手段,搭建并完成了《数学建模》课程的网络教学平台,已对全校师生开放。现正在进行《数学文化》、《工程数学中的理论与方法》两门课程的网络平台建设工作。所开设的《工程数学中的理论与方法》,拟开设的《工程问题中的数学计算-MATLAB》主要针对我校的理、工、农、医专业的学生;《投资理财常识》及拟开设的《运筹学》主要针对我校管经类、质量工程类的学生。 拓展实践的模块建设:以素质拓展作为目标的课程设置,旨在提高学生应用数学知识解决实际问题的动手能力和创新能力,我们主要加强了以下几个方面的工作: ①以项目管理的方式鼓励学生积极参加各类科技活动:提倡学生积极申报项目,如大创项目等,鼓励学生积极参与教师的各类研究项目中,以科研小组或科技小组的形式,发表小论文、小发明、小制作、小专利等; ②以培养学生创新意识为导向的各类学科竞赛活动:为进一步培养学生利用理论知识来解决实际问题的分析能力和应用能力,积极鼓励学生参加各类学科竞赛,如:大学生数学建模比赛、大学生统计建模比赛、大学生创业设计大赛等; ③以学习的态度鼓励学生参加 社会实践 和社会调查活动。社会是一个丰富的大舞台,只有融入社会这个大舞台,才能不断积累社会 经验 ,不断增长社会实践的活动能力,从而提高自身的社会管理和适应能力,将来能更快和更好的为社会服务。 3 取得的成绩和存在的不足 数学建模课程是以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力,提高他们学习数学的兴趣和应用数学的意识与能力。 工程中的数学理论与方法主要在我校特定的环境下,在学习完工程类数学必修课的基础上,针对高年级学生,加深和延拓数学的理论知识和计算方法,为数学知识要求高的专业(如工程力学专业、通信工程专业等)及准备报 考研 究生的同学提供数学帮助。 数学文化课程在探讨数学文化的起源、收集了众多的数学 故事 和数学家的故事基础上,结合数学思想、数学方法的形成和发展,阐述了数学发展和数学教育中的人文成分,揭示了数学与社会、数学与其他文化的关系。通过该门课程的学习,让学生更进一步了解生活中的数学、数学中的美,学会欣赏数学文化及弘扬数学文化,推动数学教学的进程。 投资理财常识主要向学生介绍股票基金,期货彩票等的基础知识和交易技巧,教学中用到一些基础性的数学知识如差分方程,大数定理等,更多的则是经济、管理人文知识的熏陶,通过学习该课程,学生感觉数学的应用领域广泛,从而进一步激发学生学习数学的积极性。 通过对我校教学情况的初步了解,尤其是针对昆明理工大学数学类拓展课程开设情况的深入调查,发现大多数的学生对课程满意或非常满意。学生感觉最大的收获在于拓展了知识层面,开拓了视野,感觉数学比以前教材中的内容要丰富和有趣的多。但在《数学文化》这类知识性比较强的课程上,学生输入的多,输出的少,不利于学生知识水平的提高。另外,学生对所开设的选修课程知识了解甚少。这表明,学生进行学习所依托的课程知识基础薄弱。通过统计《数学建模》课程学生对课程、教师和自己的期望中了解到,大多数的学生期望通过老师的讲授,能够在课堂上全面了解所学课程知识。只有半数学生希望老师给学生提供自己动手的机会,更多的学生还是习惯于在课堂上扮演倾听的角色,缺乏用数学解决实际问题的意识和能力。最后,担任选修课程的大学数学教师自身的课程水平和教学能力也有待进一步提高。开设大学数学选修课程对广大数学教师也是一个很大的挑战。尤其是在开设的初期,教师除了要改变自己的教学理念和教学方法,还要努力扩大自己的知识面,制定教学大纲,完善教材和教学内容。 4 结束语 大学数学教学是高等教育的一个有机的组成部分,大学数学选修课程是以数学知识与应用技能、学习策略和跨学科运用为主要内容。如何建立和完善行之有效的大学数学提高阶段的课程体系,以满足新时期学生对数学学习的需求以及国家和社会对人才培养的需要,成为当今高校大学数学教学管理部门越来越关注的问题。大学数学选修课程的开设,适应了社会的更高需求,同时也满足了更高层次学生的自身需要。但是,要真正实现课程开设的目的,仍需更多的努力,不断的完善。 首先,急需向各高校教学管理部门、教师,尤其是学生传达课程改革的必要性,提供良好的改革环境和条件。 其次,要用科学的教学理念改革数学选修课程教学实践,完善教学内容,改善教学方法,实施科学的课程评估方式。如“投资理财常识”之类的课程,已不是单纯的数学基础课程,除用到一些基础性的数学知识外,更多的则是经济、管理人文知识,能否将这类课程纳入人文类选修课程,使学社学习知识的同时,获得相应的学分,这是教学管理部门需要解决的问题。 第三,时刻以学生为中心,所开设课程要能够满足学生的需要,能够激发学生的学习兴趣。 第四,教师要进一步提高和完善自己,适应学生的个性要求,改善教学方法,开发学生的主动性和创造性,全面提高学生的综合素质。 最后,针对课程教学中出现的问题,和课程教学效果要能够做到及时调查,不断对课程及教学做出相应调整和改善。大学数学选修课程的开设顺应了时代的要求和学生的需要,只要对之进行不断的完善,必然能够为较高层次的学生开拓出一片新的天地,为他们将来更好地适应社会的需求做好储备。 猜你喜欢: 1. 学习大学数学的心得 2. 数学文化论文3000字 3. 数学大学本科生毕业论文 4. 大学数学科技论文范文 5. 大学数学教育论文范文
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!
数学史的教育功能
摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。
关键词数学史教育功能创新思维功能体现
1 数学史的教育功能之一 ——提高学生们学习数学的兴趣
兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。
例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。
2 数学史的教育功能之二——培养学生们的数学应用意识
数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。
例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;
又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。
再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。
从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。
3 数学史的教育功能之三——提高学生们的数学素养
对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。
4 数学史的教育功能之四——培养学生们对世界观的正确认知
从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。
总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。
参考文献
[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.
[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.
[3]李正银.数学史与数学教育[J].海南师范学院学报,(3):98-10.
[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).
[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).
[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).
数学史在大学数学教学中的意义与价值
摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。
关键词: 数学史 高等数学 教学改革
1.数学史
数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
2.数学史在大学数学教学中的意义与价值
我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。
数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。
(1)数学史是数学文化的最佳载体
传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。
(2)数学史是激发兴趣的有效途径
几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。
纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。
数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。
(3)数学史是理解数学的必由之路
数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。
从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。
(4)数学史是思想教育的良好素材
数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。
欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。
3.结语
数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”
参考文献
[1]靳玉乐.现代教育学[M].四川教育出版社,2006.
[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.
[3]杨泰良.以史为鉴 注重反思[J].数学通报..
[4].数学家谈数学本质[M].北京大学出版社,1989.
[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.
《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂