物联网是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。下面我给大家带来2021好写的物联网专业论文题目写作参考,希望能帮助到大家!
物联网论文题目
1、 基于嵌入式PC和物联网的无人驾驶 拖拉机 研究
2、 太阳能农机发动机监测系统设计—基于智慧农业物联网信息采集
3、 基于物联网的农业生产监控系统设计
4、 基于农业物联网的智能温室系统架构与实现
5、 基于物联网的水田无线监控系统设计
6、 基于物联网植物工厂监控系统的设计
7、 基于物联网的精准农业玉米长势监测分析系统研究
8、 基于物联网的葡萄园信息获取与智能灌溉系统设计
9、 基于物联网技术的智慧长输管道
10、 矿山物联网云计算与平台技术
11、 基于物联网的智能衣柜系统
12、 基于MQTT的物联网系统文件传输 方法 的实现
13、 基于物联网技术的能源互联网数据支撑平台
14、 农业物联网技术研究进展与发展趋势分析
15、 高校智慧教室物联网系统设计与实现
16、 运营商窄带物联网部署实现探讨
17、 基于物联网思维的商业银行管理重构的战略思想
18、 面向矿山安全物联网的光纤传感器
19、 基于物联网的水质监测系统的设计与实现
20、 工业物联网环境下隐式人机交互消息传播方法
21、 基于物联网技术的智慧农业监控系统设计
22、 疫苗冷链物流风险管理中物联网技术的应用
23、 基于物联网远程血压监测结合APP管理对高血压患者的影响
24、 公安物联网技术在社会治安防控中的应用
25、 物联网中增强安全的RFID认证协议
26、 农业物联网技术供需双方决策行为分析——演化博弈模型及其仿真
27、 物联网环境下数据转发模型研究
28、 基于云计算的物联网数据网关的建设研究
29、 基于Citespace的技术机会发现研究——以物联网技术发展为例
30、 利用物联网技术探索智慧物流新未来——访神州数码集团智能互联本部物联网事业部总经理闫军
31、 物联网虚拟仿真实验教学中心平台建设
32、 物联网智能家居的远程视频监控系统设计
33、 是德科技中标福州物联网开放实验室窄带物联网低功耗测试系统以及射频一致性测试系统
34、 基于物联网的智慧家庭健康医疗系统
35、 农业物联网技术研究进展与发展趋势分析
36、 新工科背景下物联网专业学生创新实践能力培养
37、 新工科语境下物联网专业课程设置研究
38、 铁塔公司基于LoRa物联网的共享单车方案研究
39、 面向大数据的突发事件物联网情报采集
40、 区块链技术增强物联网安全应用前景分析
41、 物联网工程专业实验室建设方案研究
42、 大数据时代基于物联网和云计算的地震信息化研究
43、 矿山物联网 网络技术 发展趋势与关键技术
44、 基于物联网与GPRS技术对武汉市内涝监测预警系统的优化设计
45、 基于物联网的医院病房智能监护系统设计与实现
46、 基于电力物联网边缘计算实现脱网应急通信的方法
47、 物联网商业方法的专利保护探析
48、 物联网分享还是人工智能垄断:马克思主义视野中的数字资本主义
49、 基于MQTT协议的物联网电梯监控系统设计
50、 基于时间自动机的物联网网关安全系统的建模及验证
物联网 毕业 论文题目参考
1、基于物联网的火电机组远程诊断服务实践
2、语义物联网中一种多领域信息互操作方法
3、矿山物联网服务承载平台与矿山购买服务
4、物联网环境下的锰矿开采过程监测软件设计
5、基于物联网的馆藏系统实现
6、地方转型本科高校物联网专业人才培养方案研究
7、基于物联网的智能家居环境监控系统的设计与分析
8、智能建筑中物联网技术的应用剖析
9、关于物联网关键技术及应用的探讨
10、蓝牙传输发现服务助力实现协作型物联网
11、无线传感器网络与物联网的应用研究
12、物联网系统集成实训室建设的探索与实践
13、高校物联网实验中心规划方案
14、面向异构物联网的轻量级网络构建层设计
15、探索物联网环境下企业组织架构的转变
16、物联网技术下校园智能安防系统的设计
17、物联网在农业中的应用及前景展望
18、战略新兴物联网专业校企合作模式研究
19、物联网/传感网时代下新型图书管理模式探析
20、物联网信息感知与交互技术
21、探讨农业物联网技术的创新运用方式
22、基于物联网技术的远程智能灌溉系统的设计与实现
23、农业物联网技术创新及应用策略探讨
24、基于物联网的园区停车管理系统的设计与实现
25、基于物联网技术的“蔬菜”溯源体系探索
26、基于物联网技术的气象灾害监测预警体系研究
27、物联网接入技术研究与系统设计
28、基于物联网技术的数据中心整体运维解决方案研究
29、基于工作导向的中职物联网课程实践教学分析
30、面向服务的物联网软件体系结构设计与模型检测
31、面向物联网的无线传感器网络探讨
32、物联网环境下多智能体决策信息支持技术研究
33、物联网和融合环境区域食品安全云服务框架
34、高职《物联网技术概论》教学思考与实践
35、基于物联网的远程视频监控系统设计
36、物联网分布式数据库系统优化研究
37、物联网隐私安全保护研究
38、璧山环保监管物联网系统试点应用研究
39、智能家居无线物联网系统设计
40、物联网温室智能管理平台的研究
好写的物联网论文题目
1、物联网的结构体系与发展
2、对于我国物联网应用与发展的思考
3、物联网环境下UC安全的组证明RFID协议
4、农业物联网研究与应用现状及发展对策研究
5、物联网时代的智慧型物品探析
6、基于Zigbee/GPRS物联网网关系统的设计与实现
7、物联网概述第3篇:物联网、物联网系统与物联网事件
8、物联网技术在食品及农产品中应用的研究进展
9、物联网——后IP时代国家创新发展的重大战略机遇
10、物联网体系结构研究
11、构建基于云计算的物联网运营平台
12、基于物联网的煤矿综合自动化系统设计
13、我国物联网产业未来发展路径探析
14、基于物联网的干旱区智能化微灌系统
15、物联网大趋势
16、物联网网关技术与应用
17、基于SIM900A的物联网短信报警系统
18、物联网概述第1篇:什么是物联网?
19、物联网技术安全问题探析
20、基于RFID电子标签的物联网物流管理系统
二、物联网毕业论文题目推荐:
1、基于RFID和EPC物联网的水产品供应链可追溯平台开发
2、物联网与感知矿山专题讲座之一——物联网基本概念及典型应用
3、我国物联网产业发展现状与产业链分析
4、面向智能电网的物联网技术及其应用
5、从云计算到海计算:论物联网的体系结构
6、物联网 商业模式 探讨
7、物联网:影响图书馆的第四代技术
8、从嵌入式系统视角看物联网
9、试论物联网及其在我国的科学发展
10、物联网架构和智能信息处理理论与关键技术
11、基于物联网技术的智能家居系统
12、物联网在电力系统的应用展望
13、基于物联网的九寨沟智慧景区管理
14、基于物联网Android平台的水产养殖远程监控系统
15、基于物联网Android平台的水产养殖远程监控系统
16、基于物联网的智能图书馆设计与实现
17、物联网资源寻址关键技术研究
18、基于物联网的自动入库管理系统及其应用研究
19、互联网与物联网
20、"物联网"推动RFID技术和通信网络的发展
物联网专业论文题目写作参考相关 文章 :
★ 优秀论文题目大全2021
★ 电子类专业毕业论文题目及选题
★ 大学生论文题目参考2021
★ 2021通信学专业论文题目与选题
★ 通信专业毕业论文题目与选题
★ 大学生论文题目大全2021
★ 2021电子商务毕业论文题目
★ 2021环境工程专业论文题目
★ 建筑工程方向毕业论文题目与选题
★ mba各方向的论文题目与选题推荐
大数据只是一个时代背景,具体内容可以班忙做
内容如下:
1、大数据对商业模式影响
2、大数据下地质项目资金内部控制风险
3、医院统计工作模式在大数据时代背景下改进
4、大数据时代下线上餐饮变革
5、基于大数据小微金融
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
我不会啊。SORRY
物联网是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。下面我给大家带来2021好写的物联网专业论文题目写作参考,希望能帮助到大家!
物联网论文题目
1、 基于嵌入式PC和物联网的无人驾驶 拖拉机 研究
2、 太阳能农机发动机监测系统设计—基于智慧农业物联网信息采集
3、 基于物联网的农业生产监控系统设计
4、 基于农业物联网的智能温室系统架构与实现
5、 基于物联网的水田无线监控系统设计
6、 基于物联网植物工厂监控系统的设计
7、 基于物联网的精准农业玉米长势监测分析系统研究
8、 基于物联网的葡萄园信息获取与智能灌溉系统设计
9、 基于物联网技术的智慧长输管道
10、 矿山物联网云计算与平台技术
11、 基于物联网的智能衣柜系统
12、 基于MQTT的物联网系统文件传输 方法 的实现
13、 基于物联网技术的能源互联网数据支撑平台
14、 农业物联网技术研究进展与发展趋势分析
15、 高校智慧教室物联网系统设计与实现
16、 运营商窄带物联网部署实现探讨
17、 基于物联网思维的商业银行管理重构的战略思想
18、 面向矿山安全物联网的光纤传感器
19、 基于物联网的水质监测系统的设计与实现
20、 工业物联网环境下隐式人机交互消息传播方法
21、 基于物联网技术的智慧农业监控系统设计
22、 疫苗冷链物流风险管理中物联网技术的应用
23、 基于物联网远程血压监测结合APP管理对高血压患者的影响
24、 公安物联网技术在社会治安防控中的应用
25、 物联网中增强安全的RFID认证协议
26、 农业物联网技术供需双方决策行为分析——演化博弈模型及其仿真
27、 物联网环境下数据转发模型研究
28、 基于云计算的物联网数据网关的建设研究
29、 基于Citespace的技术机会发现研究——以物联网技术发展为例
30、 利用物联网技术探索智慧物流新未来——访神州数码集团智能互联本部物联网事业部总经理闫军
31、 物联网虚拟仿真实验教学中心平台建设
32、 物联网智能家居的远程视频监控系统设计
33、 是德科技中标福州物联网开放实验室窄带物联网低功耗测试系统以及射频一致性测试系统
34、 基于物联网的智慧家庭健康医疗系统
35、 农业物联网技术研究进展与发展趋势分析
36、 新工科背景下物联网专业学生创新实践能力培养
37、 新工科语境下物联网专业课程设置研究
38、 铁塔公司基于LoRa物联网的共享单车方案研究
39、 面向大数据的突发事件物联网情报采集
40、 区块链技术增强物联网安全应用前景分析
41、 物联网工程专业实验室建设方案研究
42、 大数据时代基于物联网和云计算的地震信息化研究
43、 矿山物联网 网络技术 发展趋势与关键技术
44、 基于物联网与GPRS技术对武汉市内涝监测预警系统的优化设计
45、 基于物联网的医院病房智能监护系统设计与实现
46、 基于电力物联网边缘计算实现脱网应急通信的方法
47、 物联网商业方法的专利保护探析
48、 物联网分享还是人工智能垄断:马克思主义视野中的数字资本主义
49、 基于MQTT协议的物联网电梯监控系统设计
50、 基于时间自动机的物联网网关安全系统的建模及验证
物联网 毕业 论文题目参考
1、基于物联网的火电机组远程诊断服务实践
2、语义物联网中一种多领域信息互操作方法
3、矿山物联网服务承载平台与矿山购买服务
4、物联网环境下的锰矿开采过程监测软件设计
5、基于物联网的馆藏系统实现
6、地方转型本科高校物联网专业人才培养方案研究
7、基于物联网的智能家居环境监控系统的设计与分析
8、智能建筑中物联网技术的应用剖析
9、关于物联网关键技术及应用的探讨
10、蓝牙传输发现服务助力实现协作型物联网
11、无线传感器网络与物联网的应用研究
12、物联网系统集成实训室建设的探索与实践
13、高校物联网实验中心规划方案
14、面向异构物联网的轻量级网络构建层设计
15、探索物联网环境下企业组织架构的转变
16、物联网技术下校园智能安防系统的设计
17、物联网在农业中的应用及前景展望
18、战略新兴物联网专业校企合作模式研究
19、物联网/传感网时代下新型图书管理模式探析
20、物联网信息感知与交互技术
21、探讨农业物联网技术的创新运用方式
22、基于物联网技术的远程智能灌溉系统的设计与实现
23、农业物联网技术创新及应用策略探讨
24、基于物联网的园区停车管理系统的设计与实现
25、基于物联网技术的“蔬菜”溯源体系探索
26、基于物联网技术的气象灾害监测预警体系研究
27、物联网接入技术研究与系统设计
28、基于物联网技术的数据中心整体运维解决方案研究
29、基于工作导向的中职物联网课程实践教学分析
30、面向服务的物联网软件体系结构设计与模型检测
31、面向物联网的无线传感器网络探讨
32、物联网环境下多智能体决策信息支持技术研究
33、物联网和融合环境区域食品安全云服务框架
34、高职《物联网技术概论》教学思考与实践
35、基于物联网的远程视频监控系统设计
36、物联网分布式数据库系统优化研究
37、物联网隐私安全保护研究
38、璧山环保监管物联网系统试点应用研究
39、智能家居无线物联网系统设计
40、物联网温室智能管理平台的研究
好写的物联网论文题目
1、物联网的结构体系与发展
2、对于我国物联网应用与发展的思考
3、物联网环境下UC安全的组证明RFID协议
4、农业物联网研究与应用现状及发展对策研究
5、物联网时代的智慧型物品探析
6、基于Zigbee/GPRS物联网网关系统的设计与实现
7、物联网概述第3篇:物联网、物联网系统与物联网事件
8、物联网技术在食品及农产品中应用的研究进展
9、物联网——后IP时代国家创新发展的重大战略机遇
10、物联网体系结构研究
11、构建基于云计算的物联网运营平台
12、基于物联网的煤矿综合自动化系统设计
13、我国物联网产业未来发展路径探析
14、基于物联网的干旱区智能化微灌系统
15、物联网大趋势
16、物联网网关技术与应用
17、基于SIM900A的物联网短信报警系统
18、物联网概述第1篇:什么是物联网?
19、物联网技术安全问题探析
20、基于RFID电子标签的物联网物流管理系统
二、物联网毕业论文题目推荐:
1、基于RFID和EPC物联网的水产品供应链可追溯平台开发
2、物联网与感知矿山专题讲座之一——物联网基本概念及典型应用
3、我国物联网产业发展现状与产业链分析
4、面向智能电网的物联网技术及其应用
5、从云计算到海计算:论物联网的体系结构
6、物联网 商业模式 探讨
7、物联网:影响图书馆的第四代技术
8、从嵌入式系统视角看物联网
9、试论物联网及其在我国的科学发展
10、物联网架构和智能信息处理理论与关键技术
11、基于物联网技术的智能家居系统
12、物联网在电力系统的应用展望
13、基于物联网的九寨沟智慧景区管理
14、基于物联网Android平台的水产养殖远程监控系统
15、基于物联网Android平台的水产养殖远程监控系统
16、基于物联网的智能图书馆设计与实现
17、物联网资源寻址关键技术研究
18、基于物联网的自动入库管理系统及其应用研究
19、互联网与物联网
20、"物联网"推动RFID技术和通信网络的发展
物联网专业论文题目写作参考相关 文章 :
★ 优秀论文题目大全2021
★ 电子类专业毕业论文题目及选题
★ 大学生论文题目参考2021
★ 2021通信学专业论文题目与选题
★ 通信专业毕业论文题目与选题
★ 大学生论文题目大全2021
★ 2021电子商务毕业论文题目
★ 2021环境工程专业论文题目
★ 建筑工程方向毕业论文题目与选题
★ mba各方向的论文题目与选题推荐
学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融
计算机论文题目
随着大科学时代的到来及科技水平的高速发展,计算机科学与技术已经渗透到我国经济、社会的各个领域,这些都有利于全球经济的发展,还极大地推动了社会的进步,
1、基于物联网的煤矿井下监测网络平台关键技术研究
2、基于抽象状态自动机和π演算的UML动态语义研究
3、基于多种数据源的中文知识图谱构建方法研究
4、基于矩阵化特征表示和Ho-Kashyap算法的分类器设计方法研究
5、基于博弈论的云计算资源调度方法研究
6、基于合约的泛型Web服务组合与选择研究
7、本体支持的Web服务智能协商和监测机制研究
8、基于神经网络的不平衡数据分类方法研究
9、基于内容的图像检索与推荐技术研究
10、物联网技术及其在监管场所中的应用
11、移动图书馆的研发与实现
12、图书馆联机公共目录查询系统的研究与实现
13、基于O2O模式的外卖订餐系统
14、网络时代个人数据与隐私保护的调查分析
15、微信公众平台CMS的设计与实现
16、环保部门语义链网络图形化呈现系统
17、BS结构计量信息管理系统设计与研究
18、基于上下文的天然气改质分析控制系统的设计与实现
19、基于增量学习和特征融合的多摄像机协作监控系统目标匹配方法研究
20、无线自组网络密钥管理及认证技术的研究
21、基于CDMI的云存储框架技术研究
22、磨损均衡在提高SSD使用寿命中的应用与改进
23、基于.NET的物流管理软件的设计与实现
24、车站商铺信息管理系统设计与实现
25、元数据模型驱动的合同管理系统的设计与实现
26、安睡宝供应与销售客户数据管理与分析系统
27、基于OpenCV的人脸检测与跟踪算法研究
28、基于PHP的负载均衡技术的研究与改进
29、协同药物研发平台的构建及其信任机制研究
30、光纤网络资源的智能化管理方法研究
31、基于差异同步的云存储研究和实践
32、基于Swift的云存储产品优化及云计算虚拟机调度算法研究
33、基于Hadoop的重复数据删除技术研究
34、中文微博情绪分析技术研究
35、基于协议代理的内控堡垒主机的设计与实现
36、公交车辆保修信息系统的研究与设计
37、基于移动互联网的光纤网络管理系统设计与开发
38、基于云平台的展馆综合管理系统
39、面向列表型知识库的组织机构实体链接方法研究
40、Real-time Hand Gesture Recognition by Using Geometric Feature
41、基于事件的社交网络核心节点挖掘算法的研究与应用
42、线性判别式的比较与优化方法研究
43、面向日志分类的蚁群聚类算法研究
44、基于决策树的数据挖掘技术在电信欠费管理中的应用与研究
45、基于信任关系与主题分析的微博用户推荐技术
46、微博用户兴趣挖掘技术研究
47、面向多源数据的信息抽取方法研究
48、基于本体约束规则与遗传算法的BIM进度计划自动生成研究
49、面向报关行的通关服务软件研究与优化
50、云应用开发框架及云服务推进策略的研究与实践
51、复杂网络社区发现方法以及在网络扰动中的影响
52、空中交通拥挤的识别与预测方法研究
53、基于RTT的端到端网络拥塞控制研究
54、基于体系结构的无线局域网安全弱点研究
55、物联网中的RFID安全协议与可信保障机制研究
56、机器人认知地图创建关键技术研究
57、Web服务网络分析和社区发现研究
58、基于球模型的三维冠状动脉中心线抽取方法研究
59、认知无线网络中频谱分配策略的建模理论与优化方法研究
60、传感器网络关键安全技术研究
61、任务关键系统的软件行为建模与检测技术研究
62、基于多尺度相似学习的图像超分辨率重建算法研究
63、基于服务的信息物理融合系统可信建模与分析
64、电信机房综合管控系统设计与实现
65、粒子群改进算法及在人工神经网络中的应用研究
66、污染源自动监控数据传输标准的研究与应用
67、一种智能力矩限制器的设计与研究
68、移动IPv6切换技术的研究
69、基于移动Ad hoc网络路由协议的改进研究
70、机会网络中基于社会关系的数据转发机制研究
71、嵌入式系统视频会议控制技术的研究与实现
72、基于PML的物联网异构信息聚合技术研究
73、基于移动P2P网络的广播数据访问优化机制研究
74、基于开放业务接入技术的业务移动性管理研究
75、基于AUV的UWSN定位技术的研究
76、基于隐私保护的无线传感网数据融合技术研究
77、基于DIVA模型语音生成和获取中小脑功能及其模型的研究
78、无线网络环境下流媒体传送技术的研究与实现
79、异构云计算平台中节能的任务调度策略研究
80、PRAM模型应用于同步机制的研究
81、云计算平台中虚拟化资源监测与调度关键技术研究
82、云存储系统中副本管理机制的研究
83、嵌入式系统图形用户界面开发技术研究
84、基于多维管理的呼叫中心运行系统技术研究
85、嵌入式系统的流媒体播放器设计与性能优化
86、基于组合双向拍卖的云资源调度算法的研究
87、融入隐私保护的特征选择算法研究
88、济宁一中数字化校园系统的设计与实现
89、移动合作伙伴管理系统的设计与实现
90、黄山市地税局网络开票系统的设计与应用
91、基于语义的领域信息抽取系统
92、基于MMTD的图像拼接方法研究
93、基于关系的垃圾评论检测方法
94、IPv6的过渡技术在终端综合管理系统中的实现与应用
95、基于超声波测距与控制的运动实验平台研发
96、手臂延伸与抓取运动时间协调小脑控制模型的研究
97、位置可视化方法及其应用研究
98、DIVA模型中定时和预测功能的研究
99、基于蚁群的Ad Hoc路由空洞研究
100、基于定向天线的Ad Hoc MAC协议的研究
101、复杂网络社区发现方法以及在网络扰动中的影响
102、空中交通拥挤的识别与预测方法研究
103、基于RTT的端到端网络拥塞控制研究
104、基于体系结构的无线局域网安全弱点研究
105、物联网中的RFID安全协议与可信保障机制研究
106、机器人认知地图创建关键技术研究
107、Web服务网络分析和社区发现研究
108、基于球模型的`三维冠状动脉中心线抽取方法研究
109、认知无线网络中频谱分配策略的建模理论与优化方法研究
110、传感器网络关键安全技术研究
111、任务关键系统的软件行为建模与检测技术研究
112、基于多尺度相似学习的图像超分辨率重建算法研究
113、基于服务的信息物理融合系统可信建模与分析
114、电信机房综合管控系统设计与实现
115、粒子群改进算法及在人工神经网络中的应用研究
116、污染源自动监控数据传输标准的研究与应用
117、一种智能力矩限制器的设计与研究
118、移动IPv6切换技术的研究
119、基于移动Ad hoc网络路由协议的改进研究
120、机会网络中基于社会关系的数据转发机制研究
121、嵌入式系统视频会议控制技术的研究与实现
122、基于PML的物联网异构信息聚合技术研究
123、基于移动P2P网络的广播数据访问优化机制研究
124、基于开放业务接入技术的业务移动性管理研究
125、基于AUV的UWSN定位技术的研究
126、基于隐私保护的无线传感网数据融合技术研究
127、基于DIVA模型语音生成和获取中小脑功能及其模型的研究
128、无线网络环境下流媒体传送技术的研究与实现
129、异构云计算平台中节能的任务调度策略研究
130、PRAM模型应用于同步机制的研究
131、云计算平台中虚拟化资源监测与调度关键技术研究
132、云存储系统中副本管理机制的研究
133、嵌入式系统图形用户界面开发技术研究
134、基于多维管理的呼叫中心运行系统技术研究
135、嵌入式系统的流媒体播放器设计与性能优化
136、基于组合双向拍卖的云资源调度算法的研究
137、融入隐私保护的特征选择算法研究
138、济宁一中数字化校园系统的设计与实现
139、移动合作伙伴管理系统的设计与实现
140、黄山市地税局网络开票系统的设计与应用
141、基于语义的领域信息抽取系统
142、基于MMTD的图像拼接方法研究
143、基于关系的垃圾评论检测方法
144、IPv6的过渡技术在终端综合管理系统中的实现与应用
145、基于超声波测距与控制的运动实验平台研发
146、手臂延伸与抓取运动时间协调小脑控制模型的研究
147、位置可视化方法及其应用研究
148、DIVA模型中定时和预测功能的研究
149、基于蚁群的Ad Hoc路由空洞研究
150、基于定向天线的Ad Hoc MAC协议的研究
随着有关云计算概念、术语和技术的不断涌现和大量报道,人们在生活中越来越多的采用和实施云计算技术。由于云计算概念和技术比较新颖,涵义比较宽泛,再加上市场上一些人将云计算放大成无所不包、无所不能和无所不在的万能技术,对云计算的描述和推销多少出现了一些浮燥和炒做的嫌疑。脱离实际过分夸大或缺乏全面分析地炒做云计算不仅可能让人误解,也会使得云计算的发展不切实际,对于云计算产业在中国的成长非常不利。所以,有必要对云计算的由来和概念进行了较为全面的梳理和定义。在总结云计算技术为IT产业带来好处的同时,找出不足及局限,从而更好地发展云计算技术。1.云计算的概念云计算(Cloud Computing)是由分布式计算(Distributed Computing)、并行处理(Parallel Computing)、网格计算(Grid Computing)发展来的,是一种新兴的商业计算模型。中国网格计算、云计算专家刘鹏认为:“云计算将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和各种软件服务”。云计算中的“计算”是一个简单而明确的概念。“计算”系指计算应用,在我们生活中可以指一切IT应用。随着网络技术的发展,所有的信息、通信和视频应用都将整合在统一的平台之上。由此推而广之,云计算中的“计算”可以泛指一切ICT的融合应用。所以,云计算术语的关键特征并不在于“计算”,而在于“云”。2.云计算的发展模式及其特征早期云计算来之于国际上以亚马逊、和谷歌(Google)为代表的公司,并且都提供了具有显著特征,但又代表着不同模式的成功云业务。云计算按照层次将业务模式划分为3层,最顶层是软云,中间层是平云,底层是基云。在基云之下是构建云计算的基础技术。云计算的核心思想,是将大量用网络连接的计算资源统一管理和调度,构成一个计算资源池向用户按需服务。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。总的来说,云计算可以算作是网格计算的一个商业演化版。3.“云计算”促进科技协同研究环境的建立云计算的平台即服务可以把开发环境作为一种服务提供到用户端,这种服务为科学协同研究创造了一个很好的平台。通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。4.“云计算”提升数据共享服务云计算是下一代的数据中心,随着云计算的发展,科学数据共享应用云计算的技术模式在数据挖掘、数据加工、数据利用、数据管理、数据存储、数据迁移等方面可以得到便捷的发展,使科学数据共享服务得到正真提升。5.“云计算”推进网络科技环境中的发展应用“云计算”,网络科技环境可更好地实现高性能计算、实时协同研究、远程观测、海量数据存储与传输、科技文献、实验仪器与设备、应用软件、科学数据、网络工具以及科研活动的综合协同,在云计算环境下支持位于不同地点的科技工作者实现软件资源、硬件资源和数据资源的共享,促进科学研究方式的变革,促进科学工作者的交流,从而推动科技创新的步伐。6.“云计算”是创建绿色网络环境的一个途径随着网络的发展,倡导绿色,节约能源已成为网络发展进程必须解决的问题。设备的空载,电力资源的浪费,制冷环境的扩展,引起许多网络管理部门、运行部门和政府的极大关注。云计算实现了对资源的整合,顺应了网络的发展需求。在未来我们行业网络发展中也需要把绿色网络环境的创建考虑进去,这样才能使我们的发展不走弯路。
大数据不是抽样数据,而是全部的数据;所以大数据必须依赖云计算,不可能是局域网的;物联网目标是把所有的物体都连接到互联网,并把物体虚拟化,数据上传,自然就是大数据了。云计算是为了大并发、大数据下的解决实际运算问题;大数据是为了解决海量数据分析问题;物联网是解决设备与软件的融合问题;可见,它们之间的关系是互相关联、互相作用的:物联网是很多大数据的来源(设备数据),而大量设备数据的采集、控制、服务要依托云计算,设备数据的分析要依赖于大数据,而大数据的采集、分析同样依托云计算,物联网反过来能为云计算提供issa层的设备和服务控制,大数据分析又能为云计算所产生的运营数据提供分析、决策依据。
大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。
在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文
在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文
知网有很多,不知道让贴不 [1]张戈. 云安全找回渠道价值[N]. 电脑商报,2010-03-08(027). [2]本报记者 那罡. Web风险让用户重新思考终端安全[N]. 中国计算机报,2009-08-03(040). [3]张戈周雪. 云安全改变商业模式[N]. 电脑商报,2008-09-15(033). [4]瑞星系统架构师 钟伟. 云安全——巨大的互联网软件[N]. 中国计算机报,2008-11-24(C03). [5]本报记者 那罡. 从云安全到安全云[N]. 中国计算机报,2010-08-02(036). [6]小谢. 云安全和安全云[N]. 电脑报,2010-09-27(I01). [7]电脑商报记者 张戈. “云安全”是趋势[N]. 电脑商报,2009-03-16(027). [8]本报记者 胡英. 博弈还在继续[N]. 计算机世界,2009-09-28(049). [9]电脑商报记者 张戈. 云安全降低终端压力[N]. 电脑商报,2010-03-15(026). [10]王春雁. 云计算首获安全防护,“安全云”横空出世——趋势科技正式发布云安全[J]. 中国教育信息化,2010,(15). [11]李铁军. 云安全网民能得到什么 金山毒霸2009云安全试用[J]. 电脑迷,2009,(3). [12]善用佳软. IT风“云”录 云计算、云安全、云道德[J]. 新电脑,2008,(9). [13]网御星云安全专家畅谈网络安全之一:说说网络安全中“最熟悉的陌生人”[J]. 信息安全与通信保密,2011,(5). [14]说说网络安全中“最熟悉的陌生人”——网御星云安全专家畅谈网络安全之一[J]. 计算机安全,2011,(5). [15]孙泠. 云的安全和云安全[J]. IT经理世界,2010,(7). [16]褚诚云. 云安全:云计算的安全风险、模型和策略[J]. 程序员,2010,(5). [17]趋势“云安全”为电力用户提供从内到外的安全——趋势科技全方位、多层次的防护方案使网络更加稳定、更加安全[J]. 电力信息化,2009,(3). [18] 如何保障“企业私有云“系统? 云管理与云安全[N]. 计算机世界,2011-07-25(014). [19]电脑商报记者 张戈. 从云安全到安全云[N]. 电脑商报,2011-02-28(026). [20]小谢. 云系统、云平台和云安全是焦点[N]. 电脑报,2010-01-11(001). [21] 如何保障“企业私有云”系统?云管理与云安全[N]. 计算机世界,2011-07-25(014). [22]本报记者 邹大斌. 建立立体的安全防护网[N]. 计算机世界,2009-12-07(B26). [23]本报记者 郑燃. 从云安全到安全云[N]. 政府采购信息报,2010-08-09(008). [24]王汝林. 发展“云计算”必须高度重视“云安全”[J]. 中国信息界,2011,(1). [25]阿呆. 广东电信:云安全保障网络安全[J]. 通讯世界,2011,(1). [26]马晓亭,陈臣. 云安全技术体系下数字图书馆信息资源安全威胁与对策研究[J]. 现代情报,2011,(3). [27]祝国辉. 云安全:从“杀毒”向“安全防御”转型[J]. 中国制造业信息化,2010,(24). [28]王汝林:发展云计算必须高度重视“云安全”[J]. 信息系统工程,2011,(3). [29]袁伟伟. “云安全”为数字化校园网络信息安全保驾护航[J]. 信息与电脑(理论版),2011,(3). [30]徐刚. 云计算与云安全[J]. 信息安全与技术,2011,(Z1). [31]知己知彼,固网御安——网御星云安全专家畅谈网络安全之二[J]. 计算机安全,2011,(6). [32]网御星云安全专家畅谈网络安全之二:知己知彼,固网御安[J]. 信息安全与通信保密,2011,(6). [33]聂利颖,孙胜耀,王芳. 将BP神经用于云安全客户端安全评定[J]. 福建电脑,2011,(5). [34]瑞星建立国内首个“云安全网站联盟”为百万网站提供安全预警[J]. 计算机与网络,2009,(17). [35]“云安全”推动安全行业改变[J]. 计算机与网络,2009,(14). [36]李新苗. 大云计划即将推出新版 云安全仍是最大落地障碍[J]. 通信世界,2010,(14). [37]陈运红. 软件与服务行业:云安全,无处不在的信息安全[J]. 股市动态分析,2010,(16). [38]张春红,王军,肖庆,赵庆明. 云安全对图书馆网络信息系统安全的影响[J]. 四川图书馆学报,2010,(3). [39]张艾斌. 云计算模式与云安全问题研究[J]. 科协论坛(下半月),2010,(6). [40]黄海峰. 云安全两方面保障企业内网安全[J]. 通信世界,2010,(31). [41]江民打造“云安全”+“沙盒”双重安全保障体系[J]. 电脑编程技巧与维护,2009,(1). [42]李伟,李成坤. 透过“云安全”看公安信息网安全管理[J]. 硅谷,2009,(3). [43]从云计算到云安全[J]. 信息系统工程,2009,(1). [44]“云安全”真的安全吗[J]. 中国传媒科技,2009,(2). [45]王盘岗. 互联网安全危机下的云安全[J]. 社科纵横(新理论版),2009,(2). [46]李祥明. 云安全不一定安全[J]. 信息安全与通信保密,2009,(5). [47]瑞星“云安全”系统成功运行一周年,推动安全行业改变[J]. 计算机安全,2009,(8). [48]游向峰. 打造安全的网络环境之“云安全”[J]. 电脑编程技巧与维护,2009,(16). [49]李雪. 重新思考你的终端安全——趋势科技云安全正式发布[J]. 信息安全与通信保密,2009,(9). [50]马宁. “云安全”推动安全行业变革[J]. 中国金融电脑,2009,(9).
大数据下的计算机信息处理技术研究论文
摘要: 现如今,随着科学技术的快速发展,计算机技术已经融入到人们的生活之中,想想10年前的计算机技术和现如今的计算机技术,真的是天壤之别,发生了翻天覆地的变化。同时,大数据的应用也越来越广泛,带来了丰厚的利润,各种“云”层出不断,对大数据的背景下,计算机信息处理的技术提出更高的竞争和要求。本文首先介绍大数据的概念,阐述基于大数据背景下的各种计算机信息处理技术,并对技术进行分析研究,最后对大数据未来的发展的机会做出分析。
关键词: 大数据;计算机信息;技术研究
随着科技的迅猛发展,大数据的应用愈来愈广,随之产生的数据系统总量大,十分庞大,这就对大数据时代下的计算机信息处理技术提出了更高的要求,如何将大数据处理的井然有序,有条不紊,值得每一位考研人员进行探讨。
一、大数据的概念
什么是大数据?大数据,另一种叫法称之为巨型资料,是一个十分复杂密集的数据集,这样的数据集在一定的时间内,依靠于传统普通的数据加工软件无法最终实现管理、抓取及处理的功能,需要进行创新,用新的处理模式才能够实现。大数据具有虚拟化、按需服务、低成本等等特点。在每一个消费者的角度来看,大数据中的计算技术资源服务可以帮助每一个大数据用户完成想要的资源信息,用户只需进行付费就可以直接使用,根本不需要到处搜寻资料,跑来派去的打听。这从根本上改变了人们对信息资源的需求方式,为用户提供一种超大规模的网络资源共享。同时,面对海量的大数据库资源,如何对大数据资源进行处理,得到用户们想要的信息资源,需要计算机信息技术不断的进行挖掘。
二、大数据下的计算机信息处理技术
总体的来说,基于大数据背景下的计算机信息处理技术总共可以分成以下3个方面:信息的获取及加工技术、信息的存储技术和信息安全方面的技术。下面就针对这三种技术,进行研究分析。1)信息的获取及加工技术。信息的获取及加工技术是实现信息化的第一步,是最基础的工作内容,只有完成了信息数据的搜集工作,才能进行下面的计算机信息技术的处理。因此,如若进行信息的采集工作,需要首先明确信息的目标源,对信息数据进行监控,时刻把握信息的流向及动态,然后将采集的信息数据输入至计算机数据库中,实现了信息的获取采集工作。接下来是第二步,信息的加工及处理工作,所有的加工和处理技术的核心在于用户的指引,完全由用户导向,设定信息的筛选范围,确定信息的丰富度等等。最后是依照于用户的要求,将信息资源传输到用户手中。这样就实现了整个信息从采集到处理,再从处理到传送工作的整个流程。2)信息的存储技术。在大数据的背景下,对于整个计算机信息的处理,信息技术的存储是十分关键的环节,可以将处理加工的数据得以保存,更方便用户对于数据的调取和应用。而且,现如今的信息数据总量大、更新速度快,合理的运用存储方面的技术,可以快速的实现信息的存储工作,提高工效效率,将复杂变简单。在目前的时代下,应用最广泛的是分布式数据存储技术,应用十分方便,能够实现快速大量的数据存储。3)信息安全方面的技术。大数据在方便用户使用和享受的同时,信息数据资源的安全性也是不容忽略的,而且随着社会的发展,数据资源的安全性和隐私性逐渐受到关注,如何实现数据库的安全是个十分值得研究的课题。首先最主要的是建立计算机安全体系,充分引进更多的人才。其次需要加强安全技术的研发速度,由于大数据发展及更新速度快,需要快速的更新原有的安全体系,尽快的适应大数据时代的更新速度。除此之外,加强对信息的监测是十分必要的,避免不法之人进行数据的盗取,在信息数据庞大的体量下,依然能够提供稳定有效的安全体系。
三、大数据下的计算机信息技术的发展前景
1)云技术的发展是必然趋势。云计算网络技术是越来越得到大的发展,一方面由于计算机硬件系统的数据处理技术有限,云技术可以完全的将弊端破除,同时,它能够利用最新的数据资源和处理技术,不依赖于计算机硬件系统。因此,随着庞大的数据越来越复杂,传统的数据处理方式已经不能够适应,未来将计算机信息处理必将朝着云计算发展。2)计算机网络不再受限于计算机硬件。未来,计算机网络技术将会不再受制于计算机硬件的限制,网络的传输技术更加趋向于开放化,计算机网络和计算机硬件将会分隔开,重新定义新的网络架构。3)计算机技术和网络相互融合。传统的计算机技术需要运用计算机的硬件系统才能够实现信息的处理、加工及存储工作,未来新的.计算技术将脱离于计算机硬件配备,可以仅仅用计算机网络就可以实现数据的加工和处理。同时,二者也将会相互融合、相互发展真正的满足由于大数据时代的更新所带来的困扰,这是未来大数据背景下计算机技术发展的又一个方向。
四、大数据下的计算机信息技术面临的机遇和挑战
在大数据背景下,计算机信息技术的机遇和挑战并存,首先,病毒及网站的恶意攻击是少不了的,这些问题是站在计算机信息技术面前的巨大挑战,同时,近些年,网络不断,社会关注度逐渐提高,网络的安全问题也是不同忽视,再者,信息之间的传送速度也有限,需要对传送技术进行创新,以适应更高的用户需求。最后,随着大数据库的不断丰富,越来越庞大的数据资源进行加工和处理,对数据的存储又有了新的要求,如何适应不断庞大的数据信息量,实现更加便捷的、满足用户需求的调取也是一个巨大的挑战。与此同时,也存在着许多的机遇。首先,大数据对信息安全的要求越来越大,一定程度上带动了信息安全的发展,其次,大数据在应用方面,对企业及用户带来了巨大的便利,同时也丰富了产业资源,未来用户及企业面前的竞争可能会转化为大数据信息资源的竞争。最后,大数据时代的来临,构造了以信息安全、云计算和物联网为主要核心的新形势。
五、结论
通过一番研究,目前在大数据时代下,计算机信息技术确实存在着一定的弊端,需要不断的进行创新和发展,相信未来的云计算会越来越先进,越来越融入到人们的生活及工作当中,计算机信息技术面临的巨大的挑战和机遇,面对挑战,抓住机遇,相信未来我国的计算机技术会越来越好,必将超过世界领先水平!
参考文献:
[1]王秀苏.计算机信息处理技术在办公自动化上的应用[J].科技经济市场,2010(03).
[2]张连杰.企业管理中计算机技术的应用[J].电脑知识与技术,2011(26).
[3]陈静.浅谈计算机处理技术[J].科技与企业,2012(11).
[4]赵春雷,乔治纳汉."大数据"时代的计算机信息处理技术[J].世界科学,2012.
[5]庄晏冬.智能信息处理技术应用与发展[J].黑龙江科技信息,2011.
[6]艾伯特拉斯洛,巴拉巴西,著.马慧,译.爆发:大数据时代预见未来的新思维[M].北京:中国人民大学出版社,2012.河南省高等学校重点科研项目计划(16A520008)
获得学位意味着被授予者的受教育程度和学术水平达到规定标准的学术称号, 经在高等学校或科学研究部门学习和研究,成绩达到有关规定,由有关部门授予并得到国家社会承认的专业知识学习资历。
树妈妈生了一些可爱的嫩芽弟弟妹妹.许多叶儿宝宝都穿着绿色的礼服去凑热闹,从远处看,像一块无暇的翡翠,给大树妈妈增添了许多生机.忽然,从远处传来了一阵扑鼻的芳香.原来是美人蕉妹妹为春天姐姐的到来,穿上了华丽的礼服,以表示欢迎.咦,那边怎么那么多花朵,红的、白的、紫的、黄的等,五彩缤纷.走近一看,哦,原来花儿们正在比美比艺.花儿们有的显示着自己.有的在唱歌,声音是那么好听,所有的演员都被吸引住了.有的在表演优美的舞蹈《天鹅湖》、《白雪公主》等.真是太精彩了.
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。(如能帮到你,望您采纳!!谢谢!!)
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。