首页 > 学术论文知识库 > 数学对社会发展的影响论文范文

数学对社会发展的影响论文范文

发布时间:

数学对社会发展的影响论文范文

从数学学习的过程上来分析,我们往往会看到这样的现象,一个孩子的数学学习较好,他的思维灵活性就比较强,在这种情况下,他的热情和积极性就很高,善于表达自己的思想与方法,这样这个孩子的交往能力就会得到一定程度的锻炼,他的自信心也必然会逐步得到加强。

巧赢硬币 记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!

浅谈数学文化建设

摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。

关键词 小学数学教学;数学文化;数学文化建设

数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。

一、小学数学教师数学文化素养

数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。

1.强化数学文化意识

数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。

2.加强数学文化学习研究

小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。

学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德()的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。

二、小学数学教材数学文化建设

除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。

1.教材数学文化建设研究

在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。

2.教材数学文化校本化建设

鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。

三、小学数学教学数学文化渗透

为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。

1.校园数学文化渗透

数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。

2.课堂数学文化渗透

传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。

数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。

参考文献:

[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.

[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.

浅析数学教育中渗透数学文化

摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。

中关键词:数学文化 价值 精神 兴趣

古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。

很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。

数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?

数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。

没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。

数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。

数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。

数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。

其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。

这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。

数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。

当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。

没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。

年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。

总结

我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。

参考文献:

[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.

[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).

[3]天津教育.2007,(1).

数学文化 人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。 早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展了几千年,表现出了强大的生命力。数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。(2)数学对人的文化素养影响面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世界。有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。二,数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。三,数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材四,数学韵味——数学的美说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……数学美可以分为形式美和内在美。数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。

数学对发展的影响论文参考文献

高等数学对物流专业的影响 [摘 要] 随着物流管理专业的迅速发展,高等数学教学对于物流管理专门人才的培养具有极其重要意义。本文结合物流管理专业的特色阐述了高等数学对于物流管理专门人才培养的重要性及在物流方面重要用途。 [关键词] 高等数学物流管理 人才 高校 数学作为一门技术学科,在知识经济时代,越来越受到各行各业的重视。高等院校数学教学正在向以培养学生的数学素质为宗旨的能力教育转变。而物流管理是一门新兴学科,它主要包括理论、技术、设备三大方面,涉及企业管理、市场营销、电子商务、信息技术等多个学科的内容,因此高等数学教学对于物流管理专门人才的培养具有极其重要意义。 一、问题的提出 进入本世纪以来,尤其是我国加入WTO以后,我国经济快速、健康、稳定的发展给物流业带来了新的发展契机,现代物流业的蓬勃发展使得物流人才需求急剧升温,当前物流专业人才已被列为我国12类紧缺人才之一。2000年以来,我国高校物流管理专业急剧增加,全国已有75所高校开设了物流管理专业,其中包括一部分高职院校。物流管理学是在现代技术条件下,现代经济运行理念及世界经济全球化环境下产生的,是一门综合性、系统性较强的学科,是许多观念和方法的系统综合。这些观念原理和方法主要来自市场营销、企业、生产、会计、采购和运输领域的,特别来自应用数学。这些内容按现代物流管理技术要求有机地组合起来,形成了现代物流管理学体系。因此,在开展物流专业的数学的教学过程中,摆脱高等院校传统的数学教学模式,要渗透数学素质的教育和能力的培养,要培养出社会需要的复合型人才。 二、数学在物流方面的应用 物流专业的数学课程不是单一的为专业课打基础,而是教学中要渗透数学素质的教育和能力的培养,要培养出社会需要的复合型人才,同时要明确对于物流专业学生学习数学的目的,不是为了研究数学,而是为了应用数学,运用各种数学知识和方法解决自己所从事专业中遇到各种实际问题。中国现代物流的发展需要依靠一项项物流工程建设,依靠各个层次物流系统的运营来实现。物流工程包括物流基础工程、物流设施工程、物流管理工程、物流技术工程和物流运营工程。而物流运营基础工程是由国家建设的,如铁路线路建设工程、物流基地(中心)建设工程、货运站场建设工程、高速公路建设工程、货运枢纽建设工程、港口码头、货运航空港建设工程等,对物流的运营起到平台支持的作用。在现代物流中,物流基础设施平台决定整个物流系统的水平。一个能够有效共用的、高技术水平的、标准化的平台对提升物流运作水平有着极其重大的意义。而数学在研究投资主体在满足工程项目预定目标条件下如何使工程项目的建设成本达到最小,如何投资和管理物流工程项目中,发挥了重要的方法和工具的作用。 “建”即构造,“模”即模型, 建模教学是一种现代教法。所谓数学模型方法, 就是把所考察的实际问题, 化为数学问题, 构造相应的数学模型通过对模型的研究, 使实际问题得以解决的一种数学方法。其中, 建立起合适的数学模型是上述方法最关键的一步。建立数学模型的基本步骤是: 准备、假设、建立(模型)、求解、分析、检验。分析在问题中哪些是变量, 哪些是常量, 哪些量是已知的, 哪些量是未知的、待求的, 然后分析系统内部性质与关系。 例如:某跨国汽车制造公司在全球有m个生产基地Ai,i=1,2,3…n供应量是ai,i=1,2…m,有n个销地Bj,从Ai到Bj运输单位物资的运价(美元)为Cij,这些数据可归结为产销平衡。若Xij表示从Ai到Bj的运输量,那么在产销平衡条件下要求运费最小的方案有最优解?分析:我们可以先用数学建立模型,使其复杂的问题转化为数学问题,并用数学运筹学的方法解决实际问题。 以上的案例,通过数学建模及论证,运输问题有最优解,从而解决了物流运输的理论问题。 再例如,在物流工程项目中的财务分析中,数学提供了在单利和复利情况下,本金与利息之和的计算公式:单利情况时,公式为FV=PV(1+nr):,其中PV为本金(原投资额),r为利率,n为计息周期数,FV为本金与利息之和;复利情况时,公式为:FV=PV(1+nr)n,其中PV为本金(原投资额),r为利率,n为计息周期数,FV为本金与利息之和。例如,在学习导数概念时,除了举出书本上变化率问题中介绍的变速直线运动的速度外,还可介绍一些与专业有关的变化率问题。在物流专业教学中可介绍产品总运输量对时间的导数就是总运输量的变化率,物流总成本对运输量的导数就是运输产品总成本的变化率(边际成本)。在讲授微分方程时,可结合讲解物流运输模型等实例。我们还可以。数学运筹学解决了利用约束条件,求最优解的问题。这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流、实践与应用等活动利用这些学生熟悉的问题进行教学,可提高学生对数学学习的兴趣,激发他们利用所学知识,主动地去探索研究实际问题。 三、结论 总之,高等院校物流管理专业数学能力的培养是高等院校生存发展的需要,势在必行,合理的定位与体现,以适应高等教育迅速发展的形势和培养21世纪创新人才的需要。 参考文献: [1]钱颂迪:运筹学[M].北京:清华大学出版社,~92 [2]黎诣远:经济数学基础[M].北京:高教出版社, 1998,7 [3]王之泰:现代物流管理.中国工人出版社,2002 [4]宋 华 胡左浩:现代物流与供应链管理[M].北京:经济管理出版社,~56

这是一个学生的毕业论文后的参考文献[1] 裴礼文.数学分析中的典型问题与方法究(第二版)[M].北京:高等教育出版社,2006[2] 陈纪修等.数学分析第二版[M].北京:高等教育出版社,[3] 翟连林,姚正安.数学分析方法论[M].北京:北京农业大学出版社,1992[4] 龚冬保.高等数学典型题解法、技巧、注释[M].西安:西安交通大学出版社,2000[5] 郭乔.如何作辅助函数解题[J].高等数学研究, (5),48- 49[6] Patrick M.Fitzpatrick.AdvancedCalculus: A Course in Mathematical Analysis [M].北京:中国工业出版社,2003[7] 林远华.浅谈辅助函数在数学分析中的作用[J].河池师范高等专科学校学报,[8] 肖平.辅助函数的构造方法探寻.西昌师范高等专科学校学报[J],供参考。

参考文献那么多,也要看你是写哪一方面的。

数学对当代社会的影响论文格式

从数学学习的过程上来分析,我们往往会看到这样的现象,一个孩子的数学学习较好,他的思维灵活性就比较强,在这种情况下,他的热情和积极性就很高,善于表达自己的思想与方法,这样这个孩子的交往能力就会得到一定程度的锻炼,他的自信心也必然会逐步得到加强。

巧赢硬币 记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

数学在人类文明的发展中起着非常重要的作用,数学推动了重大的科学技术进步。但在历史上, 限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现。数学为人类生产和生活 带来的效益容易被忽视。进入二十世纪,尤其是到了二十世纪中叶以后,科学技术发展到这一步:数 学理论研究与实际应用之间的时间差已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化 和信息通道的大规模联网,依据数学所作的创造设想已经达到可即时试验、即时实施的地步。数学技 术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术, 一、数学与科学技术进步 二十世纪科学技术进步给人类生产和生活带来的巨大变化确实令人赞叹不已。从远古时代 起一直是人们幻想的“顺风耳”,“千里眼”,“空中飞行”和“飞向太空”都在这一世纪成为现实。回 顾二十世纪的重大科学技术进步,以下几个项目元疑是影响最大的,而数学的预见和推动作用是 非常关键。 (1)先有了麦克斯韦方程人们从数学上论证了电磁波,其后赫兹才有可能做发射电磁波的实 验,接着才会有电磁波声光信息传递技术的发展。 (2)爱因斯但相对论的质能公式首先从数学上论证了原子反应将释放出的巨大能量,预示了 原子能时代的来临.随后人们才在技术上实现了这一预见,到了今天,原子能已成为发达国家电 力能源的主要组成部分。 (3)牛顿当年已经通过数学计算预见了发射人造天体的可能性,差不多过了将近三个世纪, 人们才实现了这一预见。 (4)电子数字计算机的诞生和发展完全是在数学理论的指导下进行的。数学家图灵和冯诺依 曼的研究对这一重大科学技术进步起了关键性的推动作用。 (5)遗传与变异现象虽然早就为人们所注意。生产和生活中也曾培养过动植物新品种。遗传 的机制却很长时间得不到合理解释,十九世纪60年代,孟德尔以组合数学模型来解释他通过长 达8年的实验观察得到的遗传统计资料,从而预见了遗传基因的存在性。多年以后,人们才发现 了遗传基因的实际承载体,到了本世纪50年代沃森和克里发现了DNA分子的双螺旋结构。这以 后,数学更深刻地进入遗传密码的破译研究。 数学是人类理性思维的重要方式,数学模型,数学研究和数学推断往往能作出先于具体经验 的预见。这种预见并非出于幻想而是出于对以数学方式表现出来的自然规律和必然性的认识,随 着科学技术的发展,数学、预见的精确性和可检验性日益显示其重意义。 二、时代大潮的潮头 我们面临一个科学技术迅猛发展的时代。信息的数字化和信息的数学处理已经成为几乎所 有高科技项目共同的核心技术。从事先设计、制定方案,到试验探索、不断改进,到指挥控制、具体 操作,处处倚重于数学技术。众多新闻报道反映出这一时代大潮汹涌澎湃的势头。下面列举的仅 仅是其中一小部分。 (1)数学技术已经成为工业新产品研制设计的重要关键技术。1994年4月9日,被称为“百 分之百数字化确定”的波音777型飞机举行盛大隆重的出厂典礼.在过去,进行新机型设计,必须 对模型构件和样机反复作强度试验和空气动力学性。:试验。稍有不妥,就必须改变设计再来一轮 试验。新机种的研制周期长达十余年,消耗大量原材料和能源,采用了数学技术以后,所有的试验 可以通过精确设定的数学模型在计算机中进行,探索和修改都可以通过数学指令去实现。新机种 的研制周期从十多年缩短到三年半,大幅度节约了原材料和能源。 (2)许多国家认识到,发展高清晰度电视是未来经济技术竞争的主战场之一。日本和美国都 投入大量资金和人力进行有关研究,日本起步最早,但所研究的是模拟式的;美国虽然起步稍晚, 但所研究的是数字式的。经过多年的较量,数字式研究以其高度优越性取得关键性胜利。1994年 2月24日《人民日报》报道:日本政府正式宣布,转向研究数字式高清晰度电视,承认数字式因其 优越性而得到世界多数国家赞同,很可能成为未来的国际标准。 应该指出,电视屏幕不仅是现代人们日常生活所不可缺少的,而且可能通过联网成为信息传 递处理的工作面。几乎所有重要的工作岗位都将与之有关。数学技术在如此重要项目的激烈较量 中起了决定作用。 (3)199=年的海湾战争是一场现代高科技战争,其核心技术竟然也是数学技术。这一事实引 起人们不小的惊讶。美国总结海湾战争经验得出结论是:“未来的战场是数字化的战争”。干扰和失真是电磁波通信的一大难题。早在六十年代太空开发竞争的初期,美国施行。‘阿波罗登登月计划时,就已经意识到:由于太空中过强的干扰,无论依靠怎样精密的电子硬件设备 ,也 无法收到任何有用的信息,更不用说操纵控制了,采用了信息数字化、纠错编码、数字滤波等一整套数学通讯技术和数学控制技术之后,送人登月的计划才得以顺利完成,二十年后,在海湾战争 中,多国部队方面使用这一套技术把对方干扰得既聋又瞎,却能让自己方面的信息畅通无阻。采 用精密酌数学技术,可以在短短数十秒的时间内准确拦截对方发射的导弹,又可以引导对方发射 导弹准确击中对方的目标。也正是这一套信息数字化的数学技术,在开发高清晰度电视的竞争中 取得压倒性的胜利。开发一种数学技术可以在,。此众多方面施展效用,足见数学的广泛适用性。 (4)1995年1月,在贩神大地震之后,美国利用数学模型进行地震预测,预告本世纪末加州南部可能发生大地震。 (5)1995年3月,我国中央人民广播电台宣布启用数字式转播方式,指出以前的模拟式转播 方式效果差,所以改用新的转播方式。 (6)1995年6月,欧州联盟开会研讨未来数字化通信的统一制式。 (7)1996年2月,我国电子工业部宣布“九五计划”开发重点:数字化信息技术。所订的两个重 点研制项目是:数字式高清晰度电视接受机样机和数字式激光盘。 (8)1996年4月,我国国家科委发布招标公告,正式宣布数字式高清晰度电视开发项目。 三、当代与未来的发展倚重数学 仅以几件事为例就能清楚地看到数学对当代人们的生产和生活所起的重要作用。当代的生 产和生活离不开石油,石油勘探和生产需要了解地层结构。多年以来已经发展了一整套数学模型 和数学程序。人们发射地震波,然后将各个层面反射回来的信息收集起来力。以数学处理,就能将 地层各个剖面的图像和地层结构的全貌展现出来。这已是目前石油勘探与生产普遍采用的数学 技术。无独有偶,涉及到人的生命也有类似的情况,医生需要了解病人躯体内部和器官内部的状 况与变异,以前的调光片将骨骼和各种器官全都重叠在一起,往往难以辨认)现在也有了一整套 数学方案。借助了精密设备收集射线穿透人体或核磁共振带出的信息力。以数学处理就能将人体各个削面的状况清晰地层现出来,需要了解哪个层面就可以调出哪个层面的图片来,关系到人们 的生产与生活,这样的例证很多很多。在涉及生存与发展的关键时刻,特别是在涉及人类命运的紧要关头,数学也起着非常重要的 作用。在进入本世纪最后十年的时候,美国国家研究委员会公布了两份重要报告《人人关心数学 教育的未来》和《振兴美国数学—— 90 年代的计划》.两份报告都提到:近半个世纪以来,有三个时 期数学的应用受到特别重视,促进了数学的爆炸性发展,“第二次世界大战促成了许多新的强有 力数学方法的发展……“由于苏联人造卫星发射的刺激,美国政府增加投入促进了数学研究与数 学教育的发展”,“计算机的使用扩大了对数学的需求”.在二次世界大战太平洋战场的关键时刻, 由于采用数学方法破译日军密码,美国海军才能在舰只力量对比绝对劣势的情况下,赢得中途岛 海战的胜利,歼灭日本联合舰队的主力,扭转整个太平洋战局。在关系人类命运的二次世界大战 中,美国几乎是整个反法西斯战线的后勤补给基地。到了反攻阶段,要组织跨越两个大洋的大规 模行动,物资调运和后勤支援成了非常关键的问题,这刺激了有关数学方法的迅速发展。这期间 发展起来并且在战后迅速普及到各个方面的线性规划实用数学技术,为人类带来了数以千亿计 的巨大效益。到了1957年,苏联将第一颗人造卫星迭人太空,震撼了美国朝野。意识到有关数学 应用方面的差距,美国政府加大投入,促进了数学研究与数学教育的迅速发展,随着计算机的发 展,对数学有了空前的需求,刺激数学进入了第三个大发展的时期。 已经有了很多很多极有说服力的例证,说明无论在日常的生产和生活中,还是在涉及生存和 发展的关键时刻,数学都起着非常重要的作用,在新世纪即将到来之前科学技术和生产的发展对 数学提出了空前的需求,我们必须把握时机增大投入,加强数学研究与数学教育,提高全民族的 数学素质,才能更好地迎接未来的挑战。

关于数学发展的影响论文范文

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

把数学的发展写下来。

数学──自然科学之父,起源于用来计数的自然数的伟大发明。

人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念

后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。

大约在1万年以前,冰河退却了。一些从事游牧的石器时代的狩猎者在中东的山区内,开始了一种新的生活方式──农耕生活。

他们碰到了怎样的记录日期、季节,怎样计算收藏谷物数、种子数等问题。只有“一”、“二”、“三”、“多”,已远远不够用了。底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚──在树木或者石头上刻痕划印来记录流逝的日子。

数学──自然科学之父,起源于用来计数的自然数的伟大发明。人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。大约在1万年以前,冰河退却了。一些从事游牧的石器时代的狩猎者在中东的山区内,开始了一种新的生活方式──农耕生活。他们碰到了怎样的记录日期、季节,怎样计算收藏谷物数、种子数等问题。只有“一”、“二”、“三”、“多”,已远远不够用了。底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚──在树木或者石头上刻痕划印来记录流逝的日子。后来(特别是以村寨定居后),他们逐渐以符号代替刻痕公元前1500年,南美洲秘鲁印加族(印第安人的一部分)习惯于“结绳记数”

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。

数的结构

许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。

因此,我们可以学习群、环、域和其他的抽象系统。把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题。

孔子对学术发展的影响论文

在中国文化史上,孔子是绝对的精神领袖。说《论语》是中国文化的圣经、孔子是中国文化的圣人,那一点儿也不算夸张。虽然自近代以来,西方文化对中国传统文化形成强势冲击,但时移世易,孔子的许多思想包括他的和谐思想,仍然被人们所推崇和弘扬;孔子的《论语》,仍被中外人士普遍视为中国文化“最古最有价值之宝典”。 任何一种思想,倘能经受住历史长河的淘洗而历久弥新,都应有其内在的魅力、恒久的价值。孔子的和谐思想在当今社会重现其活力、重放其光辉,就是如此。那么,孔子和谐思想的特色在哪里呢?愚以为,主要体现在三个方面:一是崇尚人类自身的和谐,并把这种和谐落实到礼治秩序上;二是崇尚人与自然的和谐,并把这种和谐提升到“天人合一”的高度;三是崇尚“中庸之道”,并把“和”提升为儒学体系的认识论范畴,为中国文化树立了“致中和”的精神。 人们一般都认为孔子开创的儒学,把重点放在探讨为人处世等问题上,对自然科学不很重视。且不管这种说法是否准确,但有一点是明确的,孔子对人的问题确实非常关心,即使是关心物,也以人为出发点。实际上,这正是孔子思想的闪光点,也是孔子思想的显著特色。孔子的和谐思想最能说明这个问题。它以“仁”为基本内核、以“礼”为外在实现形式、以“和”为精神风韵,倾注着对人类自身存在与发展等问题的无比关心,饱含着对人类与自然和谐相处的无限情怀。 孔子在论“和”的精神、“和”的价值时,继承了前贤“和实生物,同则不继”、“相成相济”的思想,但又有新的发挥和升华。孔子讲“和”,是先讲个人心性之“和”,然后再往外推,由己及人,从小到大,渐次推到人际之“和”、家国之“和”、人类之“和”、天人之“和”。孔子讲个人之和,非常注重致和的手段,就是修身养性,要求人们“居处恭,执事敬,与人忠”,“惠而不费,劳而不怨,欲而不贪,泰而不骄,威而不猛”,“己所不欲,勿施于人”,“己欲立而立人,己欲达而达人”。孔子认为,一个人只有在身修性养之后,才有可能成为与“小人”有别的“君子”,进入“君子和而不同,小人同而不和”、“君子周而不比,小人比而不周”的境界,做到“修己以安人”、“修己以安百姓”。《论语》中讲的孝悌忠信,实际上都是在讲实现“人和”的条件。《大学》甚至提出,“自天子以至于庶人,一是皆以修身为本。”由此可见,孔子讲“和”,把作为社会细胞的个人的心性之“和”放在了非常重要的地位。这是对此前的“和同论”新的发展。这一新的论述,既符合当时中国是一个低水平的农业社会的实际,又切合当时中国人重血缘宗法的文化传统,因而从根源上为“和”的实现、为社会的和谐稳定找到了一条切实有效的路径。孔子还由“人和”讲到“政和”,主张“举直错诸枉”、“节用而爱人,使民以时”,“道之以德,齐之以礼”,特别是对舜“执其两端,用其中于民”的政治艺术非常推崇。《左传》昭公二十年有一句话最能表达孔子的“政和”理念:“宽以济猛,猛以济宽,政是以和。” 孔子在讲人类之“和”时,并不是讲一团和气,掩盖矛盾,而是讲原则、讲礼制的。在孔子及孔门弟子看来,“和”是人生的追求、人类的目标,但“和”的实现,要“以礼节之”。也就是说,制礼,守礼,是“致中和”的条件,只有“克己复礼”,才能“天下归仁”。否则,和稀泥,作乡愿,不讲原则,放弃斗争,那就成了小人之“和”,是不道德的。孔子认为,这种拉帮结派、党同伐异的小人之“和”的实质是“同”而不是“和”,有道君子对这种形“和”实“同”的现象应坚决反对。他明确地说:“乡愿,德之贼也。”另一方面,孔子认为,制礼、守礼的目的,是为了实现人与人之间“和”的状态,达到“和”的境界。所以,他说:“礼之用,和为贵。”由此可见,在孔子的和谐思想中,“礼”与“和”是相辅相成、相互为用的。 孔子讲“和”,最突出的贡献在于他把人类社会与人类生活所依托的宇宙结合起来、贯穿起来,当成一个整体来看待,追求一种“天人合一”的高尚境界。孔子自称不语怪力乱神,因而对于代表自然界的“天”,他的态度非常鲜明,也非常严肃,没有一点儿神秘主义的气息。他说:“天何言哉?四时行焉,百物生焉,天何言哉?”孔子认为,孕育四时和万物的“天”虽然高大得很,人类不可违逆,违逆就是失“和”;但它的规律可以认识,可以利用,人类可以效法“天”,也只能效法“天”。在孔子看来,尧就是法天的典范,“唯天为大,唯尧则之。” 因为“天”大,“天”的规律不可违逆,所以在“天”的面前显得非常渺小的人类就应该怀着敬畏之心,即“畏天命”。孔子认为,人类如果不能敬畏自然,甚至破坏自然规律,就会得罪自然,最终受到自然的惩罚,到这时候,即使后悔也是没有用的,“获罪于天,无所祷也”。人类与“天”相处的唯一出路,就是在敬畏自然的基础上,去探索与认识自然的规律,掌握自然的规律,利用自然的规律为人类自身谋福祉。从人类社会发展的历史看,孔子的这一思想是很有见地的,也是符合实际的。正因为天大地大,所以孔子对自然一方面是敬畏,另一方面又如赤子一般,对大自然非常热爱、非常依恋,把人与自然界视为一个整体。在2500多年前,孔子就关心生命,提倡保护动物,反对人类竭泽而渔式地向自然界索取。孔子本人在钓鱼时就只用一个鱼钩的钓竿,而不用大鱼网;打猎时,只射飞鸟,不射在巢中歇宿之鸟。这样,与人类生活在同一个地球上的动物就可以繁衍生息,不致绝灭;人类与自然界的平衡就可以永久保持,不致破坏。孔子这种“钓而不纲,弋不射宿”的行为和主张,是今天环保主义者的一个绝好样板。正因为孔子把人类和自然视为一个整体,追求天人之间的和谐,所以他还主张人类要向自然学习,充分地认识自然,从中了解自然界的生命意义,正确处理好人类与自然界的关系。 出于对天人和谐的追求,出于对自然资源的爱护,孔子反对奢侈浪费,倡行节俭的生活方式。他说:“奢则不孙,俭则固。与其不孙也,宁固。”生活豪奢,就可能违和;日子节俭,又显得寒酸。但孔子宁肯寒酸,也不羡慕那违和的豪奢。他甚至说:“饭疏食,饮水,曲肱而枕之,乐亦在其中矣。” 孔子讲“和”,还有一点也是很重要的,就是子思在《中庸》中追述的中庸之道。它由孔子发其端,而由子思总其成,后来成为一种深深影响中国人思维方式的认识论。孔子说:“君子中庸,小人反中庸。君子之中庸也,君子而时中;小人之中庸也,小人而无忌惮也。”后来,子思“推本尧舜以来相传之意,质以平日所闻父师之言”,对孔子的中庸思想作了进一步的发挥。其最经典的语句就是“喜怒哀乐之未发,谓之中;发而皆中节,谓之和。中也者,天下之大本也;和也者,天下之达道也。致中和,天地位焉,万物育焉”,从而把孔子的中庸思想生成为“中庸之道”,生成为一种中国人的思维方式、认知方法。“中庸之道”为什么这么重要呢?孔子的理由是:“天下国家可均也,爵禄可辞也,白刃可蹈也,中庸不可能也。”在孔子看来,行中庸之道,形易实难,非智、仁、勇俱全不可及,而人的弱点恰在于欲障难除,血气易偏,因而“处中道”、“致中和”、“行中庸”就值得时时念之,日日行之,终身求之。 由此观之,在孔子的思想体系中,和是一种精神,一种追求,一种状态,一种境界,一种政治智慧,一种人文关怀,一种道德诉求,一种理想境界。今天,在构建社会主义和谐社会、建立资源节约型社会的进程中,孔子的和谐思想确实值得我们挖掘、借鉴和弘扬。

关于孔子的议论文道可道非常道名可名,非常名。无名天地之始;有名万物之母。学者梁燕城访谈:太初有道、道(Logos)是信息的意思。造物主的话成为万有的根据,也成为万有的规律。当代的量子力学就非常奇妙地发现,万有事实上是根据很多信息的秩序组成。这主要是由戴维·玻姆(DavidBohm)著名的量子力学大师提出的学说:万有有一个看不见的秩序叫“ImplicateOrder”,里面都是非常复杂的信息系统,造成我们看见的秩序,叫作“ExplicateOrder”。中文“道”这个字也有信息、语言的意思。老子那个时候非常奇妙地体会到,宇宙背后是有真理的信息存在。《庄子》里面提到:“夫道,有情有信”。从前后文里还可以看到,庄子心中的神是有位格的。中国祖先本来就相信无形的上帝,老子、庄子事实上是继承这个传统而来。这正是《圣经》里的内容,上帝是个灵、而且恨恶世人伪造、崇拜偶像。说明中国古人已相信《圣经》、得着《圣经》并照着去行了。在牛津的博德莱安图书馆里有一份手稿,作者名叫马斯——乌迪。他在这份手稿中宣称所谓胡夫的金字塔是埃及王苏里特叫人建造的,而这个苏里特是在大洪水前统治埃及的。根据其它文献记载,这位目光深远的苏里特王命令他的僧侣们,写下他们的全部常识,藏在金字塔里,给洪水后的人们留下必要的知识。创世记前11章,关于人类早期共同史的记述,在中国古经中几乎都可以找到印证:《圣经》说:上帝造物的工已经完毕,就在第七日歇了他一切的工,安息了;《周易》也神秘地说:七日来复,天行也。《圣经》说:伊甸园里有四条河,流出珍珠玛瑙。《淮南子》上说:天下有四水,凡此四水者,帝之神泉,以和百药,以润万物;《圣经》说:伊甸园中有生命树和智慧树。《山海经》上说:当初有不死树和圣树,圣树又叫睿木,“食之令人圣智也”;《圣经》说:人类始祖贪吃了智慧树上的果子,被上帝赶出伊甸园,并有基路伯和火焰之剑,阻断了人神通路。《尚书》和《国语》上说:人犯了罪,上帝命令重黎堵绝天路,上下不相来往;《圣经》说:太初有道,道就是上帝,生命在他里头,这生命是人的光。《老子》说:天地之母,万物之根,众妙之源,从无中生有,乃天地之始;《庄子》说:有情有信,无为无形,可传而不可受,可得而不可见。一位伟大的学者在美国神学院读书时,发现《老子》与天书《圣经》有奇妙相通之处;无神论者把道归于自然神,其实老子的道不乏人格特征,有信实、有恩德、有慈爱、有赏罚、能赦罪、能教化。知其荣、守其辱、知其白、守其黑、成为世人认识大道的中介。更神奇的是,惜字如金的老子竟然着重笔墨描述一位道的化身圣人:并说他承袭上天大道的光明和永恒,来普救世人;是自有永有者,造化养育者,超越者,启示者,生命者,公义者,拯救者。这七点就是造物主上帝的属性。圣人秉持大道本像,普天下的人都前往归向他,领受平安。他外表粗卑、内怀宝贝,能将众人从过犯中领回来。最后,老子竟然暗示这位圣人要受辱受难,却作主作王,直到永远,是谁?查考世上所有的经典、教门的主子都对不上号,唯独道成肉身的耶稣基督非常酷似。这2500年前的古人是怎么知道天书中“道成肉身的耶稣”的呢? 这的确是一个巨大的、神圣的、跨越时空的谜团。老子说:道是万物之主、是善人的宝贝、罪人的中保。美好的言辞固然可以博取尊荣、美好的行为固然使人得到敬重,然而人的不善怎能被剔除干净呢? 所以,就是立为天子,身为太师、太傅、太保,财宝无数、荣华加身,还不如坐进这大道里呢!古时候为什么如此重视道呢? 不就是因为在道里面,寻求就能得着,有罪可得赦免吗? 所以道是天下最宝贵的啊!老子的笔墨中展示给人间的不正是天书《圣经》中上帝的天国、耶稣的救赎吗? 《尚书》、《诗经》都记载着:中国人来自上帝。早在老子古经中便记载旧约天书预言中的“耶稣”。而且两千多年来,举凡太平盛世,竟无一不是遵循了老子之学说。顺天道治国的皇帝,囊括了仅有的几百年辉煌时代;文景之治、光武中兴、贞观之治、开元之治等等。孔子倾注毕生心力宣扬《圣经》中敬天爱人的忠恕之道,当代多个皇帝均尊纯了老子“天道”的统治方式,那么老子的神学知识是那里来的呢?就目前世界不管任何一种教门的国家,他们的统治方式都在努力提高到上帝的道上来,这又是为什么?古人老子、孔子、孟子对“道”的认识,已如此入神境界,实令人难以置信。其代表着中国的古人,代表着中国的文化。他的“道”影响着整个中国尽至世界的每个人的行为和思想。这个从旧约《圣经》中才有的“道”的传统神州文化一直到1911年,天坛里没有偶像,祈年殿里一个偶像都没有,里面只有一个牌子,叫“皇天上帝”。因为圣灵的同在能引领人尊崇和敬仰高智慧的造物主,看到自身的微妙。可惜的是:孔子、老子虽极力推行“神州”的“摩西五经”、“神天律例”的“道”,但是2500多年后“神州”上帝的“道”就渐渐退色,已失去“神州”本相。道家典籍《道德经》中的上篇第十八篇,老子叹息曰:“大道废,有仁义。慧智出,有大伪”。延至今日,被无神论的佛教所抡占,完全失去了孔老的本意,没了“道”的影子。至此远离宇宙高等智能生命圣灵,进入堕落天使,现今的空中掌权者──龙的“传人”。一个十分敬重上天,指引人类敬畏天地的孔子也变成泥塑木雕、庙宇里的偶像了。

1、关于孔子的思想体系 关于孔子的思想体系最起码有三个问题需要深入思考和研究,一是孔子有没有思想体系?二是如何理解孔子的思想体系?他的思想体系的构成是怎样的?三是用那些材料来证明或“复原”这个思想体系?首先应该说明,我们现在常说的“思想体系”或“学说体系”是受西方哲学的影响,认为一个伟大的哲学家、思想家其思想必然是成体系的,研究他的思想,重要的就是完整、深刻地理解他的思想体系。然而事实上对哲学家、思想家本人来说,他不一定都是有意识地、自觉地进行体系建构的,在很大程度上说,他有什么样的思想体系是后来研究者进行“复原”或“重构”的结果。对于中国古代哲学家、思想家的研究来说,尤其存在这样的情况。从学术研究的角度来说,这也无可厚非。所以,我们还是按照学术界的研究习惯,我们仍然可以认定孔子各个方面的思想构成了一个有机的统一体,在这个前提下,来相对地理解他的思想观点。 近代以来,从学术思想角度来讨论孔子思想体系的构成,由于种种原因,出现了很大的分歧,形成多种说法:如以仁为中心说,以礼为中心说,以中庸为中心说,以仁义为中心说,以仁义礼的统一为核心说等等。特别流行的是仁核心说和礼核心说。两说的共同特点是它们的绝对对立。仁核心说排斥礼,礼核心排斥仁。我认为,这种“中心说”、“核心说”从大的方面讲都是习惯了孔子以后二千年大一统政治体制及其相应的大一统意识形态影响的结果,也是当代社会既定思维模式定向制约的结果,是迫切需要摆脱的;从小的方面讲,人们往往容易抓住一个概念、范畴当作一个思想家的思想核心,而忽视它的整体性,自然互相矛盾。 另外,西方学者由于对孔子思想体系的把握不够,对孔子思想评价多有误解,最典型的就是黑格尔。黑格尔眼中的孔子只是一个实际的世间智者,算不得一个哲学家,“在他那里思辨的哲学是一点也没有的——只有一些善良的、老练的、道德的教训,从里面我们不能获得什么特殊的东西”,甚至认为,“为了保持孔子的名声,假使他的书从来不曾有过翻译,那倒是更好的事。”①黑格尔“不能从中获得特别的东西”的孔子思想对中国文化乃至整个东亚文化都有极为重要的意义。黑格尔对孔子的认识不但只是凭少许不严谨的译本,而且只看到了那零散的道德教训,而没有触及孔子思想的整体结构,不能从整体的角度深化对细节的把握。另外,黑格尔以西方文明发展的道路为模式构筑了唯一的“世界精神”的哲学发展史,对中国历史和文明发展的道路却缺乏同情的理解,也许潜意识中还有日尔曼人所惯有的那种偏见和傲慢。 今天,对孔子思想体系要深入、全面地把握,集中探讨其核心是完全必要的,但又是很不够的。笔者无意消解中心,也不想另立中心,只是想实实在在地对孔子整个思想进行深入其内的细心研习以后,再出乎其外,不带任何思想偏见和既定的思维模式来理解孔子的思想体系构成,并尽力展示其原状,以实事求是地把握孔子的思想和学说。在春秋战国之际,孔子作为一个西周乃至上古文化的继承者和集大成者,他以平治天下为已任,构筑一个思辨的哲学体系对他来说是奢侈的,他是着眼于当时的时势,思考社会的整合有序、个人与社会的协调发展、人民安居乐业的途径。这样,如果要说他有什么思想体系的话,那也是他在不自觉的、开放的思维方式中构建了具有历史文化功能的与历史现实水乳交融的独特的“思想体系”。孔子思想体系里不一定非得有唯一的逻辑起点与思想核心,而且最重要的并不是理论推演的逻辑性与思辩性,而是它的世间性、实用性,可以包容个人与社会,承担传统与变革,结合理想、信仰与此间生活等等。我们今天的研究可以从不同方面了解和“复原”这个思想体系。 2、孔子思想学说的集大成性质 要探讨孔子思想学说的体系,我们应该有一个基础认识,孔子的思想学说有集大成的性质。孔子展之所以成为两千多年以来中国乃至人类屈指可数的大思想家、学问家,最基本的就是他的思想学说是“集”了中国上古以来文化的“大成”。上古文化在西周是一个集大成,但在这是制度意义上的集大成,到了孔子可以说是思想学术意义上的集大成。关于这方面古来人们都有认识,孟子曰:“伯夷,圣之清者也;伊尹,圣之任者也;柳下惠,圣之和者也;孔子,圣之时者也。孔子之谓集大成。集大成也者,金声而玉振之也。金声也者,始条理也;玉振之也者,终条理也。”(《孟子·万章下》)赵岐注:“孔子集先圣之大道,以成己之圣德者也,故能金声而玉振之。振,扬也。故如金声之有杀,振扬玉音,终始如一也。”朱注:“此言孔子集三圣之事,而为一大圣之事;“犹作乐者集众音之小成,而为一大成也。成者,乐之一终,《书》所谓‘《箫韶》九成’是也。金,钟属;声,宣也;玉,磬也;振,收也,如振河海而不洩之振。始,始之也。终,终之也。条理,犹言脉络,指众音而言也。智者,知之所及;圣者,德之所就也。盖乐有八音:金、石、丝、竹、匏、土、革、木。若独奏一音,则其一音自为始终,而为一小成。犹三子之所知偏于一,而其所就亦偏于一也。八音之中,金石为重,故特为众音之纲纪。又金始震而玉终诎然也,故并奏八音,则于其未作,而先击镈钟以宣其声;俟其既阕,而后击特磬以收其韵。宣以始之,收以终之。二者之间,脉络通贯,无所不备,则合众小成而为一大成,犹孔子之知无不尽而德无不全也。”戴震亦释此句云:“圣智至孔子而极其盛,不过举条理以言之而已矣。”(《孟子字义疏证·卷上》理条)《孟子·公孙丑上》中有人欲比较伯夷、伊尹与孔子,孟子直截了当地答到“否。自有生民以来,未有孔子也。” 《朱子语类》卷第五十八还载:当有问朱熹何谓“集大成”。朱熹回答说:“孔子无所不该,无所不备,非特兼三子之所长而已。但与三子比并说时,亦皆兼其所长。” 张载对孟子的话有深刻的理解,“孟子所谓始终条理,集大成于圣智者与!”(《正蒙·大易篇》) 《释氏稽古略》说明孔子的集大成是集古代圣王遗教的大成:“圣人生于鲁,集大成于古帝王之教也,甚矣!” 王夫之尝谓,“孔子之术,合三代之粹而阐其藏者也”(见《读通鉴论》卷三) 刘师培说:“周室既衰,史失其职,官守之学术,一变而为师儒之学术。集大成者厥唯孔子。”① 王国维论孔子的集大成云:“孔子者,‘述而不作,信而好古’,实践躬行之学也。上至三皇五帝,下至夏殷周诸圣贤之学说,无不集合而组织之,以大成儒教;其圆满之智如海。又多才多艺,至其感化力之伟大,人格之完全,古今东西,未见其比。”② 综上所述,古今以来人们对孔子思想学术上集大成的认识主要有这么几个含义:一是集伯夷、伊尹、柳下惠这样的三圣之事为一大成之事;二是孔子既圣且智,孟子通过所谓金声玉振,始终条理来比喻和说明;三是集三代及其以上圣王德业的大成;四是集古代思想学术的大成。

孔子思想、学说的精华,比较集中地见诸于《论语》一书,共二十篇,一万一千余字。《论语》就是孔子的语录,也有一些是对孔子弟子言行的记录,是孔子的弟子及其再传弟子对孔子言行的追记。此书对中国历史产生了深远而巨大的影响。它的思想内容、思维方式、价值取向都早已融入了我们民族的血液,沉淀在我们的生命中,铸成了我们民族的个性。《论语》一书集中阐述了儒家思想的核心内涵----仁。“仁”是一切理论的中心,所有的关于“仁”、“乐”的规范,都不过是手段,是为实现“仁”这一道德的最后完美服务的。《论语》作为中华文化的代表,早在秦汉时期就传入了朝鲜和日本,日本〈大宝令〉还指定它为日本学生的必修课。1594年,传教士利玛窦将它译为拉丁文后,它又被转译为意、法、德、英、俄等多种文字,在西方各国广泛传播。孔子其思想以“仁”核心,以为“仁”即“爱人”。提出“己所不欲,勿施于人”,“”等论点,提倡“忠恕”之道,又以为推行“仁政”应以“礼”为规范:“克己复礼为仁”。对于殷周以来的鬼神宗教迷信,采取存疑态度,以为“未知生,焉知事鬼”,“不知命,无以为君子也”。又注重“学”与“思”的结合,提出“学而不思则罔,思而不学则殆”和“温故而知新”等观点。首创私人讲学风气,主张因材施教,“有教无类”,“学而不厌,诲人不倦”,强调“君子学道则爱人,小人学道则易使也”。政治上提出“正名”主张,以为“君君、臣臣、父父、子子”,都应实副其“名”,并提出“不患寡而患不均,不患贫而患不安”观点。自西汉以后,孔子学说成为两千余年封建社会的文化正统,影响极深。说到治理国家,孔子重视民生疾苦,呼唤仁政,希望统治者以仁义之心待民,他说“苛政猛于虎”,他还强调无论什么法令法规,统治者都要首先以身作则,“其身正,不令而行;其身不正,虽令不行”。在人际交往中,孔子强调的是忠和恕。 “忠”就是以忠实诚信的态度对人,以恪尽职守的态度待事;“恕”就是要推己及人,“己所不欲,勿施与人”,“君子成人之美,不成人之恶”。在为人处世上,孔子提倡自爱和爱人。孔子对天命持谨慎态度,他更相信人自己的力量。他认为“性相近也,习相远也”,一切要看个人后天的努力。当然,〈论语〉中也有一些思想是与历史潮流相背离的,如他政治上的复古倾向,他对等级、秩序的过分强调,他的内敛的人格价值取向等,这一切都不可否认的给中国社会的发展带来了负面影响,需要我们用现代意识对之加以修正。但瑕不掩瑜,在人类文明刚刚露出曙光的先秦时代,我们的祖先就具有如此深刻的生命智慧,是足以让我们这些后人为之骄傲的。孔子思想在近现代以来的新发展是指近代西方文明输入中国以后,在中西文明碰撞交融条件下产生的新儒学。新兴的“大众儒学”是当代新儒学发展的又一成果。附:“知”──孔子思想的精华孔子不仅是伟大的思想家,而且是个伟大的教育家,他从长期的教育实践中总结了许多很有意义、很有启发性的教育思想和获得知识的方法。在春秋末期这样一个社会大变动的时代,保守的奴隶主贵族是无法应付现实生活的变化,从奴隶主贵族本身来说也不可能培养出适应社会发展要求的人才。但从整个社会发展来说,却需要有一批有才干的人才,要他们来解决现实社会中发生的种种复杂的问题。孔子适应着当时社会的需要,通过教育,给人们以知识,成为我国历史上最早的一位教育家。孔子提出“有教无类”,对这句话虽有种种不同解释,但它包含要扩大教育面,使受教育的人不仅仅限于奴隶主贵族,应该是无疑问的。孔子自己实践了他的“有教无类”的主张,所以他说:“只要给我十条干肉作学费,我从没有不教诲的。”(《论语·述而》)他的这一作法,对当时迫切需要解决的人才问题起着很大的作用。当然孔子的“有教无类”并不是为了所有的阶级,更不是为了什么培养为全民服务的人才,而是为了培养更多的能适应社会发展要求的、为统治阶级服务的有才干的人。虽然如此,但孔子的教育活动,却是结束了过去贵族垄断的“官府之学”,开始了学问的私家传授。所谓“学术下庶人”,正是从孔子开始的。从这一点来说,无论如何是有利于当时社会发展的。不仅如此,孔子通过他长期的教育实践,从中总结了不少合于人们认识规律的经验,但孔子的这方面的思想,还不是认识论本身的问题,主要还是对教育方法、求知方法的概括和总结。首先,孔子比较强调人们的知识来源于学习。虽然他也讲到“生知”“唯上智与下愚不移”,它表明孔子还受着传统思想的束缚。但是我们从他的具体教育活动上看,他并不十分重视这点。他所说的“性相近,习相远”才是他自己的主张,显然这和“生知”的观点是不一致的。孔子从来就没有认为他自己是“上智”的,而且也没有说过哪一个人是“上智”的,他甚至认为尧舜也会有错误。关于他自己,他说:“我非生而知之者,好古,敏以求之者也。”(《论语·述而》)他非常好学,他自己给自己的评论是:“十室之邑,必有忠信如丘者焉,不如丘之好学也。”(《论语·公冶长》)他赞美好学的学生颜回说:“有颜回者好学,不幸短命死矣,今也则亡。”(《论语·先进》)子贡问:“孔文子何以谓之文也?”孔子回答说:“敏而好学,不耻下问,是以谓之文也。”(《论语·公冶长》)可见,孔子非常注重学习,认为人的知识来源于学习,人的道德品德也是通过学习才能得到,所以他所说的“生知”差不多成了一句空话了,在实际上并没有重视它。

  • 索引序列
  • 数学对社会发展的影响论文范文
  • 数学对发展的影响论文参考文献
  • 数学对当代社会的影响论文格式
  • 关于数学发展的影响论文范文
  • 孔子对学术发展的影响论文
  • 返回顶部