首页 > 职称论文知识库 > 数模论文发表

数模论文发表

发布时间:

数模论文发表

教育部中国大学生在线是全国大学生数学建模竞赛组委会指定的官方论文发布网站。中国大学生在线网站首页课堂频道列表 “数学建模”专题(如图所示),提供权威的数学建模国赛、数学建模挑战赛论文发布、试题下载及赛事新闻资讯等。请参赛队伍在指定时间及时进入专题,下载竞赛题目.

可以发表的,我前几天有个同事的论文获得过一等奖,然后还拿去发表了,还发表在核心期刊上呢,既然你的论文可以获得一等奖,说明你论文的质量不差的,直接找个核心期刊杂志社,肯定会录用的,因为论文质量好啊,数学类的,就投河南大学主办的<数学季刊>吧,核心期刊,希望你有好运

国际会议,研讨会会议等等《数学建模及其应用》是中国工业与应用数学学会的会刊自创刊以来,杂志坚持刊登以建模为主要内容的应用数学研究成果,用数学建模及方法解决科学、工程技术和经济等应用问题以及建模教学研究的成果,为从事数学建模研究和教学的广大高校师生以及工业界相关专家提供了一个学习、借鉴及交流的平台。注重于数学建模方法和理论方面的学术性研讨,针对目前数学建模竞赛中的热点问题进行专题报告,探讨数学建模的发展趋势,让更多老师参与到数学建模的理论和方法研究,提高各高等学校数学建模研究和教学水平,创新学生数学建模活动,推动数学建模的快速发展。

发表数模论文

教育部中国大学生在线是全国大学生数学建模竞赛组委会指定的官方论文发布网站。中国大学生在线网站首页课堂频道列表 “数学建模”专题(如图所示),提供权威的数学建模国赛、数学建模挑战赛论文发布、试题下载及赛事新闻资讯等。请参赛队伍在指定时间及时进入专题,下载竞赛题目.

数模论文可以拿去发表不告诉队友。数学建模论文是可以像其它行业论文一样公开发表的,发表出来后也是可以用以职称评定、业绩考核的时候使用的,这对评职或是业绩考核都有帮助。而且数模论文属于个人财产,与队友无关。

重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 1. 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据. 2. 数模论文是培训(或竞赛)活动的最终成绩的书面形式。 3. 写好论文的训练,是科技论文写作的一种基本训练。 二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性; 结果的合理性; 表述的清晰程度 2,数模论文的结构 0、摘要 1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明 3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等 5、模型检验:结果表示、分析与检验,误差分析等 6、模型评价:本模型的特点,优缺点,改进方法 7、参考文献:限公开发表文献,指明出处 8、 附录:计算框图、计算程序,详细图表 三、需要重视的问题 0.摘要 表述:准确、简明、条理清晰、合乎语法。 字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表 简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。 1、 建模准备及问题重述: 了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。 在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。 2、模型假设、符号说明 基本假设的合理性很重要 (1)根据题目条件作假设; (2)根据题目要求作假设; (3)基本的、关键性假设不能缺; (4)符号使用要简洁、通用。 3、模型的建立 (1)基本模型 1) 首先要有数学模型:数学公式、方案等 2) 基本模型:要求完整、正确、简明,粗糙一点没有关系 (2)深化模型 1)要明确说明:深化的思想,依据,如弥补了基本模型的不足…… 2)深化后的模型,尽可能完整给出 3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。 ▲能用初等方法解决的、就不用高级方法; ▲能用简单方法解决的,就不用复杂方法; ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。 4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在 ▲建模中:模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析,模型检验; ▲推广部分。

发表模糊数论文

哈哈,数学一个分支,太有用了,天文上

一般来说普通数学只能解决十分精确的问题,比如一个东西长度是多少,宽度是多少等等,多为客观的判断. 模糊数学是利用给定的条件,来进行类似主观的判断,比如一个人是高还是矮,是胖还是瘦,是像他父亲还是像母亲等等. 记得我们考模糊数学时,最后一道题就是判断一个孩子像他父亲还是像母亲,我班一个同学的答案是像邻居.

模糊数学是研究和处理模糊性现象的一种数学理论和方法 。 1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如不分明拓扑、不分明线性空间、模糊测度与积分、模糊群、模糊范畴、模糊图论等。其中有些领域已有比较深入的研究。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊综合评判、模糊决策、模糊控制等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面。 [编辑本段]模糊数学的产生现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。这些概念是不可以简单地用是、非或数字来表示的。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 [编辑本段]模糊数学的研究内容1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 [编辑本段]模糊数学的应用模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。

模糊数学是数学中的一门新兴学科,其前途未可限量。1965年,《模糊集合》的论文发表了。作者是著名控制论专家、美国加利福尼亚州立大学的扎德(L.A.Zadeh)教授。康托的集合论已成为现代数学的基础,如今有人要修改集合的概念,当然是一件破天荒的事。扎德的模糊集的概念奠定了模糊性理论的基础。这一理论由于在处理复杂系统特别是有人干预的系统方面的简捷与有力,某种程度上弥补了经典数学与统计数学的不足,迅速受到广泛的重视。近40年来,这个领域从理论到应用,从软技术到硬技术都取得了丰硕成果,对相关领域和技术特别是一些高新技术的发展产生了日益显著的影响。有一个古老的希腊悖论,是这样说的:“一粒种子肯定不叫一堆,两粒也不是,三粒也不是……另一方面,所有的人都同意,一亿粒种子肯定叫一堆。那么,适当的界限在哪里?我们能不能说,123585粒种子不叫一堆而123586粒就构成一堆?”确实,“一粒”和“一堆”是有区别的两个概念。但是,它们的区别是逐渐的,而不是突变的,两者之间并不存在明确的界限。换句话说,“一堆”这个概念带有某种程度的模糊性。类似的概念,如“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美”等等,不胜枚举。经典集合论中,在确定一个元素是否属于某集合时,只能有两种回答:“是”或者“不是”。我们可以用两个值0或1加以描述,属于集合的元素用1表示,不属于集合的元素用0表示。然而上面提到的“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美” 等情况要复杂得多。假如规定身高1.8米算属于高个子范围,那么,1.79米的算不算?照经典集合论的观点看:不算。但这似乎很有些悖于情理。如果用一个圆,以圆内和圆周上的点表示集A,而且圆外的点表示不属于A。A的边界显然是圆周。这是经典集合的图示。现在,设想将高个子的集合用图表示,则它的边界将是模糊的,即可变。因为一个元素(例如身高1.75米的人)虽然不是100%的高个子,却还算比较高,在某种程度上属于高个子集合。这时一个元素是否属于集合,不能光用0和1两个数字表示,而可以取0和1之间的任何实数。例如对1.75米的身高,可以说具有70%属于高个子集合的程度。这样做似乎罗嗦,但却比较合乎实际。精确和模糊,是一对矛盾。根据不同情况有时要求精确,有时要求模糊。比如打仗,指挥员下达命令:“拂晓发起总攻。”这就乱套了。这时,一定要求精确:“×月×日清晨六时正发起总攻。”我们在一些旧电影中还能看到各个阵地的指挥员在接受命令前对对表的镜头,生怕出个半分十秒的误差。但是,物极必反。如果事事要求精确,人们就简直无法顺利的交流思想——两人见面,问:“你好吗?”可是,什么叫“好”,又有谁能给“好”下个精确的定义?有些现象本质上就是模糊的,如果硬要使之精确,自然难以符合实际。例如,考核学生成绩,规定满60分为合格。但是,59分和60分之间究竟有多大差异,仅据1分之差来区别及格和不及格,其根据是不充分的。不仅普遍存在着边界模糊的集合,就是人类的思维,也带有模糊的特色。有些现象是精确的,但是,适当的模糊化可能使问题得到简化,灵活性大为提高。例如,在地里摘玉米,若要找一个最大的,那很麻烦,而且近乎迂腐。我们必须把玉米地里所有的玉米都测量一下,再加以比较才能确定。它的工作量跟玉米地面积成正比。土地面积越大,工作越困难。然而,只要稍为改变一下问题的提法:不要求找最大的玉米,而是找比较大的,即按通常的说法,到地里摘个大玉米。这时,问题从精确变成了模糊,但同时也从不必要的复杂变成意外的简单,挑不多的几个就可以满足要求。工作量甚至跟土地无关。因此,过分的精确实际成了迂腐,适当的模糊反而灵活。显然,玉米的大小,取决于它的长度、体积和重量 。大小虽是模糊概念,但长度、体积、重量等在理论上都可以是精确的。然而,人们在实际判断玉米大小时,通常并不需要测定这些精确值。同样,模糊的“堆”的概念是建立在精确的“粒”的基础上,而人们在判断眼前的东西叫不叫一堆时,从来不用去数“粒”。有时,人们把模糊性看成一种物理现象。近的东西看得清,远的东西看不清,一般的说,越远越模糊。但是,也有例外的情况:站在海边,海岸线是模糊的;从高空向下眺望,海岸线却显得十分清晰。太高了,又模糊。精确与模糊,有本质区别,但又有内在联系,两者相互矛盾、相互依存也可相互转化。所以,精确性的另一半是模糊。对模糊性的讨论,可以追溯得很早。20世纪的大哲学家罗素(B.Russel)在1923年一篇题为《含糊性》(Vagueness)的论文里专门论述过我们今天称之为“模糊性”的问题(严格地说,两者梢有区

数模的论文发表

可以发表的,我前几天有个同事的论文获得过一等奖,然后还拿去发表了,还发表在核心期刊上呢,既然你的论文可以获得一等奖,说明你论文的质量不差的,直接找个核心期刊杂志社,肯定会录用的,因为论文质量好啊,数学类的,就投河南大学主办的<数学季刊>吧,核心期刊,希望你有好运

数模论文可以拿去发表不告诉队友。数学建模论文是可以像其它行业论文一样公开发表的,发表出来后也是可以用以职称评定、业绩考核的时候使用的,这对评职或是业绩考核都有帮助。而且数模论文属于个人财产,与队友无关。

将数模论文发表

数模论文可以拿去发表不告诉队友。数学建模论文是可以像其它行业论文一样公开发表的,发表出来后也是可以用以职称评定、业绩考核的时候使用的,这对评职或是业绩考核都有帮助。而且数模论文属于个人财产,与队友无关。

个人觉得一般的数模论文在国际会议上投稿比较难。因为我们参加数模比赛所解决的问题偏向于应用,如果能用合适的模型与算法去解决好题中给出的问题就已经很好了。也就是说,往往数模竞赛考察的是模型算法的应用能力而不是创造能力。也许能够对现成的算法进行一些修改,但是本质变动不大。这就很难在国际高水平会议发表论文。倘若你真的提出了新的算法与模型,并具有很好想法在里面可能会好一些。或者你的模型对问题的解决确实很适用,那么也可以投一些偏向于相关领域应用的会议或期刊。

  • 索引序列
  • 数模论文发表
  • 发表数模论文
  • 发表模糊数论文
  • 数模的论文发表
  • 将数模论文发表
  • 返回顶部