首页 > 职称论文知识库 > 发表了第一篇论文

发表了第一篇论文

发布时间:

发表了第一篇论文

感觉自己有所成就,发表了第一篇论文,让自己心里有所自豪,毕竟是第一篇嘛,以后还会有更多成就。

应该会很有成就感吧,虽然我没有发表过任何论文。

会为自己感到自豪,也会觉得自己很厉害,毕竟是第一次写论文。

1672年2月6日,牛顿来到伦敦参加例会,作为对皇家学会的回报,牛顿将他精心准备的“关于光和色的新理论”的论文递交皇家学会,并于2月19日刊登在皇家学会的会刊《哲学汇刊》上,这是牛顿正式公开发表的第一篇论文。

18岁发表了第一篇论文

约翰·伯努利是欧拉老师,欧拉是拉格朗日的重要影响者,拉格朗日是柯西的重要指导者。

1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。欧拉13岁时进入了巴塞尔大学,主修哲学和法律,但在每周星期六下午便跟当时欧洲最优秀的数学家约翰·伯努利学习数学 。

18岁时,拉格朗日用意大利语写了第一篇论文,是用牛顿二项式定理处理两函数乘积的高阶微商,他又将论文用拉丁语写出寄给了当时在柏林科学院任职的数学家欧拉。1755年拉格朗日19岁时,以欧拉的思路结果为依据,纯分析方法求变分极值。发展了欧拉变分法,为变分法奠定了理论基础。

柯西1789年8月21日出生于巴黎。父亲是一位精通古典文学的律师,与当时法国的大数学家拉格朗日与拉普拉斯交往密切。1807年至1810年柯西在工学院学习,曾当过交通道路工程师。由于身体欠佳,接受了拉格朗日和拉普拉斯的劝告,放弃工程师而致力于纯数学的研究。

扩展资料:

欧拉的相关成就:

1、数论:欧拉的一系列成奠定作为数学中一个独立分支的数论的基础。欧拉的著作有很大一部分同数的可除性理论有关。欧拉在数论中最重要的发现是二次反律。

2、代数:欧拉《代数学入门》一书,是16世纪中期开始发展的代数学的一个系统总结。

3、无穷级数:欧拉的《微分学原理》(Introductio calculi differentialis,1755)是有限差演算的第一部论著,他第一个引进差分算子。欧拉在大量地应用幂级数时,还引进了新的极其重要的傅里叶三角级数类。

参考资料来源:百度百科-欧拉

参考资料来源:百度百科-拉格朗日

参考资料来源:百度百科-柯西

伯努利是欧拉的师傅,是拉格朗日的师爷,是柯西的祖师爷。伯努利的师傅是莱布尼兹。伯努利还有一个徒弟叫洛必达,买走师傅的论文以自己的名义发表,就是洛必达法则。

熟悉计算机发展历史的人大都知道,美国科学家冯·诺依曼历来被誉为“电子计算机之父”。可是,数学史界却同样坚持认为,冯·诺依曼是本世纪最伟大的数学家之一,他在遍历理论、拓扑群理论等方面做出了开创性的工作,算子代数甚至被命名为“冯·诺依曼代数”。 物理学家说,冯·诺依曼在30年代撰写的《量子力学的数学基础》已经被证明对原子物理学的发展有极其重要的价值;而经济学家则反复强调,冯·诺依曼建立的经济增长横型体系,特别是40年代出版的著作《博弈论和经济行为》,使他在经济学和决策科学领域竖起了一块丰碑。无论史学家怎样评价,美籍匈牙利裔学者约翰·冯·诺依曼(John Von Neumann , 1903-1957)都不愧为杰出的全才科学大师。人们至今还在津津乐道,这位天才人物的少年时代,竟请不到一位家庭教师……事情发生在1931年匈牙利首都布达佩斯。一位犹太银行家在报纸上刊登启事,要为他11岁的孩子招聘家庭教师,聘金超过常规10倍。布达佩斯人才济济,可一个多月过去,居然没有一人前往应聘。因为这个城市里,谁都听说过,银行家的长子冯·诺依曼聪慧过人,3岁就能背诵父亲帐本上的所有数字,6岁能够心算8位数除8位数的复杂算术题,8岁学会了微积分,其非凡的学习能力,使那些曾经教过他的教师惊诧不已。父亲无可奈何,只好把冯·诺依曼送进一所正规学校就读。不到一个学期,他班上的数学老师走进家门,告诉银行家自己的数学水平已远不能满足冯·诺依曼的需要。“假如不给创造这孩子深造的机会,将会耽误他的前途,”老师认真地说道,“我可以将他推荐给一位数学教授,您看如何?”银行家一听大喜过望,于是冯·诺依曼一面在学校跟班读书,一面由布达佩斯大学教授为他“开小灶”。然而,这种状况也没能维持几年,勤奋好学的中学生很快又超过了大学教授,他居然把学习的触角伸进了当时最新数学分支——集合论和泛函分析,同时还阅读了大量历史和文学方面的书籍,并且学会了七种外语。毕业前夕,冯·诺依曼与数学教授联名发表了他第一篇数学论文,那一年,他还不到17岁。考大学前夕,匈牙利政局出现动荡,冯·诺依曼便浪迹欧洲各地,在柏林和瑞士一些著名的大学听课。22岁时,他获瑞士苏黎士联邦工业大学化学工程师文凭。一年之后,轻而易举摘取布达佩斯大学数学博士学位。在柏林当了几年无薪讲师后,他转而攻向物理学,为量子 力学研究数学模型,又使自己在理论物理学领域占据了突出的地位。风华正茂的冯·诺依曼,靠着顽强的学习毅力,在科学殿堂里“横扫千军如卷席”,成为横跨“数、理、化”各门学科的超级全才。“机遇只偏爱有准备的头脑”。1928年,美国数学泰斗、普林斯顿高级研究院维伯伦教授(O.Veblen)广罗天下之英才,一封烫金的大红聘书,寄给了柏林大学这位无薪讲师,请他去美国讲授“量子力学理论课”。冯·诺依曼预料到未来科学的发展中心即将西移,欣然同意赴美国任教。1930年,27岁的冯·诺依曼被提升为教授;1933年,他又与爱因斯坦一起,被聘为普林斯顿高等研究院第一批终身教授,而且是6名大师中最年轻的一名。在冯·诺依曼的一些同事眼里,他简直就不象是我们这个地球上的人。他们评价说:“你看,琼尼的确不是凡人,但在同人们长期共同生活之后,他也学会了怎样出色地去模仿世人。”冯·诺依曼的思维极快,几乎在别人才说出头几句话时,就立即了解到对方最后的观点。天才出自于勤奋,他差不多天都工作到黎明才入睡,也常常因刻苦钻研而神魂颠倒,闹出些小笑话来。据说有一天,冯·诺依曼心神不定地被同事拉上了牌桌。一边打牌,一边还在想他的课题,狼狈不堪地“输掉”了10元钱。这位同事也是数学家,突然心生一计,想要捉弄一下他的朋友,于是用赢得的5元钱,购买了一本冯·诺依曼撰写的《博奕论和经济行为》,并把剩下的5元贴在书的封面,以表明他 “战胜”了“赌博经济理论家”,着实使冯·诺依曼“好没面子”。另一则笑话发生在ENIAC计算机研制时期。 有几个数学家聚在一起切磋数学难题,百思不得某题之解。有个人决定带着台式计算器回家继续演算。次日清晨,他眼圈黑黑,面带倦容走进办公室,颇为得意地对大家炫耀说:“我从昨天晚上一直算到今晨4点半,总算找到那难题的5种特殊解答。它们一个比一个更难咧!”说话间,冯·诺依曼推门进来,“什么题更难?”虽只听到后面半句话,但“更难”二字使他马上来了劲。有人把题目讲给他听,教授顿时把自己该办的事抛在爪哇国,兴致勃勃地提议道:“让我们一起算算这5种特殊的解答吧。”大家都想见识一下教授的“神算”本领。只见冯·诺依曼眼望天花板,不言不语,迅速进到“入定” 状态。约莫过了5分来钟,就说出了前4种解答,又在沉思着第5种……。青年数学家再也忍不住了,情不自禁脱口讲出答案。冯·诺依曼吃了一惊,但没有接话茬。又过了1分钟,他才说道:“你算得对!”那位数学家怀着崇敬的心情离去,他不无揶揄地想:“还造什么计算机哟,教授的头脑不就是一台‘超高速计算机’吗?”然而,冯·诺依曼却呆在原地,陷入苦苦的思索,许久都不能自拔。有人轻声向他询问缘由,教授不安地回答说:“我在想,他究竟用的是什么方法,这么快就算出了答案。”听到此言,大家不禁哈哈大笑:“他用台式计算器算了整整一个夜晚!”冯·诺依曼一愣,也跟着开怀大笑起来。冯·诺依曼对科学做出的最大贡献当然是在计算机领域。1944年仲夏的一个傍晚,戈德斯坦来到阿贝丁车站,等候去费城的火车,突然看见前面不远处,有个熟悉的身影向他走过来。来者正是闻名世界的大数学家冯·诺依曼。天赐良机,戈德斯坦感到绝不能放过这次偶然的邂逅,他把早已埋藏在心中的几个数学难题,一古脑儿倒出来,向数学大师讨教。数学家和蔼可亲,没有一点架子,耐心地为戈德斯坦排忧解难。听着听着,冯·诺依曼不觉流露出吃惊的神色,敏锐地从数学问题里,感到眼前这位青年身边正发生着什么不寻常的事情。他开始反过来向戈德斯坦发问,直问得年轻人“好像又经历了一次博士论文答辩”。最后,戈德斯坦毫不隐瞒地告诉他莫尔学院的电子计算机课题和目前的研究进展。冯·诺依曼真的被震惊了,随即又感到极其兴奋。从1940年起,他就是阿贝丁试炮场的顾问,同样的计算问题也曾使数学大师焦虑万分。他急不可耐地向戈德斯坦表示,希望亲自到莫尔学院看一看那台尚未出世的机器。多年后,戈德斯坦回忆说:“当琼尼看到我们正在 进行的一件工作时,他就双脚跳到电子计算机旁”。莫契利和埃克特高兴地等待着冯·诺依曼的来访,他们也迫切希望得到这位著名学者的指导,同时又有点儿怀疑。埃克特私下对莫契利说道:“你只要听听他提的第一个问题,就能判断出冯·诺依曼是不是真正的天才”。骄阳似火的8月,冯·诺依曼风尘仆仆地赶到了莫尔学院的试验基地,马不停蹄约见攻关小组成员。莫契利想起了埃克特的话,竖着耳朵聆听数学大师的第一个问题。当他听到冯·诺依曼首先问及的是机器的逻辑结构时,不由得对埃克特心照不宣地一笑,两人同时都被这位大科学家的睿智所折服!从此,冯· 诺依曼成为莫尔学院电子计算机攻关小组的实际顾问,与小组成员频繁地交换意见。年轻人机敏地提出各种设想,冯·诺依曼则运用他渊博的学识把讨论引向深入,逐步形成电子计算机的系统设计思想。冯·诺依曼以其厚实的科技功底、极强的综合能力与青年们结合,极大提高了莫尔小组的整体水平,使莫尔小组成为“人才放大器”,至今依然是科学界敬慕的科研组织典范。人们后来把“电子计算机之父”的桂冠戴在冯·诺依曼头上,而不是第一台电脑的两位实际研制者,这并不是没有根据的。莫契利和埃克特研制的ENIAC计算机获得巨大的成功,但它最致命的缺点是程序与计算两分离。指挥近2万电子管“开关”工作的程序指令,被存 放在机器的外部电路里。需要计算某个题目前,埃克特必须派人把数百条线路用手接通,像电话接线员那样工作几小时甚至好几天,才能进行几分钟运算。在ENIAC尚未投入运行前,冯·诺依曼就已开始准备对这台电子计算机进行脱胎换的改造。在短短10个月里,冯·诺依曼迅速把概念变成了方案。新机器方案命名为“离散变量自动电子计算机”,英文缩写EDVAC。1945年6月,冯·诺依曼与戈德斯坦等人,联名发表了一篇长达101页纸洋洋万言的报告,即计算机史上著名的“101页报告”。这份报告奠定了现代电脑体系结构坚实的根基,直到今天,仍然被认为是现代电脑科学发展里程碑式的文献。在EDVAC报告中, 冯·诺依曼明确规定出计算机的五大部件: 运算器CA、 逻辑控制器CC、存储器M、输入装置I和输出装置O,并描述了五大部件的功能和相互关系。与ENIAC相比,EDVAC的改进首先在于冯·诺依曼巧妙地想出“存储程序”的办法,程序也被他当作数据存进了机器内部,以便电脑能自动一条接着一条地依次执行指令,再也不必去接通什么线路。其次,他明确提出这种机器必须采用二进制数制,以充分发挥电子器件的工作特点,使结构紧凑且更通用化。人们后来把按这一方案思想设计的机器统称为“诺依曼机”。自冯·诺依曼设计的EDVAC计算机始,直到今天我们用“奔腾”芯片制作的多媒体计算机为止,电脑一代又一代的“传人”,大大小小千千万万台计算机,都没能够跳出“诺依曼机”的掌心。冯·诺依曼为现代计算机的发展指明了方向,从这个意义上讲,他是当之无愧的“电子计算机之父”。当然,随着人工智能和神经网络计算机的发展,“诺依曼机”一统天下的格局已经被打破,但冯·诺依曼对于发展电脑做出的巨大功绩,永远也不会因此而泯灭其光辉!第二次世界大战结束后,由于种种原因,ENIAC研制小组发生令人痛惜的分裂,“内存程序”的机器无法被立即研制。冯·诺依曼、戈德斯坦和勃克斯三人返回了新泽西州普林斯顿大学。1946年,他们为普林斯顿高级研究院先期研制出新的IAS计算机(IAS即高级研究院英文缩写)。冯·诺依曼的归来,在普林斯顿掀起了一股强劲的电脑热。一向冷冷清清的研究院沸腾了,大批专业人才仰慕他的大名,纷至沓来,使普林斯顿高级研究院一时间成为美国电子计算机的研究中心。 冯·诺依曼乘热打铁,着手将他那101页计算机方案付诸实施。1951 年,这台凝聚着他多年心血的EDSAC计算机终于面世,程序储存在机器内部后,效率比ENIAC提高数百倍,只用了3563个电子管和1万只晶体二极管,以1024个水银延迟线来储存程序和数据,消耗电力和占地面积亦只有ENIAC的三分之一。在冯·诺依曼研制ISA电脑的期间,美国涌现了一批按照普林斯顿大学提供的ISA照片结构复制的计算机。例如,洛斯阿拉莫斯国家实验室研制的MANIAC,伊利诺斯大学制造的ILLAC。雷明顿·兰德公司科学家沃尔(W. Ware)甚至不顾冯·诺依曼的反对,把他研制的机器命名为JOHNIAC(“约翰尼克” ,“约翰”即冯·诺依曼的名字)。冯·诺依曼的大名已经成为现代电脑的代名词。在普林斯顿,冯·诺依曼还利用计算机去解决各个科学领域中的问题。他提出了一项用计算机预报天气的研究计划,构成了今天系统的气象数值预报的基础;他受聘担任IBM公司的科学顾问,帮助该公司催生出第一台存储程序的电脑IBM 701;他对电脑与人脑的相似性怀着浓厚的兴趣,准备从计算机的角度研究人类的思维;他虽然没有参加达特默斯首次人工智能会议,但他开创了人工智能研究领域的数学学派;他甚至是提出计算机程序可以复制的第一人,在半个世纪前就预言了电脑病毒的出现……1957年2月8日,冯·诺依曼身患骨癌,甚至没来得及写完那篇关于用电脑模拟人类语言的讲稿,就在美国德里医院与世长辞,只生活了 54个春秋。他一生获得了数不清的奖项,包括两次获得美国总统奖,1994年还被追授予美国国家基础科学奖。他是电脑发展史上最有影响的一代伟人。

就是我啊冯·诺依曼1903年12月28日生于匈牙利,1957年2月8日死于美国。我想知道计算机的人一定对他不会陌生,它可以称为计算机之父了,现在我们面前计算机内采用的体系结构就是以他的命名的冯·诺依曼结构。冯·诺依曼小时就十分聪明,6岁时就能够心算8位数字的除法,它在匈牙利接受了他的初等教育,并于18岁发表了第一篇论文!在1925年取得化学文凭后,他把兴趣转向了喜爱已久的数学,并于1928年取得博士学位,它在集合论等方面取得了引人注目的成就。1930年他应邀访问普林斯顿大学,这所大学的高等研究所于1933年建立,他成为最早的6位数学教授之一,直到他去世,它一直是这个研究所的数学教授。后来他为成为美国公民。1936到1938图灵(另一位伟大的计算机科学家)是普林斯顿大学数学系的研究生,冯·诺依曼邀请图灵当他的助手,可是图灵钟情于剑桥而未能如冯·诺依曼所愿,一年后,二次世界大战使图灵卷入了战争,1934年图灵曾经发表的论文"On Computable Numbers with an Application to the Entscheidungs-problem"不可不提,在这篇论文中,图灵提出了通用机的概念,冯·诺依曼应该知道了这个思想,至少后来他是不是应用了这个思想却不得而知。冯·诺依曼迅速发现了这种后来被称之为计算机的通用机器的用处在于解决一些实际问题,而不是一个摆设,因为战争的原因冯·诺依曼开始接触到许多数学的分支,使他开始萌生了使用一台机器进行计算的想法,虽然我们现在都知道第一台计算机ENIAC有他的努力,可是在此之前他碰到的第一台计算机器是Harvard Mark I (ASCC)计算器。冯·诺依曼有一种非凡的沟通能力,能够在不同的科学家之间担任一个中介者的角色,虽然这些科学家并不想让别人知道自己的秘密。冯·诺依曼建造的机器名为IAS机,一些由国家实验室建造的计算机不过是IAS机的复本而已。战后冯·诺依曼继续致力于IAS机的开发工作,并帮助解决氢弹研制中的计算问题。在他死后,它在计算机界的名声并不大,以至于他的传记作家对他在计算机上的贡献也只一笔带过。

发表了人生第一篇论文

感觉自己有所成就,发表了第一篇论文,让自己心里有所自豪,毕竟是第一篇嘛,以后还会有更多成就。

应该会很有成就感吧,虽然我没有发表过任何论文。

3月30日是英国艺术史家E.H.贡布里希(E.H. Gombrich)诞辰110周年,他的影响不只局限在学界,更因《艺术的故事》一书打开了普通人观看艺术的大门。记者/ 薛芃英国艺术史家E.H.贡布里希一个“陌生而迷人的领域”1935年,贡布里希26岁,刚刚在维也纳大学获得博士学位,当时也正是维也纳学派活跃的时期,但因为犹太人的身份,也因为经济不景气,他没找到工作,赋闲在家。出版人瑙拉特(Walter Neurath)找到他,邀他将一本用英文写给孩子的历史书翻译成德语,他翻看了一下,觉得自己能直接用德语写一本更好的。后来贡布里希的孙女列奥尼记述了在此之前的一段往事。写博士论文期间,贡布里希经常与一位朋友的女儿通书信,小姑娘想知道他一天到晚都在干什么,于是他就必须用轻快简单的文字来告诉孩子自己博士论文的内容——意大利文艺复兴时期画家、建筑师朱利奥·罗马诺的艺术。在这段枯燥的学术写作期间,与小朋友的通信成了一个调剂放松的方式,这也让他意识到,用简单的语言讲复杂的专业概念是有价值的,并且他能够做到。瑙拉特看了样稿后很满意,并要求贡布里希在短短六周之内完成那本历史书的写作,以赶上原定的出版时间。1936年,《世界小史》出版,好评不断,出版社立刻敦促他再写一本类似的艺术史通俗读物,一隔15年,贡布里希在1950年才写成这本《艺术的故事》。他在前言中写道,写这本书时,他把书那头的阅读对象想象成了一位“刚刚独自发现这个艺术世界的少年读者”。但给少年写的书并不意味着浅薄,在他看来,给年轻人的书无需有别于给成年人的书,甚至还有一个更高的要求,就是一旦多用术语或装腔作势,就会露出“掉书袋”和“学究气”的马脚,深入浅出、润物无声才是他希望达到的境界。虽然通俗读物的写作是很多学者的禁忌,但要真的做到这种境界也绝非易事。1909年,贡布里希出生在一个维也纳的中产阶级家庭。父亲是律师,与象征主义诗人冯·霍夫曼斯塔尔为友;母亲是一位钢琴家,在当时颇有名气,与捷克音乐家马勒和勋伯格都很要好。贡布里希从小在人文主义和音乐氛围浓郁的城市和家庭中长大,这也让他终身不仅是位艺术写作者,也是一位忠实的古典音乐热爱者。贡布里希曾经在谈及音乐影响的自述中写道,起初自己更注重音乐本身,因此常听一些名气不大的音乐家的作品,初听很迷人,但听久了总觉得缺少点什么,“他们的音乐中没有惊讶,空洞琐碎,莫扎特如果要写,一定会写得比较好”。他发现这些不知名的作品不经听,经不住推敲,而那些伟大音乐家的丰富性和巨大创造力是会历久弥新的。“如果你问我从音乐中学到了什么,我认为我学到的是,人们得逐渐学习才能对大师们产生巨大的崇敬。”有意思的是,在《艺术的故事》开篇导论中,贡布里希就亮出了自己的这个观点:“根本没有艺术这种东西,只有艺术家。”他推崇来自个体的创造力,或许与早年的音乐感悟有关,把艺术的叙述对象聚焦在人身上,对于大众而言,无疑也是更好接受的。他把艺术这个东西拽下了神坛,那些博物馆里挂在墙上的、摆在橱窗里的本不是什么神秘之物,不过是“一些人为另一些人制作的东西”。而每个人喜欢某一张画,又或是不喜欢某一个雕塑,任何理由都是说得通的,只要你喜欢,能引发情感上的共鸣、感官上的愉悦,就是好作品。这样一来,贡布里希很快就把读者与艺术拉近了,当心态放低,艺术也就不再那么严肃了。写作《艺术的故事》时,贡布里希其实已经远离艺术一段时间了。1936年,为了躲避纳粹的迫害,一家人离开了维也纳,来到伦敦定居。贡布里希开始进入瓦尔堡研究院工作,后来“二战”爆发,贡布里希中断了学术研究,进入英国广播电台(BBC)做监听敌方电台的工作。结束几年的监听工作后,他理所当然要回到艺术史的工作中去。为了敦促自己系统性地重新梳理一遍艺术史,也为了完成多年前的出版任务,于是开始了《艺术的故事》的写作。他后来回忆说:“我之所以能写成这本书,是因为我把自己的记忆作为过滤器,我在写它时几乎没看任何参考书,我只是记下隔了这么多年之后我还记得的有关艺术史的东西,我把它写成一个故事形式,所以叫《艺术的故事》。”也正因如此,它能成为一本结构清晰、环环相扣的个人化著作,而有别于那些面面俱到的、翔实的皇皇巨著。贡布里希在讲述从原始时期到20世纪的艺术发展历程中,嵌入了自己的理论体系,既“所见”和“所知”的关联与矛盾性。什么意思呢?比如我们知道一个人正常的长相,眼鼻耳嘴、身体四肢虽然各不相同,但逃不出规律性的结构,这是“所知”;但同样是画一个人,达·芬奇、伦勃朗、毕加索画得各不相同,这是“所见”。千百年来,“所知”和“所见”是所有艺术家都面临的问题,看到了什么,又画出了什么,怎样掌握规则、凌驾于规则,又创造出新的规则,最终画成什么样子决定了你成为一位怎样的艺术家。在这对关系中,千差万别的思考和表现,成就了千差万别的艺术风格。在贡布里希这里,没有艺术的优劣论,他希望看画的人“不要随意指责画家画得不正确,摒弃陋习和偏见,接受新画法。有一颗赤子之心,捕捉每个暗示,感受内在和谐,排除浮华辞令和现成套语的干扰”。艺术因此而走进每个人心中。一位古典学者的野心1950年,当《艺术的故事》在英国费顿出版社出版后,迅速成了畅销著作,但对于贡布里希而言,这本书并不是他的本职工作。他说自己那时“过着两种生活”,在读者眼里,他是《艺术的故事》的作者,另一面,他是瓦尔堡研究院的学者。这两个身份看似不冲突,但在瓦尔堡研究院,大概不会有人对《艺术的故事》感兴趣,因为它太通俗了,同事们对他写的普桑或达·芬奇的论文更感兴趣。当时的院长扎克斯尔也明确表示希望贡布里希不要再写通俗书了,回归到学术研究上去。但这本书的出版的确改变了他的人生。“在那之前,我只是一名清贫的学者,和外界没有联系,在工作中也默默无闻。”在那之后,贡布里希声名鹊起,公众活动邀约不断,先后在伦敦大学、牛津大学、剑桥大学、伦敦皇家艺术学院、哈佛大学等高校担任客座教授。但直至退休,他都没有离开过瓦尔堡研究院。阿比·瓦尔堡(Aby Warburg)是德国艺术史家,他的贡献之一是建立了瓦尔堡图书馆,后来从图书馆衍生出了研究院,以图像学研究闻名,培养出了一大批重要的艺术史学者。1929年,瓦尔堡病逝,几年后,图书馆和研究院陆续从汉堡大学搬迁至伦敦大学,贡布里希来到研究院时,也是研究院刚刚在伦敦落脚的时候。在瓦尔堡期间,贡布里希的授课从漫画到心理学,从新柏拉图主义到占星术,覆盖面很广,而无论什么领域,瓦尔堡研究院的同仁们始终在解决一个问题,即“古典遗产的意义是什么”,他们希望探究古代世界的记忆,或是延续古典传统。在后来的学术研究中,贡布里希的出发点也是如此。值得一提的是,贡布里希发表的人生中第一篇论文是《一首中国诗译成德文的一些可能性》。在1930年,他探讨了诸如《静夜思》这样的中国古诗如何翻译成德语的问题。青年时期,他的母亲曾收过一名中国学生,叫李唯宁,与贡布里希成了朋友,并教他汉语和中国文化,后来李唯宁回国担任过上海音乐学院院长,为徐志摩的那首《偶然》谱了曲。基于这种种成长因素和历史背景,贡布里希反对激烈的民族主义和所谓“时代精神”,他希望可以回归人文主义的精神关照。1960年,《艺术与错觉》出版,这是1956年他在华盛顿梅隆讲座的基础上编写而成的。20世纪初的艺术史学界盛行形式主义的研究方法,最重要的学者当属瑞士人沃尔夫林(Heinrich Wolfflin),他从绘画的空间、构图、线条这些最基本的概念入手来分析一幅作品,这种方法影响了很多人,当然也包括贡布里希。但贡布里希的野心是跳脱出来,用心理学的方法研究。20世纪中叶,跨学科的艺术史研究越来越盛行,艺术不仅仅是艺术,它与社会学、人类学、心理学都发生着关联,《艺术与错觉》就是在这时完成的。1972年,他又完成了这个系列研究的另一半《象征的图像》。到了《象征的图像》,他特别说明了这些研究成果不仅是给艺术研究者看的,甚至也给一些专业的科学家看。《偏爱原始性》是贡布里希的最后一部著作,在他去世一年后才正式出版。一直以来,贡布里希都对原始主义感兴趣,也零零散散写过一些论文,但始终没有系统的讨论。将这项工作放在了人生的晚期,正如很多艺术家越是到了晚年,就越是想要回归天真与稚拙的艺术手法那样,贡布里希也是试图用一个新的视角,去探讨这股复古潮流,回到原点。艺术史通常都是写进步的历史——技艺的进步,比如绘画中透视法、明暗法的出现和改良,或是艺术风格的变化,比如文艺复兴时期崇尚自然的思想是如何颠覆中世纪禁锢的,古典主义又如何走向了现代主义,风格上的变化未必可称为进步,但总是像一个螺旋似的,是在不断探索、走向未知的。但《偏爱原始性》则关注艺术趣味的反向发展,艺术是如何“走向粗陋,走向笨拙,走向天真,走向异域,走向原始,走向复古”。这本书的副标题是“西方艺术和文学中的趣味史”,也就是说,贡布里希不仅写艺术,更写到了文学和其他视觉文化范畴。该书出版后,《纽约书评》发表了一篇评论,作者是普林斯顿高等研究院的社会科学教授格尔兹(Clifford Greertz),他说贡布里希是“欧洲最后一位人文主义者”,综合地、科学地研究西方高雅文化,同时保卫那种文化,同时对抗现代野蛮、可怕的简单化。

慢慢来,比较快。刚踏入实验室,对SCI论文还没有概念,当时想象中作为一名小硕士,能够发一篇中文核心就算厉害了,英文是我不敢想的。 现阶段研三,面临毕业压力,我的第一篇sci也顺利接收,总的来说,还是顺利。从投稿到接受历时88天,投的是PCTOC,大类三区,影响因子2.73,尽管影响因子比较低,但作为我硕士阶段的一个小成果,也挺有成就感。 2021年11月24投稿,2022年1月4返修,审稿意见是大修,补了一点实验数据,审稿人也提出了我论文的语言问题,期刊邮件里给了8周的返修时间,正好是过年期间。论文返修回来时正好遇上搬实验室,第一周基本都在忙搬实验室的事情,也没有时间修改论文。因此决定寒假留校改论文,过年也就没回家。 直到过完年,我的文章改得差不多了,当时打算送公司润一下色,导师说拿给实验室巴基斯坦的博后改一改语法,当时2.15号,我那天鬼使神差的登录了期刊官网,鬼使神差的发现一个2.18的日期……才发现官网结稿日期和期刊邮箱给的不一致,连忙发了返修延期申请,也和导师商量了。 延期申请邮件发了之后期刊并没有回复,最终我还是在2月18按时提交了返修稿,只是没有来得及去润色也没有给博后修改就提交了。意外的事,提交后两天,2月20就收到了接受通知。 这篇文章一路相对很顺利,少不了我的导师的指导,能遇见这样一位认真负责的导师也是我人生一大幸事。 之前有跟导师提过读博的事情,现在文章有了,又找了导师跟他说了我希望留下来硕博连读。最终导师也同意了。 现在一下整个人都放松下来了,不用再为毕业发愁,也不用为去哪里读博发愁…… 未来的路还很长,读博可能也远比我想象中的更有压力和挑战,但慢慢来,希望总是会有的。

学生的第一篇论文发表了

这可以说是非常厉害的水平了,一般情况下对研究生才会要求Science论文发表

本人第一篇SCI文章发表于2014年,是我硕士文章的翻译版。 由于学科专业为航空工程,没有影响因子很高的期刊,相比于其他专业来说,发表SCI文章相对困难。 我的文章发表很曲折,但结果还算好,最后发表在Aerospace Science and Technology上,影响因子2.05,在航空航天类中算是很高的期刊了。 研究生一年级边上课边科研,学期结束时基本已经把研究内容做完,也得出了一个比较好的结论,导师评价“世界前沿”。 研二整理结果,学校发表一篇EI期刊满足毕业要求,所幸很顺畅,两个月退修,一个月录用,可以毕业了。 研三很忙,出国申请、面试工作。导师看我每天心不在焉,说你再整一篇英文文章吧,加点研究内容,对你以后的职业发展或学术发展都有好处。 当时人整个很浮躁,恨不得立刻离开校园,导师想了个办法,拉一个博士师兄进来跟我一起做这个课题,文章我来当一作,师兄当通讯。 师兄人很好,毕业想留校,还差点东西。他跟勤奋,做东西很快,做完后每天都会催我整理结果。 我一看师兄这么玩命了,自己肯定不能懒惰,连着加班两个星期翻译完草稿,因为忙着毕业和工作,没跟导师商量,直接就把文章投出去,投给Acta Astronautica。 导师知道后也没说啥,静待消息呗。后来我拿到了美国大学的全奖offer,瞬间轻松下来,每天玩的不亦说乎。俩月后,文章悲剧,除了说创新性不太够,主要问题是语言不地道,语法太差。 自我感觉英语良好,说我英语不地道真的不能接受,去问老板,老板说文章写的确实不行。 本来期待老板给改改,那段时间老板在忙一个大本子,还经常出国,很没时间,让我自己找个语言润色机构,他给出钱。 不到一个星期,花了2000多,修改好,投出去。半年后录用,审稿意见很好,语言没问题后,文章的真正价值就出来了,再过几个月,成功发表。 其实第一篇SCI的文章成功发表,给人带来的主要是心理层面的鼓励:“没想到我也能发表不错的英文SCI!”打破这个心结后,第二篇、第三篇、第四篇文章就顺理成章了。 当然,第一篇文章有语言润色公司的帮助,自己心里其实是有不甘的,所以后面几篇文章全是自己整理、润色,质量都没问题,顺利发表。 从我这几年发表几篇SCI文章的经历来看,发表SCI不难,我自己也总结了几条心得体会,想与大家交流: 英语写作,可谓是很多人发表SCI期刊的最大拦路虎,基本要求是写作准确、表达简洁、用词地道。 在我几万字的英语写作后,有几点语法方面的经验,大家也可以参考: 先写这么多吧,等赞数上1000再增加,嘿嘿。 《一年6万美元,普通学渣如何拿到美国博士全奖》 《江歌案-别让民意越过了法律》 《我为什么反对减负和素质教育》 《战争与股市,人性贪婪最直观的展现》 《我喜欢的那个姑娘,像武藤兰》

感觉是个值得纪念的事情,非常的有意义,毕竟是人生的第一次。

一、话说回来,这年头要发CNS,工作的出色程度,通讯作者的人脉这些都是缺一不可的。平平无奇的小兵工作再出色,想直接发正刊难度会比大牛组高出很多倍,这就是现在的科研现实,资源都掌握在少数人手里,认清并接受这一点也不是坏事。能在身边见到这样一个真正意义科研天才,说实话十分震撼。这之前我也无法想象本科生发science这种事,更别说就发生在我身边,但现在看来,虽然肯定有些运气成分,但足够强的能力是足以击破你们眼中的牢不可破的所谓阶级壁垒的。

其实一开始看到这个新闻的时候我也是往这方面想的,毕竟一个普通本科生哪有那么容易就榜上国际著名教授,还能受到谷歌学术引用超10万的大佬亲自指点。但即使是学二代或者其他人猜测的别的背景,都无法掩盖他发的文章是science这个事实。共同一作本身就是他对这篇工作实际贡献最好的证明。而且一个本科生做出science共一的成果,其中受到的训练也是99%以上的学生无法企及的。

二、在高中比赛中,李显明对有机化学的热爱和天赋。 邀请我们向我们的竞赛学生教授有机化学的教授们都非常惊讶。 设定,世界金牌选手都觉得他的有机水平不亚于自己,但这一切在2017年8月末的预赛中戛然而止。李白没能通过测试,30只拿到10分 点有机测试。 省队仅获得全省一等奖。 高三伊始,意识到自己又要参加高考的李,凭借聪明的头脑和不懈的努力,迅速从年级垫底爬到了前100名,取得了不错的成绩。 高考650分。 成绩被天津大学录取。

上大学后,他如鱼得水,投身于自己喜欢的科学研究,自学计算化学。 大一的学期还没结束,我的小学期也还没结束。 他们已经放假了。 我在复习最后一门专业课的时候,他借用了张校区。 嘉也来我们学校图书馆学习。 当时在他的电脑上看到了一些有机+计算的东西。 无论如何,我无法理解它。 他还笑着说,李院士已经在世界领先了。 好吧,至少它是领先的国家。

三、病毒刚出现的那一年,20年来,大家都窝在家里玩。 他让我出来学习,他还带了一台电脑来做数学。 当时他告诉我,他组的一年级学生跟着一个外国学生。 计算领域的大牛做到了,他跟着学长的介绍。 去年5月,发表了一篇ACS催化,纯计算的文章第二篇,第一篇是前辈,也很给力截至目前,Science已经发表了两篇论文。 一年多来,我一开始就准备投票给 Nature。 没成功的时候跟我说这可能是第二个作品,看能不能一共拿下最终的实验结果证实了他之前预测的机制,也没事至于为什么是Science,有兴趣的可以去看看。 降解条件非常温和,可以说是该领域的一个突破。

总结他的成功经验,首先是他对科学研究的绝对热爱。 他几乎痴迷于有机化学。 二是他的才华。 比赛归来一个月后,他从成绩垫底跃升到了前100名。 中流 985)可见到最后,他一定要懂得抓住机会,合理利用身边的一切资源。 刚进大学的时候,他就有了明确的目标,一直在向上攀登,最终赢得了ucla中美院士的青睐。 非常成功的工作。

我也理解评论部分的怀疑。 毕竟身边没有这么好的人,千万不要相信。 认识他这么多年的朋友都觉得他厉害,更何况隔着一道屏风。 你拿着键盘呢李和我一样,只是一个普通二线城市的普通工薪家庭。 他的父母也和我们的父母差不多,跟所谓的学霸、权贵、py,甚至教育界都没有关系。 从他的经验中可以学到很多东西。 热爱这个职业并坚持下去。 大家眼中的“天坑职业”,比如“生化材料”,其实有一个优势:努力可以带来回报。 只要你热爱你的专业,在这个领域努力,努力做实验,发表文章,你一定会有相应的成果。 发表SCI的难度远低于数学物理等基础科学。

四、学生在接触UCLA教授之前,熟悉教授领域的大部分作品,了解教授的品味和工作,明白自己的优势在哪里,才能受到教授的青睐。 这对于大家找导师也很有帮助。 很多学生都是为了名利和学科去找导师的,但是如果没有扎实的科研基础/人脉,提前详细了解导师是很重要的。 远见和努力固然重要,但远见更重要。 学生选择了计算化学这个有前途的行业,为了得到他想要的主要结果,做了“大胆的假设和仔细的验证”。 如果选择其他成熟方向之一,只能做一些枝条的修剪,恐怕出几本杂志就够了。 是眼光、运气和天赋。 如果你努力,前两个就可以做到,这已经保证了你有很多SCI+大牛导师。 最后一点要靠运气,但也不是不可能实现的。 希望以后像他这样优秀的人才越来越多。 祝他好运。

文章的共同作者是一名初中校友。 他是我高中一年级的同学,也是我化学竞赛班的两年同学。 一位多年的朋友说,他的一些事迹应该反映他。 我们高中根据每学期期末考试排名分班。  1-50 年级和 51-100 年级分别分为子类别 1 和 2。 我们属于第二个子类。 上课期间,不得自学比赛内容。 李普利多次违反这条规则,偷偷看比赛书,刷比赛练习。 他多次被各科老师抓到,但他还是没变。 在他的不懈努力下,高中最后一个学期决定在学期末分班。 考试中取得好成绩的有451人,理科有460人左右。 他们成功地退回到并行课程。 平行班相对不那么严谨,老师也不太在意竞争。

欧拉几岁发表了第一篇论文

欧拉生平欧拉(Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。欧拉出生于一个牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一·伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。 1727年,在丹尼尔·伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一·伯努利,成为物理学教授。 在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。 1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典著作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209…… 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。 在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了著名的哥尼斯堡七桥问题,创立了拓扑学。欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。

欧拉 (Leonhard Euler 公元1707-1783年) 欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导. 欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身". 欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年. 欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法." 欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了. 1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了. 沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久. 欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题. 欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算". 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等. 数学家欧拉 欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。 欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。 尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。 欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式: ,又把三角函数与指数函联结起来。 在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式 中。 欧拉在研究级数时引入欧拉常数C, 这是继π 、e 之后的又一个重要的数。 欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。 欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。 在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。 古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。 同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。 欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论。 正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题——计算慧星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。 他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和慧星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。 自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。 这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支——变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。 作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。 欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了"。一位科学巨匠就这样停止了生命。 历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。 由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉。大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师。"被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。

欧拉生平 欧拉(Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。欧拉出生于一个牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一·伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。 1727年,在丹尼尔·伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一·伯努利,成为物理学教授。 在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。 1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典著作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209…… 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。 在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了著名的哥尼斯堡七桥问题,创立了拓扑学。 欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。

数学家欧拉 欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。 欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。 尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。 欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式: ,又把三角函数与指数函联结起来。 在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式 中。 欧拉在研究级数时引入欧拉常数C, 这是继π 、e 之后的又一个重要的数。 欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。 欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。 在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。 古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。 同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。 欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论。 正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题——计算慧星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。 他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和慧星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。 自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。 这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支——变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。 作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。 欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了"。一位科学巨匠就这样停止了生命。 历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。 由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉。大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师。"被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。

  • 索引序列
  • 发表了第一篇论文
  • 18岁发表了第一篇论文
  • 发表了人生第一篇论文
  • 学生的第一篇论文发表了
  • 欧拉几岁发表了第一篇论文
  • 返回顶部