首页 > 职称论文知识库 > 把数学建模论文发表到期刊

把数学建模论文发表到期刊

发布时间:

把数学建模论文发表到期刊

有一定意义的,可以让老师优先选择你。因为是数学建模方面的论文,理工老师都很偏爱数学逻辑强的学生,你在给老师发简历的时候,老师会倾向选择你。

双刃剑。说明自己不喜欢本专业或者在本专业上没有优势,以至于不在本专业下功夫,本专业发不了文章。如果你有本专业的文章,就另说。只有别的领域的文章,只会是负面影响。

国际会议,研讨会会议等等《数学建模及其应用》是中国工业与应用数学学会的会刊自创刊以来,杂志坚持刊登以建模为主要内容的应用数学研究成果,用数学建模及方法解决科学、工程技术和经济等应用问题以及建模教学研究的成果,为从事数学建模研究和教学的广大高校师生以及工业界相关专家提供了一个学习、借鉴及交流的平台。注重于数学建模方法和理论方面的学术性研讨,针对目前数学建模竞赛中的热点问题进行专题报告,探讨数学建模的发展趋势,让更多老师参与到数学建模的理论和方法研究,提高各高等学校数学建模研究和教学水平,创新学生数学建模活动,推动数学建模的快速发展。

只要是合法期刊就行了

数学建模论文发表到sci

首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体:1. 问题重述主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。2. 模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。3. 符号说明将你要建立的模型中的一些参量用符号代替表示。4. 模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法5. 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。6. 模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。7. 参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。如果楼主需要看论文样式的话,推荐一个网站:这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。

1、问题陈述2、模型假设3、模型的建立与求解4、模型验证5、结果分析6、提出新方案7、参考文献

是。数学建模容易发sci一区,将所有SCI期刊按影响因子排序,前5%是一区,前20%是二区,前50%是三区,剩下的是四区。

审核比较快的期刊,这个其实没有多快的,都是比较慢的,都是在3-4个月左右,慢的有的得5-6个月,也是有的。快的可能是2个月吧。这个也没有一个期刊名单说哪个期刊审核比较快,不是说二区三区的就审核慢,四区的就审核快,不一定的,不同的刊物不一样的。如果你着急发表,去淘淘论文网上看下,那边有一些可以相对快一点发表,也只是相对快而已。

数学建模论文发表到哪里

给您推荐《科技传播》杂志 国家级详见百度空间

全国组委会选择几篇比较优秀的一等奖论文发表在《工程数学学报》(增刊)上

可以发表的,我前几天有个同事的论文获得过一等奖,然后还拿去发表了,还发表在核心期刊上呢,既然你的论文可以获得一等奖,说明你论文的质量不差的,直接找个核心期刊杂志社,肯定会录用的,因为论文质量好啊,数学类的,就投河南大学主办的<数学季刊>吧,核心期刊,希望你有好运

这个需要根据具体情况而定吧。比如,您现在是学生还是老师,是评具体职称的,还是别的用途等……需要的话你可以具体的向我咨询。空间里有相关的资料,你可以了解一下的。

数学建模期刊投稿

个人觉得一般的数模论文在国际会议上投稿比较难。因为我们参加数模比赛所解决的问题偏向于应用,如果能用合适的模型与算法去解决好题中给出的问题就已经很好了。也就是说,往往数模竞赛考察的是模型算法的应用能力而不是创造能力。也许能够对现成的算法进行一些修改,但是本质变动不大。这就很难在国际高水平会议发表论文。倘若你真的提出了新的算法与模型,并具有很好想法在里面可能会好一些。或者你的模型对问题的解决确实很适用,那么也可以投一些偏向于相关领域应用的会议或期刊。

你首先要找到你想投稿的国际会议地址,上面会有很多信息如会议主题、会议时间地址、会议征稿范围、会议投稿方法和注意事项等信息。一般会议都是E-mail投稿,直接将你的论文按照会议提供的模板调整好格式和版面,然后发送过去即可,很简单。部分会议不支持E-mail投稿,会让你注册一个esaychair账号投稿。总之数学建模文章最好要有测试结果,而且引言部分做做前人成果对比分析。如果找不到合适的国际会议,给你一个地方:,专门搞EI会议论文的,1周搞定录用,比较权威,看下有没有合适的国际会议。

可以发表的,我前几天有个同事的论文获得过一等奖,然后还拿去发表了,还发表在核心期刊上呢,既然你的论文可以获得一等奖,说明你论文的质量不差的,直接找个核心期刊杂志社,肯定会录用的,因为论文质量好啊,数学类的,就投河南大学主办的<数学季刊>吧,核心期刊,希望你有好运

2022年第三届MathorCup高校数学建模挑战赛—大数据竞赛奖励细则MathorCup高校数学建模挑战赛(以下简称竞赛)是由中国优选法统筹法与经济数学研究会主办的面向全日制普通高等院校在校学生的学科竞赛活动。根据竞赛的宗旨,为了切实提供有价值的奖励政策,鼓励广大师生参与此次竞赛中,特制订本规则。1、 金银铜奖:所有参赛队伍(不分组别、不分赛题)中评选:金奖1支队伍(奖金1万元税前)、银奖2支队伍(奖金5000元税前)、铜奖5支队伍(奖金2000元税前)。2、 竞赛分组别分赛题评选出一等奖(5%)、二等奖(15%)、三等奖(30%)颁发“MathorCup高校数学建模挑战赛——大数据竞赛”获奖证书。初赛中排名前10%的队伍进入复赛,复赛中排名前50%的队伍评选为一等奖。3、 获得一二三等奖的同学根据个人意愿可以申请成为中国优选法统筹法与经济数学研究会“学生会员”。4、 竞赛成绩优异的参赛者根据个人意愿,将优先推荐至企业实习。5、 一等奖及以上的论文,可以选择参与科技论文写作辅导,根据论文质量,择优推荐学术期刊投稿。6、 本规则的最终解释权属于MathorCup高校数学建模挑战赛组委会。本规则自公布之日起施行。

数学建模论文期刊发表

可以发表的,我前几天有个同事的论文获得过一等奖,然后还拿去发表了,还发表在核心期刊上呢,既然你的论文可以获得一等奖,说明你论文的质量不差的,直接找个核心期刊杂志社,肯定会录用的,因为论文质量好啊,数学类的,就投河南大学主办的<数学季刊>吧,核心期刊,希望你有好运

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

是。数学建模容易发sci一区,将所有SCI期刊按影响因子排序,前5%是一区,前20%是二区,前50%是三区,剩下的是四区。

  • 索引序列
  • 把数学建模论文发表到期刊
  • 数学建模论文发表到sci
  • 数学建模论文发表到哪里
  • 数学建模期刊投稿
  • 数学建模论文期刊发表
  • 返回顶部