第一作者。论文发表作者名后标1是第一作者的意思,而标2指的就是第二作者,第一作者是要高于第二作者的。而论文作者名字上的武a其实就是署名规则。
廖志华:汉族、中共党员、1974年12月3日出生,四川宜宾人。1998年毕业于西南师范大学生命科学系,获理学学士学位。2001年毕业于西南师范大学生命科学学院,获植物学硕士学位。2004年毕业于复旦大学遗传工程国家重点实验室,师从唐克轩教授和谈家祯院士,获遗传学博士学位。现在西南大学生命科学学院从事教学科研工作,聘为教授;担任生物工程专业负责人及教研室主任,重庆市甘薯研究中心副主任。主要从事分子遗传学和代谢工程研究。主持国家科技部科技特派员专项、国家自然科学基金和重庆市自然科学基金重点项目等纵向科研项目;与相关企业建立了良好的合作关系。结合已有研究,已发表研究论文40余篇,其中SCI收录27篇;申报发明专利10项;撰写由Humana Press出版的英文专著 Plant Cell Culture Protocols (2nd Edition) 部分章节;作为第一导师指导学生多次的国家级科技竞赛中获大奖。
克里克对生物学中的两个问题很感兴趣:一,分子如何从无生命的物质变成生物;二,大脑如何产生思想。他后来意识到他所受到的教育很适合成为一名生物物理学家。当时,克里克受到了很多来自一些著名物理学家,例如鲍林和薛定谔等人的影响。理论上,共价键可以将生物分子连接起来,成为基因的基础。但是实际上,生物学家们仍然需要知道到底是哪个分子使得整个结构具有生命。对于克里克来说,只要将达尔文从自然选择所创造出的进化论及孟德尔在基因方面所进行的研究一起汇集起来,就能获得生命的秘密。不过当他意识到自然地形成生命有多么困难时,他说:“一个诚实的人,不管知道多少,也只能说生命的起源几乎是一个奇迹,因为有多少条件需要具备啊!”总之他称自己为“强烈倾向于无神论的怀疑论者”。当时许多生物学家已经意识到,像蛋白质这样的高分子很有可能是基因的基础物质。但是,蛋白质只是结构性和功能性的高分子,并且很多又是酶。1940年代中,生物学家们已经开始发现另一种高分子:脱氧核糖核酸,这是染色体另一个重要的结构,有可能是基因的根源。奥斯瓦尔德·埃弗里及他的同事发现,细菌可以替基因添加DNA分子而造成基因表现型的不同。可是也有证据说明DNA和生物学家的目标无关;DNA可能只是给更重要的蛋白质分子提供基本的框架而已。正在这时,克里克在1949年参加了剑桥大学马克斯·佩鲁茨的研究小组,开始利用X射线来研究蛋白质结晶。此种研究,在理论上,提供了科学家很好的机会来彻底明白大型分子的结构,可是实际上又有太多的技术问题,使得利用X射线在当时并不适合研究分子结晶。 1951年,克里克与威廉斯·科克伦(William Cochran)及泛德(Vladimir Vand)一起推出了螺旋形分子的X射线衍射的数学理论。从这个数学理论得出的结果和认为含有α螺旋的蛋白质的X射线实验结果正好吻合。此结果在1952年的一期自然杂志里出版。螺旋体衍射理论对研究DNA的结构很有帮助。从1951年底开始,克里克开始与沃森一起在英国剑桥大学的卡文迪许实验室里工作。他们利用伦敦国王学院的科学家莫里斯·威尔金斯、雷蒙德·葛斯林及富兰克林等人的X射线衍射的实验结果,一起提出了DNA的螺旋形结构模型,并在1953年发表研究结果 。当沃森来到剑桥时,35岁的克里克仅是一名研究生,而23岁的沃森已经有了博士学位,可他们都对分子结构如何储存遗传信息的这个问题很感兴趣。他们不断地讨论着,认为他们有可能能猜到一个好的、可以解释这个问题的分子结构。1951年11月,威尔金斯与他的学生雷蒙德·葛斯林(Raymond Gosling)来到了剑桥大学,并且提供沃森和克里克一项非常重要的实验结果,那就是威尔金斯和他的同事亚历山大·斯托克斯(Alexander Stokes),最近从DNA的X射线衍射的实验结果意识到DNA的结构必定是螺旋形的。他们的实验结果和富兰克林后来的一堂课鼓励沃森和克里克继续研究螺旋形的分子结构,但是因为他们(特别是沃森)认为鲍林有可能会抢在他们前面发表研究结果,所以在匆忙中发布一个错误的模型。他们的积极性受到了一定的打击;几个月来,他们并没有在这方面做太多的研究。就在这时,富兰克林发现并指出了他们的错误-DNA里亲水的磷酸盐应该位在螺旋表面,而疏水的碱性部分应该位在螺旋内部;而在他们的模型中,磷酸盐位在螺旋的内部,显然是不正确的。克里克向威尔金斯描述了他们原本模型的错误,并请他与富兰克林继续帮助沃森和克里克研究DNA的分子结构。威尔金斯向他们提供了最新的、还没有发表的X射线衍射图像;富兰克林也在1952年向他们提供了她对这些图像所做的分析(这些分析后被包括在她交给伦敦国王大学的兰德尔的一份实验报告里)。这份信息进一步地巩固了他们对双螺旋、反平行的分子模型的信心。克里克在1952年初曾经让格里菲斯试着利用基本化学原理和量子力学计算一下不同的核苷酸之间的吸引力。格里菲斯的结果显示鸟嘌呤(G)与胞嘧啶(C)互相吸引,而腺嘌呤(A)与胸腺嘧啶(T)同样也是同一对。此时克里克并没有意识到此结果的重要性。1952年底,查戈夫来到英国与沃森和克里克见面,并告知他们他的新发现,也就是查戈夫法则(也称碱基当量规则)。这条法则内含两个比例:鸟嘌呤(G)与胞嘧啶(C)的比例为1:1,腺嘌呤(A)与胸腺嘧啶(T)的比例也为1:1,与格里菲斯的计算结果相同。沃森后来突然意识到,A:T这一对和C:G这一对的结构很相似,它们都一样长,且每一对里的两个分子都是由氢键连起来的。沃森及克里克在综合查戈夫等人的发现后完成DNA分子结构的研究。沃森及克里克在1953年4月25日首次在《自然杂志》公布研究结果。,卡文迪许实验室主任劳伦斯·布拉格爵士1953年5月14日于伦敦盖兹医学院进行演讲,里奇·考尔德在1953年5月15日于《伦敦新闻纪事报》发表一篇文章,描述该场演讲内容。《纽约时报》于隔天进行报道,探讨克里克的生平,文章标题为“沃森及DNA:创造一次科学革命”。剑桥大学在校生报纸《Varsity》也于1953年5月30日星期六发布短篇文章。1962年,沃森、克里克及威尔金斯因为DNA研究被授予诺贝尔医学奖 。 1954年,37岁的克里克完成博士论文:“X-射线晶体学:肽及蛋白质”,并获得博士学位。克里克然后在纽约科技大学的实验室工作,他在那里继续进行蛋白质X射线晶体学的分析研究,主要目标是核糖核酸酶与蛋白质生物合成机制。克里克在发现DNA双螺旋结构模型后,他将焦点迅速转向生物学结构所具有的意义。1953年,沃森和克里克于《自然杂志》发表另一篇文章:“它似乎可能是携带遗传资讯代码的基础程序”。1956年,克里克与沃森推测出小病毒的内部结构,认为球形病毒是由60个相同亚基所组成,例如番茄丛生矮化病毒。他在纽约短暂工作后,克里克又回到剑桥大学,直到1976年为止。克里克在这段期间搬到加州定居。克里克与亚历山大合作,使用X射线衍射来进行研究,例如胶原蛋白结构。俄罗斯科学家乔治·伽莫夫组织一群科学家,针对RNA进行研究。克里克清楚的意识到,必须有一个短序列的核苷酸代码来指定一个特定的氨基酸在新蛋白质中形成。1956年,克里克为伽莫夫的RNA研究小组撰写一篇有关的遗传密码问题的论文。克里克在这篇文章中,提出蛋白质是由大约20个氨基酸所合成的证据。在1950年代中期至后期之间,克里克持续研究蛋白质的合成。到了1958年,克里克已经可以列出所有的蛋白质合成过程中的关键程序。佛朗西斯·克里克于1958年提出分子生物学中心法则,并于1970年在《自然杂志》中重申: 分子生物学的中心法则旨在详细说明连串信息的逐字传送,它指出遗传信息不能由蛋白质转移到蛋白质或核酸之中。DNA → RNA → 蛋白质
沃森Watson, James Dewey美国生物学家克里克Crick, Francis Harry Compton英国生物物理学家20世纪50年代初,英国科学家威尔金斯等用X射线衍射技术对DNA结构潜心研究了3年,意识到DNA是一种螺旋结构。女物理学家富兰克林在1951年底拍到了一张十分清晰的DNA的X射线衍射照片。1952年,美国化学家鲍林发表了关于DNA三链模型的研究报告,这种模型被称为α螺旋。沃森与威尔金斯、富兰克林等讨论了鲍林的模型。威尔金斯出示了富兰克林在一年前拍下的DNAX射线衍射照片,沃森看出了DNA的内部是一种螺旋形的结构,他立即产生了一种新概念:DNA不是三链结构而应该是双链结构。他们继续循着这个思路深入探讨,极力将有关这方面的研究成果集中起来。根据各方面对DNA研究的信息和自己的研究和分析,沃森和克里克得出一个共识:DNA是一种双链螺旋结构。这真是一个激动人心的发现!沃森和克里克立即行动,马上在实验室中联手开始搭建DNA双螺旋模型。从1953年2月22日起开始奋战,他们夜以继日,废寝忘食,终于在3月7日,将他们想像中的美丽无比的DNA模型搭建成功了。沃森、克里克的这个模型正确地反映出DNA的分子结构。此后,遗传学的历史和生物学的历史都从细胞阶段进入了分子阶段。由于沃森、克里克和威尔金斯在DNA分子研究方面的卓越贡献,他们分享1962年的诺贝尔生理医学奖。詹姆斯·沃森沃森(出生于1928年)美国生物学家.20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这4点,缺一不可,如何建构一个DNA分子模型解释这一切?当时主要有三个实验室几乎同时在研究DNA分子模型。第一个实验室是伦敦国王学院的威尔金斯、弗兰克林实验室,他们用X射线衍射法研究DNA的晶体结构。当X射线照射到生物大分子的晶体时,晶格中的原子或分子会使射线发生偏转,根据得到的衍射图像,可以推测分子大致的结构和形状。第二个实验室是加州理工学院的大化学家莱纳斯·鲍林(Linus Pauling)实验室。在此之前,鲍林已发现了蛋白质的a螺旋结构。第三个则是个非正式的研究小组,事实上他们可说是不务正业。23岁的年轻的遗传学家沃森于1951年从美国到剑桥大学做博士后时,虽然其真实意图是要研究DNA分子结构,挂着的课题项目却是研究烟草花叶病毒。比他年长12岁的克里克当时正在做博士论文,论文题目是“多肽和蛋白质:X射线研究”。沃森说服与他分享同一个办公室的克里克一起研究DNA分子模型,他需要克里克在X射线晶体衍射学方面的知识。他们从1951年10月开始拼凑模型,几经尝试,终于在1953年3月获得了正确的模型。关于这三个实验室如何明争暗斗,互相竞争,由于沃森一本风靡全球的自传《双螺旋》而广为人知。值得探讨的一个问题是:为什么沃森和克里克既不像威尔金斯和弗兰克林那样拥有第一手的实验资料,又不像鲍林那样有建构分子模型的丰富经验(他们两个人都是第一次建构分子模型),却能在这场竞赛中获胜?这些人中,除了沃森,都不是遗传学家,而是物理学家或化学家。威尔金斯虽然在1950年最早研究DNA的晶体结构,当时却对DNA究竟在细胞中干什么一无所知,在1951年才觉得DNA可能参与了核蛋白所控制的遗传。弗兰克林也不了解DNA在生物细胞中的重要性。鲍林研究DNA分子,则纯属偶然。他在1951年11月的《美国化学学会杂志》上看到一篇核酸结构的论文,觉得荒唐可笑,为了反驳这篇论文,才着手建立DNA分子模型。他是把DNA分子当作化合物,而不是遗传物质来研究的。这两个研究小组完全根据晶体衍射图建构模型,鲍林甚至根据的是30年代拍摄的模糊不清的衍射照片。不理解DNA的生物学功能,单纯根据晶体衍射图,有太多的可能性供选择,是很难得出正确的模型的。沃森在1951年到剑桥之前,曾经做过用同位素标记追踪噬菌体DNA的实验,坚信DNA就是遗传物质。据他的回忆,他到剑桥后发现克里克也是“知道DNA比蛋白质更为重要的人”。但是按克里克本人的说法,他当时对DNA所知不多,并未觉得它在遗传上比蛋白质更重要,只是认为DNA作为与核蛋白结合的物质,值得研究。对一名研究生来说,确定一种未知分子的结构,就是一个值得一试的课题。在确信了DNA是遗传物质之后,还必须理解遗传物质需要什么样的性质才能发挥基因的功能。像克里克和威尔金斯,沃森后来也强调薛定谔的《生命是什么?》一书对他的重要影响,他甚至说他在芝加哥大学时读了这本书之后,就立志要破解基因的奥秘。如果这是真的,我们就很难明白,为什么沃森向印第安那大学申请研究生时,申请的是鸟类学。由于印第安那大学动物系没有鸟类学专业,在系主任的建议下,沃森才转而从事遗传学研究。当时大遗传学家赫尔曼·缪勒(Hermann Muller)恰好正在印第安那大学任教授,沃森不仅上过缪勒关于“突变和基因”的课(分数得A),而且考虑过要当他的研究生。但觉得缪勒研究的果蝇在遗传学上已过了辉煌时期,才改拜研究噬菌体遗传的萨尔瓦多·卢里亚(Salvador Luria)为师。但是,缪勒关于遗传物质必须具有自催化、异催化和突变三重性的观念,想必对沃森有深刻的影响。正是因为沃森和克里克坚信DNA是遗传物质,并且理解遗传物质应该有什么样的特性,才能根据如此少的数据,做出如此重大的发现。他们根据的数据仅有三条:第一条是当时已广为人知的,即DNA由6种小分子组成:脱氧核糖,磷酸和4种碱基(A、G、T、C),由这些小分子组成了4种核苷酸,这4种核苷酸组成了DNA.第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫(Erwin Chargaff)测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中4种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。查加夫早在1950年就已发布了这个重要结果,但奇怪的是,研究DNA分子结构的这三个实验室都将它忽略了。甚至在查加夫1951年春天亲访剑桥,与沃森和克里克见面后,沃森和克里克对他的结果也不加重视。在沃森和克里克终于意识到查加夫比值的重要性,并请剑桥的青年数学家约翰·格里菲斯(John Griffith)计算出A吸引T,G吸引C,A+T的宽度与G+C的宽度相等之后,很快就拼凑出了DNA分子的正确模型。沃森和克里克在1953年4月25日的《自然》杂志上以1000多字和一幅插图的短文公布了他们的发现。在论文中,沃森和克里克以谦逊的笔调,暗示了这个结构模型在遗传上的重要性:“我们并非没有注意到,我们所推测的特殊配对立即暗示了遗传物质的复制机理。”在随后发表的论文中,沃森和克里克详细地说明了DNA双螺旋模型对遗传学研究的重大意义:一、它能够说明遗传物质的自我复制。这个“半保留复制”的设想后来被马修·麦赛尔逊(Matthew Meselson)和富兰克林·斯塔勒(Franklin W.Stahl)用同位素追踪实验证实。二、它能够说明遗传物质是如何携带遗传信息的。三、它能够说明基因是如何突变的。基因突变是由于碱基序列发生了变化,这样的变化可以通过复制而得到保留。但是遗传物质的第四个特征,即遗传信息怎样得到表达以控制细胞活动呢?这个模型无法解释,沃森和克里克当时也公开承认他们不知道DNA如何能“对细胞有高度特殊的作用”。不过,这时,基因的主要功能是控制蛋白质的合成,这种观点已成为一个共识。那么基因又是如何控制蛋白质的合成呢?有没有可能以DNA为模板,直接在DNA上面将氨基酸连接成蛋白质?在沃森和克里克提出DNA双螺旋模型后的一段时间内,即有人如此假设,认为DNA结构中,在不同的碱基对之间形成形状不同的“窟窿”,不同的氨基酸插在这些窟窿中,就能连成特定序列的蛋白质。但是这个假说,面临着一大难题:染色体DNA存在于细胞核中,而绝大多数蛋白质都在细胞质中,细胞核和细胞质由大分子无法通过的核膜隔离开,如果由DNA直接合成蛋白质,蛋白质无法跑到细胞质。另一类核酸RNA倒是主要存在于细胞质中。RNA和DNA的成分很相似,只有两点不同,它有核糖而没有脱氧核糖,有尿嘧啶(U)而没有胸腺嘧啶(T)。早在1952年,在提出DNA双螺旋模型之前,沃森就已设想遗传信息的传递途径是由DNA传到RNA,再由RNA传到蛋白质。在1953~1954年间,沃森进一步思考了这个问题。他认为在基因表达时,DNA从细胞核转移到了细胞质,其脱氧核糖转变成核糖,变成了双链RNA,然后再以碱基对之间的窟窿为模板合成蛋白质。这个过于离奇的设想在提交发表之前被克里克否决了。克里克指出,DNA和RNA本身都不可能直接充当连接氨基酸的模板。遗传信息仅仅体现在DNA的碱基序列上,还需要一种连接物将碱基序列和氨基酸连接起来。这个“连接物假说”,很快就被实验证实了。1958年,克里克提出了两个学说,奠定了分子遗传学的理论基础。第一个学说是“序列假说”,它认为一段核酸的特殊性完全由它的碱基序列所决定,碱基序列编码一个特定蛋白质的氨基酸序列,蛋白质的氨基酸序列决定了蛋白质的三维结构。第二个学说是“中心法则”,遗传信息只能从核酸传递给核酸,或核酸传递给蛋白质,而不能从蛋白质传递给蛋白质,或从蛋白质传回核酸。沃森后来把中心法则更明确地表示为遗传信息只能从DNA传到RNA,再由RNA传到蛋白质,以致在1970年发现了病毒中存在由RNA合成DNA的反转录现象后,人们都说中心法则需要修正,要加一条遗传信息也能从RNA传到DNA.事实上,根据克里克原来的说法,中心法则并无修正的必要。碱基序列是如何编码氨基酸的呢?克里克在这个破译这个遗传密码的问题上也做出了重大的贡献。组成蛋白质的氨基酸有20种,而碱基只有4种,显然,不可能由1个碱基编码1个氨基酸。如果由2个碱基编码1个氨基酸,只有16种(4的2次方)组合,也还不够。因此,至少由3个碱基编码1个氨基酸,共有64种组合,才能满足需要。1961年,克里克等人在噬菌体T4中用遗传学方法证明了蛋白质中1个氨基酸的顺序是由3个碱基编码的(称为1个密码子)。同一年,两位美国分子遗传学家马歇尔·尼伦伯格(Marshall Nirenberg)和约翰·马特哈伊(John Matthaei)破解了第一个密码子。到1966年,全部64个密码子(包括3个合成终止信号)被鉴定出来。作为所有生物来自同一个祖先的证据之一,密码子在所有生物中都是基本相同的。人类从此有了一张破解遗传奥秘的密码表。DNA双螺旋模型(包括中心法则)的发现,是20世纪最为重大的科学发现之一,也是生物学历史上惟一可与达尔文进化论相比的最重大的发现,它与自然选择一起,统一了生物学的大概念,标志着分子遗传学的诞生。这门综合了遗传学、生物化学、生物物理和信息学,主宰了生物学所有学科研究的新生学科的诞生,是许多人共同奋斗的结果,而克里克、威尔金斯、弗兰克林和沃森,特别是克里克,就是其中最为杰出的英雄。克里克弗朗西斯·哈里·康普顿·克里克(Francis Harry Compton Crick 1916.6.8——2004.7.28)生于英格兰中南部一个郡的首府北安普敦。小时酷爱物理学。1934年中学毕业后,他考入伦敦大学物理系,3年后大学毕业,随即攻读博士学位。然而,1939年爆发的第二次世界大战中断了他的学业,他进入海军部门研究鱼雷,也没有什么成就。待战争结束,步入"而立之年"的克里克在事业上仍一事无成。1950年,也就是他34岁时考入剑桥大学物理系攻读研究生学位,想在著名的卡文迪什实验室研究基本粒子。这时,克里克读到著名物理学家薛定谔的一本书《生命是什么》,书中预言一个生物学研究的新纪元即将开始,并指出生物问题最终要靠物理学和化学去说明,而且很可能从生物学研究中发现新的物理学定律。克里克深信自己的物理学知识有助于生物学的研究,但化学知识缺乏,于是开始发愤攻读有机化学、X射线衍射理论和技术,准备探索蛋白质结构问题。1951年,美国一位23岁的生物学博士沃森来到卡文迪什实验室,他也受到薛定谔《生命是什么》的影响。克里克同他一见如故,开始了对遗传物质脱氧核糖核酸DNA分子结构的合作研究。他们虽然性格相左,但在事业上志同道合。沃森生物学基础扎实,训练有素;克里克则凭借物理学优势,又不受传统生物学观念束缚,常以一种全新的视角思考问题。他们二人优势互补,取长补短,并善予吸收和借鉴当时也在研究DNA分子结构的鲍林、威尔金斯和弗兰克林等人的成果,结果经不足两年时间的努力便完成了DNA分子的双螺旋结构模型。而且,克里克以其深邃的科学洞察力,不顾沃森的犹豫态度,坚持在他们合作的第一篇论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话,使他们不仅发现了DNA的分子结构,而且丛结构与功能的角度作出了解释。1962年,46岁的克里克同沃森、威尔金斯一道荣获诺贝尔生物学或医学奖。后来,克里克又单独首次提出蛋白质合成的中心法则,即遗传密码的走向是:DNA→RNA→蛋白质。他在遗传密码的比例和翻译机制的研究方面也做出了贡献。1977年,克里克离开了剑桥,前往加州圣地亚哥的索尔克研究院担任教授。2004年7月28日深夜,弗朗西斯·克里克在与结肠癌进行了长时间的搏斗之后,在加州圣地亚哥的桑顿医院里逝世,享年88岁。
被遗忘的英格兰玫瑰很多人都知道沃森和克里克发现DNA双螺旋结构的故事,更进一步,有人还可能知道他们与莫里斯·威尔金斯因此分享了1962年的诺贝尔生理学或医学奖。然而,有多少人记得罗莎琳德·富兰克林(Rosalind Franklin),以及她在这一历史性的发现中做出的贡献?富兰克林1920年生于伦敦,15岁就立志要当科学家,但父亲并不支持她这样做。她早年毕业于剑桥大学,专业是物理化学。1945年,当获得博士学位之后,她前往法国学习X射线衍射技术。她深受法国同事的喜爱,有人评价她“从来没有见到法语讲的这么好的外国人”。1951年,她回到英国,在伦敦大学国王学院取得了一个职位。在那时候,人们已经知道了脱氧核糖核酸(DNA)可能是遗传物质,但是对于DNA的结构,以及它如何在生命活动中发挥作用的机制还不甚了解。就在这时,富兰克林加入了研究DNA结构的行列——在相当不友善的环境下。她负责起实验室的DNA项目时,有好几个月没有人干活。同事威尔金斯不喜欢她进入自己的研究领域,但他在研究上却又离不开她。他把她看作搞技术的副手,她却认为自己与他地位同等,两人的私交恶劣到几乎不讲话。在那时的科学界,对女科学家的歧视处处存在,女性甚至不被准许在大学的高级休息室里用午餐。她们无形中被排除在科学家间的联系网络之外,而这种联系对了解新的研究动态、交换新理念、触发灵感极为重要。富兰克林在法国学习的X射线衍射技术在研究中派上了用场。X射线是波长非常短的电磁波。医生通常用它来透视,而物理学家用它来分析晶体的结构。当X射线穿过晶体之后,会形成衍射图样——一种特定的明暗交替的图形。不同的晶体产生不同的衍射图样,仔细分析这种图形人们就能知道组成晶体的原子是如何排列的。富兰克林精于此道,她成功的拍摄了DNA晶体的X射线衍射照片。 富兰克林拍摄的DNA晶体的X射线衍射照片,这张照片正是发现DNA结构的关键 此时,沃森和克里克也在剑桥大学进行DNA结构的研究,威尔金斯在富兰克林不知情的情况下给他们看了那张照片。根据照片,他们很快就领悟到了DNA的结构——现在已经成为了一个众所周知的事实——两条以磷酸为骨架的链相互缠绕形成了双螺旋结构,氢键把它们连结在一起。他们在1953年5月25日出版的英国《自然》杂志上报告了这一发现。这是生物学的一座里程碑,分子生物学时代的开端。当沃森等人的论文发表的时候,富兰克林已经离开了国王学院,威尔金斯似乎很庆幸这个不讨他喜欢的伙伴的离去。然而富兰克林的贡献是毋庸置疑的:她分辨出了DNA的两种构型,并成功的拍摄了它的X射线衍射照片。沃森和克里克未经她的许可使用了这张照片,但她不以为忤,反而为他们的发现感到高兴,还在《自然》杂志上发表了一篇证实DNA双螺旋结构的文章。这个故事的结局有些伤感。当1962年沃森、克里克和威尔金斯获得诺贝尔生理学或医学奖的时候,富兰克林已经在4年前因为卵巢癌而去世。按照惯例,诺贝尔奖不授予已经去世的人。此外,同一奖项至多只能由3个人分享,假如富兰克林活着,她会得奖吗?性别差异是否会成为公平竞争的障碍?后人为了这个永远不能有答案的问题进行过许多猜测与争论。与没有获得诺贝尔奖相比,富兰克林的早逝更加令人惋惜。她是一位才华横溢的女科学家,然而知道她和她的贡献的人寥寥无几。沃森在《双螺旋》(1968年出版)一书中甚至公开诋毁富兰克林的形象与功绩,歪曲她与威尔金斯之间的恩怨。许多关于双螺旋的书籍和文章根本不提及富兰克林,尽管克里克在很多年后承认“她离真相已经只有两步”。富兰克林始终相信人们对才能和专业水准的尊重会与性别无关,但她正是这倾斜的世界中女科学家命运的代表。如果她是男性则可能如何,这种假设固然没有意义,但性别的确一直是她在科研领域发挥才能的绊脚石,并使她的成就长时间得不到应有的认可。
解决乌克兰危机的出路在哪里论文如下:
虽然乌克兰危机表面上是军事和政治对抗,但如果不运用经济理论,尤其是博弈论,那就无法完全理解此次美俄冲突。以下提供几个思考的角度:
核威慑:根据2005年诺贝尔经济学奖得主托马斯谢林的博弈论,该冲突可以放在核威慑的框架中去理解。自1990年苏联解体之后,独立后的乌克兰放弃了从苏联继承过来的核武器,以换取其领土完整,俄罗斯和美国都对此签了字。
(注:苏联解体后,乌克兰继承了苏联的1000枚核弹头,是当时世界第三的核大国。但随后乌克兰与美俄达成协议,销毁了其核弹头以换取双方对其领土完整的承诺。美国承诺在乌克兰领土受到俄罗斯威胁时对其进行保护。)
那时看来,乌克兰这么做是对的,让世界变得更加安全。然而,如今回过头来看,如果乌克兰如今还是一个核大国,那么显然不会再俄罗斯面前显得那么无力。
临界点:谢林在其著作《微观动机与宏观行为》中建立了临界点模型。该理论既适用于战争,也只用于经济、邻国间冲突和其他国内问题。在乌克兰事件中,事件从协商解决发展到政治冲突,如今克里米亚的事态又将局势进一步推向深化,将世界带入一个非常危险的临界点。
首先介绍一下背景:除了前南斯拉夫和格鲁吉亚,苏联解体后的东欧地区大体是和平的。边界的重新划定较为有序,政治交易也是基于各国领导人对本国利益的理性评估上。
政治学家Jay Ulfelder最近在一个博客中指出,过去25年中,全球的军事冲突比预期要少。但最近,和平解决冲突变得越来越难。这种变化可能只是数据统计中的随机事件,但更大的可能是因为冲突可能在变得更多。
严格来说,即便是苏联时期的武器,但只要这批武器保存完好,那么依然还是可以用的,毕竟武器保质期通常都比较长。
对乌克兰问题的认识: 1、经济基础决定上层建筑,经济上的问题是一切问题的根源。乌克兰根本问题在于经济。乌克兰作为一个西方国家,经济总量跟东盟最穷越南差不多。上海的人均GDP差不多等于乌克兰4倍!俄罗斯仅靠卖资源,GDP也达到1.4万美元。乌克兰GDP才人均3700美元,不到俄罗斯的零头。这是乌克兰危机的根本原因。乌克兰以前(90年代)号称要做欧洲的芬兰,2000年以后由于经济不景气,指标调低了,号称要做欧洲的波兰,现在指标调的更低了,只能做欧洲的阿富汗......再例如,国民党为什么9合1选举失败,无非就是经济没搞好,大家(尤其是年轻人)收入下降 2、政治不稳定,经济就搞不好。乌克兰是寡头政治。民众说了不算。近10年的历史,就是一场乌克兰的三国演义。尤先科、季莫申科、亚努科维奇三个人当政10年,把国家搞得乌烟瘴气。看下面历史事实:2004年的时候是尤先科和季莫申科联手搞掉了亚努科维奇。2005年以后尤先科和亚努科维奇联手又搞掉了季莫申科。2007年尤先科和季莫申科联手又把亚努科维奇搞掉了。2009年尤先科和亚努科维奇联手又把季莫申科搞掉了。2010年季莫申科和亚努科维奇又联手搞掉了当时的总统尤先科,亚努科维奇上台。2011年,亚努科维奇又把季莫申科送到监狱里。2014年,乌克兰动荡,亚努科维奇仓皇出逃俄罗斯.....所以,要想发展经济,就要有稳定的政治环境。3、历史及民族的问题也很重要。乌克兰东部靠近俄罗斯,亲俄;西部靠近波兰,亲欧,所以对立严重。如果乌克兰经济很好,则能掩盖危机,但是乌克兰经济不咋地,又在政治上在亲俄、亲欧之间摇摆,所以就爆发了危机。所以一定要搞好民族问题、历史问题。 4、美国欧洲的干涉,是世界最大的不稳定。美国从伊拉克走了,伊拉克变成烂摊子美国从阿富汗走了,阿富汗变成烂摊子美国到南海来了,南海成了烂摊子法国打击了利比亚,利比亚成了烂摊子英国美国力挺香港,香港就凌乱了 所以美国是世界最邪恶的国家。
只要不打架的话,永远都不需要使用,只要在国际有危险效应的话,那永远都会上架。
DNA双螺旋的提出 主要成就是把物理学运用到生命科学中,并开启了分子生物学的新天地,可以说是分子生物学的奠基人。运用物理学中的晶体衍射技术,对DNA进行衍射,通过对比,判断DNA为双螺旋,此照片是沃森在实验室偷的,本来并不打算给他看,他偷看的。当时照出来的是A型DNA,不是我们通常认识的B型DNA,后来沃森克里克通过不断的组合,建立了DNA的双螺旋结构,并否定了有自己推出的磷酸为骨架,在内部起支撑作用,碱基在外排布的说法,再一次偶然的机会中提出了正确的模型,即核糖为骨架,碱基进行配对的模型。 在这个过程中,由于沃森克里克不是学化学的,所以对于碱基的化学结构并不了解,所以在模型建立过程中遭到化学家的耻笑,并且化学家都不愿意帮助他们,所以饶了圈子,最后才提出碱基配对。 另外,之所以大部分人都提不出双螺旋结构,是因为当时化学家思路不广,她们几乎没有人想到“核酸也是酸” 因此,沃森克里克威尔金斯他们的合作,是把物理学 生命科学 化学 结合到一起,从而成为分子生物学的奠基人。
1953年,沃森和克里克发现了遗传物质DNA的双螺旋结构。在对DNA分子的结构的研究中,于1953年摘取桂冠的是两位年轻的科学家——美国生物学家沃森和英国物理学家克里克。沃森和克里克及同事富兰克林经过长时间的研究,最初的模型是碱基在外面,但这个模型很快被否定了;后来又构建了碱基对在里面的模型,但碱基配对的方式又被一位化学家否定了。直到1952年春天,奥地利化学家查可夫访问剑桥大学,两位科学家才得到将碱基配对的方式改为现在的A—T、G—C配对的方式。1953年,沃森和克里克的论文《核酸的分子结构——脱氧核糖核酸的一个结构模型》在英国《自然》杂志上刊载,引起极大轰动。1962年,沃森、克里克的威尔金斯三人因此共同获得了诺贝尔生理学或医学奖。这就是DNA分子双螺旋结构模型的发现过程。
1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定谔的《生命是什么?--活细胞的物理面貌》这本进化论的理论基础书籍,促使他去“发现基因的秘密”。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了埃尔温·薛定谔《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。有一天,沃森又到国王学院威尔金斯实验室,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。克里克请数学家帮助计算,结果表明嘌呤有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌呤和两个嘧啶两两相等的结果,形成了碱基配对的概念。他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺嘌呤一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌呤一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌呤的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm。DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。2014年科学家研究表明,人体内仅有8%DNA具有重要作用,剩余的DNA都是“垃圾”。英国牛津大学研究显示,仅有8.2%的人体DNA具有重要作用,剩余的DNA都是进化残留物,就像是阑尾一样,对人体无益,也没有什么害处。研究负责人古尔顿-伦特(Gurton Lunter)博士说:“人体内绝大多数DNA并不具有重要作用,仅是占据空间而已。”之前评估显示人体80%DNA具有“功能性”,或者说具有重要作用。这就相当于从谷壳中分离小麦是非常重要的,因为这将确保医学研究人员聚焦分析疾病相关的DNA,进一步促进研制新的治疗方案。合著作者克里斯-庞廷(Chris Ponting)教授说:“这不仅仅是关于模糊性‘功能’的学术争论,从医学角度来看,这是解释人类疾病中基因多样性必不可少的环节。”
被遗忘的英格兰玫瑰很多人都知道沃森和克里克发现DNA双螺旋结构的故事,更进一步,有人还可能知道他们与莫里斯·威尔金斯因此分享了1962年的诺贝尔生理学或医学奖。然而,有多少人记得罗莎琳德·富兰克林(Rosalind Franklin),以及她在这一历史性的发现中做出的贡献?富兰克林1920年生于伦敦,15岁就立志要当科学家,但父亲并不支持她这样做。她早年毕业于剑桥大学,专业是物理化学。1945年,当获得博士学位之后,她前往法国学习X射线衍射技术。她深受法国同事的喜爱,有人评价她“从来没有见到法语讲的这么好的外国人”。1951年,她回到英国,在伦敦大学国王学院取得了一个职位。在那时候,人们已经知道了脱氧核糖核酸(DNA)可能是遗传物质,但是对于DNA的结构,以及它如何在生命活动中发挥作用的机制还不甚了解。就在这时,富兰克林加入了研究DNA结构的行列——在相当不友善的环境下。她负责起实验室的DNA项目时,有好几个月没有人干活。同事威尔金斯不喜欢她进入自己的研究领域,但他在研究上却又离不开她。他把她看作搞技术的副手,她却认为自己与他地位同等,两人的私交恶劣到几乎不讲话。在那时的科学界,对女科学家的歧视处处存在,女性甚至不被准许在大学的高级休息室里用午餐。她们无形中被排除在科学家间的联系网络之外,而这种联系对了解新的研究动态、交换新理念、触发灵感极为重要。富兰克林在法国学习的X射线衍射技术在研究中派上了用场。X射线是波长非常短的电磁波。医生通常用它来透视,而物理学家用它来分析晶体的结构。当X射线穿过晶体之后,会形成衍射图样——一种特定的明暗交替的图形。不同的晶体产生不同的衍射图样,仔细分析这种图形人们就能知道组成晶体的原子是如何排列的。富兰克林精于此道,她成功的拍摄了DNA晶体的X射线衍射照片。 富兰克林拍摄的DNA晶体的X射线衍射照片,这张照片正是发现DNA结构的关键 此时,沃森和克里克也在剑桥大学进行DNA结构的研究,威尔金斯在富兰克林不知情的情况下给他们看了那张照片。根据照片,他们很快就领悟到了DNA的结构——现在已经成为了一个众所周知的事实——两条以磷酸为骨架的链相互缠绕形成了双螺旋结构,氢键把它们连结在一起。他们在1953年5月25日出版的英国《自然》杂志上报告了这一发现。这是生物学的一座里程碑,分子生物学时代的开端。当沃森等人的论文发表的时候,富兰克林已经离开了国王学院,威尔金斯似乎很庆幸这个不讨他喜欢的伙伴的离去。然而富兰克林的贡献是毋庸置疑的:她分辨出了DNA的两种构型,并成功的拍摄了它的X射线衍射照片。沃森和克里克未经她的许可使用了这张照片,但她不以为忤,反而为他们的发现感到高兴,还在《自然》杂志上发表了一篇证实DNA双螺旋结构的文章。这个故事的结局有些伤感。当1962年沃森、克里克和威尔金斯获得诺贝尔生理学或医学奖的时候,富兰克林已经在4年前因为卵巢癌而去世。按照惯例,诺贝尔奖不授予已经去世的人。此外,同一奖项至多只能由3个人分享,假如富兰克林活着,她会得奖吗?性别差异是否会成为公平竞争的障碍?后人为了这个永远不能有答案的问题进行过许多猜测与争论。与没有获得诺贝尔奖相比,富兰克林的早逝更加令人惋惜。她是一位才华横溢的女科学家,然而知道她和她的贡献的人寥寥无几。沃森在《双螺旋》(1968年出版)一书中甚至公开诋毁富兰克林的形象与功绩,歪曲她与威尔金斯之间的恩怨。许多关于双螺旋的书籍和文章根本不提及富兰克林,尽管克里克在很多年后承认“她离真相已经只有两步”。富兰克林始终相信人们对才能和专业水准的尊重会与性别无关,但她正是这倾斜的世界中女科学家命运的代表。如果她是男性则可能如何,这种假设固然没有意义,但性别的确一直是她在科研领域发挥才能的绊脚石,并使她的成就长时间得不到应有的认可。