首页 > 职称论文知识库 > 高斯未发表的论文原因

高斯未发表的论文原因

发布时间:

高斯未发表的论文原因

在数学史上,高斯与黎曼是两个如雷贯耳的名字。这两位伟大的数学家有很多相似之处:都是德国人;都在哥廷根大学教过书;同为几何学史上划时代的人物;都既是数学家又是物理学家;以他们姓氏命名的数学概念都有几十个等等。    学数学的人大多都知道他们是师徒,高斯是黎曼的博士论文导师。话说青出于蓝而胜于蓝,长江后浪推前浪,对这师徒二人谁更厉害没有一个标准的说法,下面大家可以评一评这俩师徒谁更牛。    说到高斯,大家马上想起来的很可能是在他童年时巧算1+2+3+···+100的事迹,童年时的高斯就如此了得,一般来说长大之后那还得了。他成年之后的神迹给了我们一个肯定的回答,他确实是不同凡响,1796年高斯19岁,发现了正十七边形的尺规作图方法, 解决了自欧几里德以来近2000年悬而未决的一个难题。 同年,高斯发表并证明了二次互反律,这是他的得意之作,一生曾用八种方法证明,称之为“黄金律”。1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,年仅22岁,这一时代伟大的数学序幕才刚刚拉开。      在这里应该谈谈非欧几何学,非欧几何是19世纪数学的一个伟大发现,它是由鲍耶、罗巴切夫斯基所独立发现,但从后来高斯的数学日记来看,伟大的高斯早在他两位几十年之前就已经独自发现了非欧几何,当时的他年仅19岁,够吓人吧!现在很多人19岁才刚进大学吧!高斯当时就明白了这种几何是正确的,但考虑到数学界很可能不能接受而未将他的研究发表,仅仅是记入了他的数学日记中。多进行研究少发表论文从此成为高斯的一大习惯,他的很多研究成果都未发表而仅仅只是记录在他的数学日记中。在以后多年的研究生涯中,高斯的研究几乎遍及纯粹数学与应用数学的各个领域,包括数论、复分析、微分几何、代数学等等,当然还有他所钟爱的物理学。在这里不一一叙述,高斯因此获得了“数学王子”的美誉,也与阿基米德、牛顿、欧拉并列为数学史上四大数学家。    相比之下,黎曼就没有他老师那么多的故事与神迹,他1826年出生于一个普通牧师家庭,上中小学时并没有展露出多少数学才能,但有一次不得不提及,上中学时,黎曼向一位老师借了一本数学著作,那是法国著名数学家勒让德800多页的名著《数论》,仅仅一个星期后黎曼便将此书归还,并向那位借他书的老师说:“这是一部伟大的著作,我已经掌握了它”,那位老师不大相信的问了他书中所讲的几个困难之处,黎曼竟都能够对答如流,那老师默然。应该说这是有关黎曼青少年时期很少的神迹记载之一,他这一时期的其他事迹很少见于记载。    1845年19岁的黎曼进入哥廷根大学学习哲学和神学。在此期间他也去听了一些数学讲座,包括高斯关于最小二乘法的讲座等。在得到父亲的允许后,他改学数学。在大学期间有两年去柏林大学就读 ,受到雅克比和狄利克雷的影响。1851年,黎曼在高斯指导下获得博士学位,时年25岁,博士论文有关复变函数的基础问题,得到了对学术极为苛刻的高斯的少有的热情称赞,因此论文黎曼成为了复变函数论的奠基人之一。    学数学的人未必对黎曼很了解,但大多都知道有一门伟大的学问叫做黎曼几何,这开始于黎曼1854年在哥廷根大学发表的题为《论作为几何学基础的假设》的演说,由此创立了黎曼几何学。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。1915年,爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。应该说对于广义相对论的创立,黎曼功不可没。数学界公认,黎曼几何是黎曼对数学的最大贡献,由此黎曼成为了近现代最伟大的几何学家,没有之一。      1859年,黎曼发表了著名论文《不超过已知数的素数个数》,在此文中黎曼首先提出了用复变函数论,特别是用ζ函数研究数论的新思想和新方法,从而开创了解析数论的新时期,并在这篇论文中提出了让很多大数学家望而却步的黎曼猜想。除了复变函数、黎曼几何、解析数论的研究外,黎曼对实分析、偏微分方程、数学物理等领域亦有重大贡献,他不仅是一位伟大的数学家,还是一位物理学家,他对引力与电和磁的关系的研究在物理学中有一定推动作用。       说了这么多,大家可能早已感到对这两位数学巨匠很难分出高下,好吧!让我们来看看同为德国人的数学大师克莱因对他们的评价。    关于高斯:他时常不发表他最美的结果,会有什么原因使他在达到目标前的一瞬间出现了这种奇异的停顿?可能的原因要在一种沮丧中去寻找,他在自己最成功的工作中常陷入某种沮丧而不能自拔......。对过于紧张的多产,他的首创精神和意志力量终于不胜其才,对于像他这样早熟而又热情的具有创造性的人,才思汹涌激荡终于使他心力交瘁。    关于黎曼:黎曼的直觉确实是光辉耀目,他那无所不包的天才超越了他的所有同时代人。不论在哪个地方,只要他的兴趣被激发起来,他都会从头开始,从不让自己被传统引入歧途。黎曼的羞怯甚至是笨拙的举止常遭到同事们的嘲笑,他时常神情忧郁,哀伤地回应这些攻击。他与周围的世界完全隔绝,过着一种无比丰富的内心生活。我们从黎曼身上看到了一个典型的亲切的天才:从外表看,他是平静的,而且有点古怪;但从内心看,则是充满了活力和力量。     读完此文的你对这两位数学巨匠又会有怎样的评价呢?

高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。 高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=? 这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!” 老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050详细的卡尔.弗里德里希.高斯(Carl Friedrich Gauß,1777.4.30~1855.2.23),德国数学家、物理学家和天文学家。 高斯学习非常勤奋,11岁时发现了二项式定理,17岁时发明了二次互反律,18岁时发明了用圆规和直尺作正17边形的方法,解决了两千多年来悬而未决的难题。21岁大学毕业,22岁时或博士学位。1804年被选为英国皇家学会会员。从1807年到1855年逝世,一直担任格丁根大学教授兼格丁根天文台台长。他还是法国科学院和其他许多科学院的院士,被誉为历史上最伟大的数学家之一。他善于把数学成果有效地应用于天文学、物理学等科学领域,又是著名的天文学家和物理学家,是与阿基米德、牛顿等同享盛名的科学家。 高斯出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。 罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 在处理相片的软件 photoshop 中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶尔会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终於找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由於钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关於非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to preise it would mean to praise myself. 我无法夸赞他,因为夸赞他就等於夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics)一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了 [2]物理单位 高斯(G),非国际通用的磁感应强度单位。为纪念德国物理学家和数学家高斯而命名。 一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位(emu)的稳恒电流(等于10安培)时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。 高斯是很小的单位,10000高斯等于1特斯拉。 补充 高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。 他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

这天早上,高斯的闹钟钉铃 铃 铃 铃 铃 铃 铃铃玲玲玲铃………………………………………………………………………………………………………………………………………………………………………………响了

高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。一天,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101······1加到100有50组这样的数,所以50X101=5050。布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

论文未发表的原因

关键在于论文的内容、形式与发表的位置,如果不考虑发表出处的话,应该不是太难。

网络首发论文没有发表在期刊,是由于纸质版期刊暂时还未刊出。

理由:网络首发论文不是没有发表在期刊上,而是纸质版期刊还未刊出。由于期刊往往都是整期刊出,需经过编辑部整期汇编排版、作者校稿、送印刷厂印刷等程序,导致纸质版刊出时间较长。而此时论文已经确定被编辑部录用,达到发表要求,所以编辑部会将论文先放在网上公开即网络首发论文(知网可查看),这就出现了网上可以查到论文但纸质期刊还未刊出的情况。

论文审稿流程及相关要求

1.在编辑部工作流程中,论文稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。编辑部确定录用定稿的论文是可以在网上进行网络首发的,且网络首发后一般不得修改论文题目、作者、机构名称和学术内容,但可以有少量基于编辑规范的文字修改。

2.网络首发的论文知网会有一个“中国知网学术期刊网络首发论文出版证书”,且有唯一的证书编号,该证书可在知网进行下载。

论文为什么难发?1、发文章的人远远多于杂志社的版面,造成供小于求的局面; 2、在我国发文章多数人是为了评职称,而这一群体既缺乏写作文章的经验,更不知如何投稿,从而导致盲目投稿,造成投稿通过率低的现象。我建议你找一个比较专业的地方, 我给你推荐个 诚信义论文 发表

除非你的论文确有极高的应用或科技学术价值,(一般人是不可能的)你还是找代理人帮你发吧,花点钱,别想要稿费了,呵呵。你致电刊物的编辑部一般会有人告诉你怎么办的。

未发表论文的原因

01稿件未通过技术筛选在稿件送到期刊主编或总编辑之前,编辑部将进行一些基本检查。在这个阶段拒稿的主要原因包括:该论文包含疑似剽窃的内容该论文正在另一期刊上审查(一稿多投是不允许的)稿件缺乏关键要素,如标题、作者和从属人员名单、正文、参考文献或图表语言的质量不过关表格和数字不够清楚作者没有按照期刊的作者指南准备稿件02稿件不属于期刊的宗旨和范围投稿被拒的原因中,最常见的是稿件提交给了错误的期刊,超出了所投期刊的学科领域或栏目范围等。例如,一篇心理学的文章投到了化学期刊上,投稿内容与期刊的风格、栏目或热点相差甚远,就很容易遭到拒绝。03研究课题意义不大同样,如果期刊的读者对论文的研究主题不感兴趣,它可能会被拒绝。这可能是因为这篇论文的研究结果是渐进式的,并没有推动这个领域的发展,或者这份稿件显然是一个更大的研究的一部分,该研究已经被分成了尽可能多的文章。04一个明确的假设尚未确立研究背后的问题可能不清楚,制定不当,或与研究领域无关。进行大量的文献回顾可以帮助指导你的假设或研究问题。05稿件不完整该论文可能包含观察结果,但不是一个完整的研究,也可能忽略或忽视了该领域的其他重要工作。06数据的程序,陈述或分析存在缺陷缺陷可能包括缺乏明确的对照组或其他比较指标,不符合公认的程序或方法(这使得实验难以重复),或缺乏统计学上有效的分析。请注意任何小的缺陷,例如表格和数字的错误,不恰当或不明确的标签。07稿件的论证和/或结论存在缺陷应当合乎逻辑,结构合理且有效,并支持研究的结论。如果得出的结论不能以文章其余部分为依据进行论证,或者他们忽略了大部分文献,那么该论文将被拒绝。08语言,写作和拼写问题文章的语言,结构以及任何表格或图片需要足够高质量才能让论文进入评审阶段,否则很可能被拒。在投稿之前请其他人检查您的论文是一个好主意,第二双眼睛可以帮您找出可能错过的任何错误。在投稿之前,一定要选择合适的投稿期刊,如果期刊的风格或水平与自己的文章不匹配,只会浪费投稿的时间,拉长我们投稿的周期。可以以该期刊最新发表的同类文章为参考标准,来判断自己的文章是否合适该期刊。

看到“拒稿”,估计在座各位都浑身一颤。对于作者而言,这两个字的冰冷程度,也许比冬天的寒风还要凛冽刺骨。 但是!别慌!再仔细看看内容,也许并不是“完全拒绝”! 这种类型的拒绝,主编通常会表达出强烈的个人意见,表示不愿再看到该论文,毫不容人质疑和申辩。遇上态度强烈的,多半是真的无了,作者可以考虑投另一刊物了。 如果作者看完刊社方编辑的回复,觉得自己的论文还能“挽救”,回信中也没有提到什么致命缺点,甚至认为有可能是因为审稿人/编辑误判引起的,那么作者本人可以尝试提交申诉信,并积极修改论文以争取主编给予一次再审稿的机会。 不过,申诉后成功被接受的比率非常低,往往不如修改后改投另一个刊物。  如果是因为审稿人审稿时不够公正所致的拒稿,作者可以礼貌地申辩下。审稿人有时也会犯错误,并非源于专业知识,而是因为有些时候期刊的编辑找的审稿人未必是作者这个领域的专家。即便他们的审稿意见看似不够专业,作者也要礼貌地申辩。如果作者对否定有异议,可以向编辑或主编提出自己的意见。  只要自己是正确的就应该坚持,这就是学术本身的意义所在。在回复中要委婉地表达自己的意见。如果编辑同意作者的意见,论文就可以重新进入到新的一轮审稿。 这种情况通常是由于审稿人认为这篇论文的数据或者分析上有缺陷,然而论文的主题和大部分内容都是没问题的,并且包含一些有用信息。 如果是这一类情况,作者可以下去完善数据改进内容,之后再次投给刊社方。这类文章主编通常是会考虑重新受理的。 不过被拒稿了也不要怀疑人生,因为这种情况并不少见,可以说百分之80的学者都经历过稿件被拒。而且,拒稿也不一定是因为论文写得不好,还有可能是其他因素~ 一个学术期刊,不可能只发表一个研究方向的内容。如果同一时间段类似的论文投了很多,编辑很有可能直接拒掉一部分。 比如论文明明是教育方向的,却投了个经济类的期刊,那肯定会被拒绝了。 如果学术编辑最近真的很忙,即使这个稿件适合自己处理,也可以拒绝处理。另外,这样的稿件不在自己的熟悉领域内,也可以拒稿处理该稿件。 对于一篇学术论文,即使写得最好,如果编辑部联系了好几个学术编辑,都 没有人愿意处理 ,编辑部会认为这篇学术论文不在期刊规定的内容内,并作出拒稿决定。 通常情况下,编辑安排外审了,说明编辑对论文的初印象还不错。当外审建议回来之后,学术编辑会根据外审意见重新作出自己的判断。理论上讲,好的学术编辑只会参考审稿人的建议,而不会完全按照审稿人的意见作出最终决定。当然,如果有外审意见都非常差,那可能会直接了当地拒稿。 然而,如果两个审稿人都要求Major Revision(大修),这个时候就取决于目前向该期刊投稿的 稿件数量 了。如果稿件数量庞大,编辑认为比这篇稿件优秀的稿件太多,也可以作出拒稿的决定。

在一些创新创业项目申请和评审中,需要提交相关的学术论文进行论证。这主要是因为学术论文可以帮助对项目进行深入的研究、分析和论证,为项目是否可行提供科学依据。如果一个创新创业项目没有论文,可能有以下几个原因:1. 项目创始人缺乏学术研究经验:有些创业者可能并不具备独立开展学术研究的能力和背景,所以无法撰写相关的学术论文。2. 建立在新技术上:一些创新创业项目可能建立在全新的技术或思想基础上,这种情况下可能缺乏现有的文献支持或参考标准,从而难以编写相应的学术论文。3. 注重商业化落地决策:有些创新创业项目注重实际商业化应用情况,在此情况下,不再需要学术论文的论证就可以进行实践性的商业化推广或试点。4. 没有及时撰写:有时候由于时间紧迫或精力有限,创新创业项目方可能会把更多的精力投入到项目开发以及商业化推广中,导致没有及时编写相应的学术论文。可以理解为在创新创业项目申请和评审中,学术论文是作为其中之一的评估标准存在,但对于特定的项目并非必须。当然,是否编写学术论文,也取决于具体的评审标准和申请要求。

论文被拒稿的原因可能有很多,比如论文质量不高、论文内容不新颖、论文结论不充分或不明确、论文抄袭或抄袭他人研究等。通常情况下,论文被拒稿的原因都是由于论文没有达到发表的标准。需要注意的是,每个期刊对论文发表的标准都不同,所以如果你的论文被拒稿,你可以尝试投稿到其他期刊,并且在投稿前要仔细阅读期刊的投稿指南,以确保你的论文符合发表的标准。

论文未能发表的原因

论文被拒稿的原因可能有很多,比如论文质量不高、论文内容不新颖、论文结论不充分或不明确、论文抄袭或抄袭他人研究等。通常情况下,论文被拒稿的原因都是由于论文没有达到发表的标准。需要注意的是,每个期刊对论文发表的标准都不同,所以如果你的论文被拒稿,你可以尝试投稿到其他期刊,并且在投稿前要仔细阅读期刊的投稿指南,以确保你的论文符合发表的标准。

Ssci难发表的原因如下:

1、论文缺少新意:ssci期刊对论文创新性要求是非常高的,论文内容只是一味地重复已发表的文献,毫无新意。

2、内容水平欠佳:作为国际权威期刊的ssi期刊,对所刊登的论文水平要求是非常高的。论文质量平平是很难引起杂志社兴趣的,更不要说见刊了。

3、实验存在缺陷:实验设计有问题或是实验数据量太小,亦或是实验条件设置有问题等,无法精准对所要验证的数据进行充分印证。

4、语言问题多:英文并非我国母语,所以翻译后的论文难免会存在一些语法、语病、拼写等错误。这些错误如果充满论文全文,会影响论文质量,同时也会降低论文的可读性。

5、查重率高:ssci期刊对论文的查重率要求比较高,大家在ssci期刊|投稿前应提前了解投稿期刊查重率要求,不要拿普通期刊的查重率要求作为衡量在ssci论文查重标准。否则,也会导致ssci论文发表不出去。

6、句子逻辑混乱:国内与国外在语言表达上是完全不同的,因此翻译后的论文也会出现句子逻辑混乱,或是上下文不连续的情况。

一个是水平不够,一个是相关的论文太多、内容太大众化。编辑有没有提出意见啊?有,就按照他的意见改改呗。没有就另投一方,不过得过三个月啊。

爱因斯坦发表的论文原文

《相对论》是爱因斯坦所著的一部在世界科学理论界影响巨大的著作,主要包括狭义相对论和广义相对论原理的阐述,中文版本由周学政、徐有智编译

爱因斯坦因为光电效应定律获得1921年诺贝尔物理学奖。

1905年发表的论文《关于光的产生和转化的一个试探性观点》中提出了"光量子“理论。

爱因斯坦相对论狭义相对论 爱因斯坦第二假设爱因斯坦第二假设--时间和空间伽玛参数宇宙执法者的历险宇宙执法者的历险--微妙的时间质量和能量 光速极限广 义相对论基本概念 爱因斯坦第三假设爱因斯坦第四假设宇宙几何 爱因斯坦第一假设 全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。 第一个可以这样陈述: 所有惯性参照系中的物理规律是相同的 此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚: 假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?” 不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。 你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。(“惯性”一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。 另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。 实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动) 例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。 这里有一个最低限度:爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才? 爱因斯坦第二假设 19世纪中页人们对电和磁的理解有了一个革命性的飞跃,其中以詹姆斯.麦克斯韦(James Maxwell)的成就为代表。电和磁两种现象曾被认为毫不相关,直到奥斯特(Oersted)和安培(Ampere)证明电能产生磁;法拉弟(Faraday)和亨利(Henry)证明磁能产生电。现在我们知道电和磁的关系是如此紧密,以致于当物理学家对自然力进行列表时,常常将电和磁视为一件事。 麦克斯韦的成就在于将当时所有已知的电磁知识集中于四个方程中: (如果你没有上过理解这些方程所必需的三到四个学期的微积分课程,那么就坐下来看它们几分钟,欣赏一下其中的美吧) 麦克斯韦方程对于我们的重要意义在于,它除了将所有人们已知的电磁知识加以描述以外,还揭示了一些人们不知道的事情。例如:构成这些方程的电磁场可以以振动波的形式在空间传播。当麦克斯韦计算了这些波的速度后,他发现它们都等于光速。这并非巧合,麦克斯韦(方程)揭示出光是一种电磁波。 我们应记住的一个重要的事情是:光速直接从描述所有电磁场的麦克斯韦方程推导而来。 现在我们回到爱因斯坦。 爱因斯坦的第一个假设是所有惯性参照系中的物理规律相同。他的第二假设是简单地将此原则推广到电和磁的规律中。这就是,如果麦克斯韦假设是自然界的一种规律,那么它(和它的推论)都必须在所有惯性系中成立。这些推论中的一个就是爱因斯坦的第二假设:光在所有惯性系中速度相同 爱因斯坦的第一假设看上去非常合理,他的第二假设延续了第一假设的合理性。但为什么它看上去并不合理呢? 火车上的试验 为了说明爱因斯坦第二假的合理性,让我们来看一下下面这副火车上的图画。 火车以每秒100,000,000米/秒的速度运行,Dave站在车上,Nolan站在铁路旁的地面上。Dave用手中的电筒“发射”光子。 光子相对于Dave以每秒300,000,000米/秒的速度运行,Dave以100,000,000米/秒的速度相对于Nolan运动。因此我们得出光子相对于Nolan的速度为400,000,000米/秒。 问题出现了:这与爱因斯坦的第二假设不符!爱因斯坦说光相对于Nolan参照系的速度必需和Dave参照系中的光速完全相同,即300,000,000米/秒。那么我们的“常识感觉”和爱因斯坦的假设那一个错了呢? 好,许多科学家的试验(结果)支持了爱因斯坦的假设,因此我们也假定爱因斯坦是对的,并帮大家找出常识相对论的错误之处。 记得吗?将速度相加的决定来得十分简单。一秒钟后,光子已移动到Dave前300,000,000米处,而Dave已经移动到Nolan前100,000,000米处。其间的距离不是400,000,000米只有两种可能: 1、 相对于Dave的300,000,000米距离对于Nolan来说并非也是300,000,000米 2、 对Dave而言的一秒钟和对Nolan而言的一秒钟不同 尽管听起来很奇怪,但两者实际上都是正确的。 爱因斯坦第二假设 时间和空间 我们得出一个自相矛盾的结论。我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触。只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同。 实际上,两者都对。第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”。 长度收缩: 长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩。在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式。但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中。这个原理是: 参照系中运动物体的长度比其静止时的长度要短下面用图形说明以便于理解: 上部图形是尺子在参照系中处于静止状态。一个静止物体在其参照系中的长度被称作他的“正确长度”。一个码尺的正确长度是一码。下部图中尺子在运动。用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动。长度收缩原理指出在此参照系中运动的尺子要短一些。 这种收缩并非幻觉。当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短。尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩。下部图中尺子是水平运动的,因此它的水平方向变短。你可能已经注意到,两图中垂直方向的长度是一样的。 时间膨胀: 所谓的时间膨胀效应与长度收缩很相似,它是这样进行的: 某一参照系中的两个事件,它们发生在不同地点时的时间间隔 总比同样两个事件发生在相同地点的时间间隔长。 这更加难懂,我们仍然用图例加以说明: 图中两个闹钟都可以用于测量第一个闹钟从A点运动到B点所花费的时间。然而两个闹钟给出的结果并不相同。我们可以这样思考:我们所提到的两个事件分别是“闹钟离开A点”和“闹钟到达B点”。在我们的参照系中,这两个事件在不同的地点发生(A和B)。然而,让我们以上半图中闹钟自身的参照系观察这件事情。从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有A和B点的线条从右向左移动。因此“离开A点”和“到达B点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从A到B所记录的时间更长。 此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢。最著名的关于时间膨胀的假说通常被成为双生子佯谬。假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来。我们可以将两个人的身体视为一架用年龄计算时间流逝的钟。因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢。结果是,当玛丽返回地球的时候,她将比哈瑞更年轻。年轻多少要看她以多快的速度走了多远。 时间膨胀并非是个疯狂的想法,它已经为实验所证实。最好的例子涉及到一种称为介子的亚原子粒子。一个介子衰变需要多少时间已经被非常精确地测量过。无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长。这就是相对论效应。从运动的介子自身来看,它并没有存在更长的时间。这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了。? 应该加上一句:已经有很多很多的实验证实了相对论的这个推论。(相对论的)其他推论我们以后才能加以证实。我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的。 伽玛参数(γ) 现在你可能会奇怪:为什么你在日常生活中从未注意到过长度收缩和时间膨胀效应?例如根据刚才我所说的,如果你驱车从俄荷马城到勘萨斯城再返回,那么当你到家的时候,你应该重新对表。因为当你驾车的时候,你的表应该比在你家里处于静止状态的表走得慢。如果到家的时候你的表现时是3点正,那么你家里的表都应该显示一个晚一点的时间。为什么你从未发现过这种情况呢? 答案是:这种效应显著与否依赖于你运动速度的快慢。而你运动得非常慢(你可能认为你的车开得很快,但这对于相对论来说,是极慢的)。长度收缩和时间膨胀的效果只有当你以接近光速运动的时候才能注意到。而光速约合186,300英里/秒(或3亿米/秒)。在数学上,相对论效应通常用一个系数加以描述,物理学家通常用希腊字母γ加以表示。这个系数依赖于物体运动的速度。例如,如果一根米尺(正确长度为1米)快速地从我们面前飞过,则它相对于我们的参照系的长度是1/γ米。如果一个钟从A点运动到B点要3秒钟,那么相对于我们的参照系,这个过程持续3/γ秒。 为了理解现实中为什么我们没有注意到相对论效应,让我们看一下(关于)γ的公式: 这里的关键是分母中的v2/c2。v是我们所讨论的物体的运动速度,c是光速。因为任何正常尺寸物体的速度远小于光速,所以v/c非常小;当我们将其平方后(所得的结果)就更小了。因此对于所有实际生活中通常尺寸的物体而言,γ的值就是1。所以对于普通的速度,我们通过乘除运算后得到的长度和时间没有变化。为了说明此事,下面有一个对应于不同速度的γ值表。(其中)最后一列是米尺在此速度运动时的长度(即1/γ米)。 第一列中c仍旧表示光速。.9c等于光速的十分之九。为了便于参照举个例子:“土星五号”火箭的飞行速度大约是25,000英里/小时。你看,对于任何合理的速度,γ几乎就是1。因此长度和时间几乎没有变化。在生活中,相对论效应只是发生在科幻小说(其中的飞船远比“土星五号”快得多)和微观物理学中(电子和质子常被加速到非常接近光速的速度)。在从芝加哥飞往丹佛的路上,这种效应是不会显现出来的。 宇宙执法者的历险 宇宙执法者AD在A行星上被邪恶的EN博士所擒。EN博士给AD喝了一杯13小时后发作的毒酒,并告诉AD解药在距此40,000,000,000公里远的B行星上。AD得知此情况后立即乘上其0.95倍光速的星际飞船飞往B星,那么: AD能即使到达B星并取得解药吗? 我们做如下的计算: A、B两行星之间的距离为40,000,000,000公里。飞船的速度是1,025,000,000公里/小时。把这两个数相除,我们得到从A行星到B行星需要39小时。 那么AD必死无疑。 等一下!这只对于站在A行星上的人而言。由于毒药在AD的体内是要经过新陈代谢(才能发作)的,我们必须从AD的参照系出发研究这一问题。我们可以用两种方法做这件事情,它们将得到相同的结论。 1. 设想一个大尺子从A行星一致延伸到B行星。这个尺子有40,000,000,000公里长。然而,从AD的角度而言,这个尺子以接近光速飞过他身边。我们已经知道这样的物体会发生长度收缩现象。在AD的参照系中,从A行星到B行星的距离以参数γ在收缩。在95%的光速下,γ的值大约等于3.2。因此AD认为这段路程只有12,500,000,000公里远(400亿除以3.2)。我们用此距离除以AD的速度,得到12.2小时,AD将提前将近1小时到达B行星! 2. A行星上的观察者会发现AD到达B需要花费大约39小时时间。然而,这是一个膨胀后的时间。我们知道AD的“钟”以参数γ(3.2)变慢。为了计算AD参照系中的时间,我们再用39小时除以3.2,得到12.2小时。(也)给AD剩下了大约1小时(这很好,因为这给了AD20分钟时间离开飞船,另外20分钟去寻找解药)。 AD将生还并继续与邪恶战斗。 如果对上文中我的描述加以仔细研究,你会发现许多似是而非,非常微妙的东西。当你深入地思考它的时候,一般你最终将提出这样一个问题:“等一下,在AD的参照系中,EN的钟表走得更慢了,因此在AD的参照系中,宇宙旅行应花费更长的时间,而不是更短... 如果你对这个问题感兴趣或者觉得困惑,你可能应该看一下后文《宇宙执法者的历险——微妙的时间》。或者你可以相信我所说的话“如果你把所有的因果都弄清楚,那么所有(这些)都是正确的”并跳到《质量和能量》一章。 宇宙执法者的历险——微妙的时间 好,这就是我们刚刚看到的。我们已经发现在AD相对于EN参照系旅行中的时间膨胀。在EN参照系中,AD是运动的,因此AD的钟走得慢。结果是在此次飞行中EN的钟走了39小时,而AD的钟走了12小时。这常常使人们产生这样的问题: 相对于AD的系,EN是运动的,因此EN的钟应该走得慢。因此当AD到达B行星的时候,他的钟走的时间比EN的长。谁对?长还是短? 好问题。当你问这个问题的时候,我知道你已经开始进入情况了。在开始解释之前,我必须声明在前文所叙述的事情都是对的。在我所描述的情况下,AD可以及时拿到解药。现在让我们来解释这个徉谬。这与我尚未提及的“同时性”有关。相对论的一个推论是:同一参照系中的两个同时(但不同地点)发生的事件相对于另一个参照系不同时发生。 让我们来研究一些同时发生的事件。 首先,让我们假设EN和AD在AD离开A行星时同时按下秒表。按照EN的表,这趟B行星之旅将花费39小时。换言之,EN的表在AD到达B行星时读数为39小时。因为时间膨胀,AD的表与此同时读数为12.2小时。即,以下三件事情是同时发生的: 1、 EN的表读数为39 2、 AD到达B行星 3、 AD的表读数为12.2 这些事件在EN的参照系中是同时发生的。 现在在AD的参照系中,上述三个事件不可能同时发生。更进一步,因为我们知道EN的表一定以参数γ减慢(此处γ大约为3.2),我们可以计算出当AD的表读数为12.2小时的时候,EN的表的读数为12.2/3.2=3.8小时。因此在AD的系中,这些事情是同时发生的: 1、 AD到达B行星 2、 AD的钟的读数为1.2 3、 EN的钟的读数为3.2 前两项在两个系中都是相同的,因为它们在同一地点——B行星发生。两个同一地点发生的事件要么同时发生,要么不同时发生,在这里,参照系不起作用。 从另一个角度看待此问题可能会对你有所帮助。你所感兴趣的事件是从AD离开A行星到AD到达B行星。一个重要的提示:AD在两个事件中都存在。也就是说,在AD的参照系中,这两个事件在同一地点发生。由此,AD参照系的事件被称作“正确时间”,所有其他系中的时间都将比此系中的更长(参见时间膨胀原理)。不管怎样,如果你对AD历险中的时间膨胀感到迷惑,希望这可以使之澄清一些。如果你原本不糊涂,那么希望你现在也不。 质量和能量 除了长度收缩和时间膨胀以外,相对论还有许多推论。其中最著名、最重要的是关于能量的。 能量有许多状态。任何运动的物体都因其自身的运动而具有物理学家所谓的“动能”。动能的大小和物体的运动速度及质量有关。(“质量”非常类似于“重量”,但并不完全相同)放在架子上的物体具有“引力势能”。因为如果架子被移掉,它就(由于引力)具有获得动能的可能。 热也是一种形式的能,其最终可以归结于组成物质的原子和分子的动能,此外还有许多其他形式的能。 把上述现象都和能量联系起来的原因,即它们之间的联系,是能量守恒定律。这个定律是说,如果我们把宇宙中全部的能量都加起来(我们可以用象焦耳或千瓦时这样的单位定量地描述能量),其总量永不改变。此即,能量从不会产生或消灭,尽管它们可以从一种形态转化为另一种形态。例如,汽车是一种可以将(在引擎的汽缸中的)热能转化为(汽车运动的)动能的设备;灯泡(可以)将电能转化为光能(这又是两种能的形式)。 爱因斯坦在他的相对论中发现了能量的另一种形式,有时被称作“静能量”。我已经指出一个运动物体由于其运动而具有了能量。但爱因斯坦发现,同样一个物体在其静止不动的时候同样具有能量。物体内静能量的数量依赖于其质量,并以公式E=mc2给出。 由于光速是如此之大的一个数,一个典型物体的静能量与其所具有的其他类型的能量根本不可相提并论。但这并不重要,因为日常生活中物体的静能量就是保持“安静”的状态,并且不会被转化成我们可以注意到的其他形式的能,如热能或动能。在核电站、原子武器和太阳中有相对很少一部分静质量被转化为其他形式的能,但对于大多数情况而言,静能量通常不会被注意到。 一个物体的动能和静能量的总和也可以用数学公式非常容易地表述如下: E=mc2γ 注意,在日常的速度中,γ大约等于1。因此静、动能量之和近似等于单一的静能量。换句话说,在日常速度中,静能比动能大得多。然而,当速度非常接近光速时,γ可以比1大很多(静能量只与物体的质量有关,而与其运动与否无关)。这对于在芝加哥附近的费米实验室和瑞士边界的CERN实验室中(使用)粒子加速器的物理学家来说非常重要。 光速极限 在读AD历险记中,你可能注意到AD的速度几乎是,但并不等于光速。这似乎有很充分的理由:远低于光速的速度相对论效应不显著。然而实际情况是超光速在物理学中是不可能的。 我会告诉你这是为什么。假想AD奋力想将他的飞船加速到光速。好,我们已经知道物质的能量与γ参数成比例,这在相对论计算中太普遍了。但你现在也会知道当物体的运动速度等于光速时,γ参数将变为无穷大。因此,为了让AD的飞船加速到光速,他将需要无穷大的能量。这显然是不可能的。因此尽管对于一个物体可以以多么接近光速的速度运动并无限制,但任何有质量的物体都不可能达到光速。实际上,没有质量的物质必须以光速运动,在此我不想讨论其原因。唯一的一种没有质量的物质是光(被称作“光子”),或许还有中微子(不久前已经证实,中微子有质量。译者) 还有其他物体不能朝光速运动的原因。其中之一与“因果性”有关。假设我投出一个垒球并打碎了一扇窗户,那么“我投出球”就是“窗户被击碎”的原因。如果超光速是可能的,那么一定会有某种参照系,其中“窗户被击碎”先于“我投出球”发生。这导致各种逻辑冲突(特别是当窗户已经碎了之后又有人截获了飞行中的球,阻止了窗户被击碎!)因此我们将物体能超光速运行这种可能性排除了。更进一步,因果性排除的不仅是朝光速运动,更排除了任何超光速通讯。 光速,就我们所知而言,是一道不可逾越的障碍。 如果你和我一样是个科幻迷,这将是一个坏消息。几乎可以肯定,在除地球之外的太阳系中不存在有智慧的生命。然而恒星间的距离太远了!我们即使以光速运行,到达最近的恒星也要花上4年时间。所以没有比光快的交通手段,将很可能无法在银河系中游荡并与异型文明相遇,为争夺银河系的帝位而站,等等。 另一方面,由于长度收缩,或许情况并非那样令人绝望。假设你登上一条飞船,以接近光速飞往10光年以外的一颗恒星。从地球的参照系看来,这个旅行将持续10年。然而对于这次旅行中的乘客而言,长度缩短了。因此这个旅行只用了不到10年的时间。并且飞船飞行得越接近光速,(相对于地球和恒星的)长度收缩得也越多(你也可以从时间膨胀的角度考虑这个问题)。 为了说明这点,这里有一个表,标明以不同的速度到达不同目的地所需要的时间。让我解释一下它们的含义: 首先,为了能产生显著的长度缩短,我们必须非常接近光速。因此我假设在旅行中飞船可以产生一个稳定的加速度。这也就是说,飞船内的人将感受到一个连续的加速度。例如,前半程以1g(g为地球的重力加速度。译者)加速,后半程以1g减速。 第二列以光年为单位给出了地球距离我们目的地的距离(一光年是光在一年内传播的距离,大约是6万亿英里)。我加入了三种不同加速度的计算,一种较小,另一种较大;剩下的一种与地球的重力加速度相等。加速度为2g的旅行可能会非常不舒服,因此或许你根本不用再考虑所有比这更大的速度。 第四列列出了最大速度(在中点处,当飞船正要转入减速运动时)与光速的比值。最后两列给出了旅行所需要的时间。首先以地球为参照系,然后以飞船为参照系。其中的差别很重要。我的意思是,如果说你乘飞船以2g的加速度飞往猎户座,在你到达猎户座之前要在飞船上渡过6.8年的时间。(尽管距离很远,但“飞船时间”增加得非常慢。这是因为距离越大,在开始减速前你越能接近光速飞行,因此你得到的长度收缩越多!)但当你到达那里的时候,地球上已经过500多年了。你到达猎户座后所发出的任何信息都将在500年后到达地球,回信也是如此。因此如果人类有一天能漫步在银河系之中,不同居住点之间将处于隔绝状态。地球上的人不可能以任何常规方式同猎户座附近的人交谈。 为建造一艘可以像这样无限加速的飞船,现在看来有无穷的技术困难。这些困难可能会被证实是不可克服的,那么我们就只能在幻想的空间遨游;但如果它们是可以克服的,并且如果我们人类可以活得足够长以克服它们,那么我刚才所描述的正是依据狭义相对论的理论上(可行的)远程宇宙旅行。 当然,许多科幻小说仍然加入了超光速飞行。但它们也常常不得不在其中引入一些奇怪的概念,如:“(时空)扭曲”、“超时空”。最终的情况是:就我们今天所知的时、空而言,超光速飞行是不可能的。但如果你喜欢,你总可以寄希望于某种时空的“窗口”或一个全新的,允许物体超光速运动的物理分枝被发现。 那样,我们就可以着手建立一个大银河帝国了! 广义相对论—— 一个极其不可思议的世界 广义相对论的基本概念解释: 在开始阅读本短文并了解广义相对论的关键特点之前,我们必须假定一件事情:狭义相对论是正确的。这也就是说,广义相对论是基于狭义相对论的。如果后者被证明是错误的,整个理论的大厦都将垮塌。 为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的。 质量的两种不同表述: 首先,让我们思考一下质量在日常生活中代表什么。“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。这种质量被称作“引力质量”。我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。 现在,试着在一个平面上推你的汽车。你不能否认你的汽车强烈地反抗着你要给它的加速度。这是因为你的汽车有一个非常大的质量。移动轻的物体要比移动重的物体轻松。质量也可以用另一种方式定义:“它反抗加速度”。这种质量被称作“惯性质量”。 因此我们得出这个结论:我们可以用两种方法度量质量。要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。 人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量。 牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。 日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。

发表狭义相对论的论文是《On the Electrodynamics of Moving Bodies》,,,翻译过来叫《论动体的电动力学》,1905年5月发表广义相对论的论文叫《广义相对论基础》,英文忘了叫什么了,,按照汉语翻译过去发现不对。。。。。。。1916年3月发表 另外。。。。这个类别怎么是小说里的?////、、、相对论是小说?、、、、

  • 索引序列
  • 高斯未发表的论文原因
  • 论文未发表的原因
  • 未发表论文的原因
  • 论文未能发表的原因
  • 爱因斯坦发表的论文原文
  • 返回顶部