只要是关于教育之类就可以啦。只要是适合你文章的期刊。
简介 翻开近世数学的教科书和专门著作,阿贝尔这个名字是屡见不鲜的:阿贝尔积分、阿贝尔函数、阿贝尔积分方程、阿贝尔群、阿贝尔级数、阿贝尔部分和公式、阿贝尔基本定理、阿贝尔极限定理、阿贝尔可和性,等等。很少几个数学家能使自己的名字同近世数学中这么多的概念和定理联系在一起。然而这位卓越的数学家却是一个命途多舛的早夭者,只活了短短的27年。尤其可悲的是,在他生前,社会并没有给他的才能和成果以公正的承认。 生平 尼耳期.亨利克.阿贝尔(N.H.Abel,1802-1829)1802年8月出生于挪威的一个农村。他很早变显示了数学方面的才华。16岁那年,他遇到了一个能赏识其才能的老师霍姆伯(Holmboe)介绍他阅读牛顿、欧拉、拉格朗日、高斯的著作。大师们不同凡响的创造性方法和成果,一下子开阔了阿贝尔的视野,把他的精神提升到一个崭新的境界,他很快被推进到当时数学研究的前沿阵地。后来他感慨地在笔记中写下这样的话:“要想在数学上取得进展,就应该阅读大师的而不是他们的门徒的著作”。 青年时代 1821年,由于霍姆伯和另几位好友的慷慨资助,阿贝尔才得进入奥斯陆大学学习。两年以后,在一本不出名的杂志上他发表了第一篇研究论文,其内容是用积分方程解古典的等时线问题。这篇论文表明他是第一个直接应用并解出积分方程的人。接着他研究一般五次方程问题。开始,他曾错误地认为自己得到了一个解。霍姆伯建议他寄给丹麦的一位著名数学去审阅,幸亏审阅者在打算认真检查以前,要求提供进一步的细节,这使阿贝尔有可能自己来发现并修正错误。这次失败给了他非常有益的启发,他开始怀疑,一般五次方程究竟是否可解?问题的转换开拓了新的探索方向,他终于成功地证明了要像较低次方程那样用根式解一般五次方程是不可能的。 这个青年人的数学思想已经远远超越了挪威国界,他需要与有同等智力的人交流思想和经验。由于阿贝尔的教授们和朋友们强烈地意识到了这一点,他们决定说服学校当局向政府申请一笔公费,以便他能作一次到欧洲大陆的数学旅行。经过例行的繁文缛节的手续和耽搁延宕后,阿贝尔终于在1825年8月获得公费,开始其历时两年的大陆之行。 踌躇满志的阿贝尔自费印刷了证明五次方程不可解的论文,把它作为自己晋谒大陆大数学家们,特别是高斯,的科学护照。他相信高斯将能认识他工作的价值而超出常规地接见。但看来高斯并未重视这篇论文,因为人们在高斯死后的遗物中发现阿贝尔寄给他的小册子还没有裁开。 柏林是阿贝尔旅行的第一站。他在那里滞留了将近一年时间。虽然等候高斯召见的期望终于落空,这一年却是他一生中最幸运、成果最丰硕的时期。在柏林,阿贝尔遇到并熟识了他的第二个伯乐——克雷勒(Crelle)。克雷勒是一个铁路工程师,一个热心数学的业余爱好者,他以自己所创办的世界上最早专门发表创造性数学研究论文的期刊《纯粹和应用数学杂志》而在数学史上占有一席之地,后来人平习惯称这本期刊为“克雷勒杂志”。与该刊的名称所标榜的宗旨不同,实际上它上面根本没有应用教学的论文,所以有人又戏称它为“纯粹非应用数学杂志”。阿贝尔是促成克雷勒将办刊拟议付诸实施的一个人。初次见面,两个人就彼此留下了良好而深刻的印象。阿贝尔说他拜读过克雷勒的所有数学论文,并且说他发现在这些论文中有一些错误。克雷勒非常地谦虚,他已经意识到眼前这位脸带稚气的年轻人具有非凡的数学天才。他翻阅了阿贝尔赠送的论五次方程的小册子,坦率地承认看不懂。但此时他已决定立即实行拟议中的办刊计划,并将阿贝尔的论文载入第一期。于是阿贝尔的研究论文,克雷勒杂志才能逐渐提高声誉和扩大影响。 阿贝尔一生最重要的工作——关于椭圆函数理论的广泛研究就完成在这一时期。相反,过去横遭冷遇,历经艰难,长期得不到公正评价的,也就是这一工作。现在公认,在被称为“函数论世纪”的19世纪的前半叶,阿贝尔的工作[后来还有雅可比(K.G.Jacobi,1804-1851)发展了这一理论],是函数论的两个最高成果之一。 阿贝尔与椭圆函数 椭圆函数是从椭圆积分来的。早在18世纪,从研究物理、天文、几何学的许多问题中经常导出一些不能用初等函数表示的积分,这些积分与计算椭圆弧长的积分往往具有某种形式上的共同性,椭圆积分就是如此得名的。19世纪初,椭圆积分方面的权威是法国科学院的耆宿、德高望重的勒让得(A.M.Legen-dre,1752-1833)。他研究这个题材长达40年之久,他从前辈工作中引出许多新的推断,组织了许多常规的数学论题,但他并没有增进任何基本思想,他把这项研究引到了“山重水复疑无路”的境地。也正是阿贝尔,使勒让得在这方面所研究的一切黯然失色,开拓了“柳暗花明”的前途。 关键来自一个简单的类比。微积分中有一条众所周知的公式上式左边那个不定积分的反函数就是三角函数。不难看出,椭圆积分与上述不定积分具有某种形式的对应性,因此,如果考虑椭圆积分的反函数,则它就应与三角函数也具有某种形式的对应性。既然研究三角函数要比表示为不定积分的反三角函数容易得多,那么对应地研究椭圆积分的反函数(后来就称为椭圆函数)不也应该比椭圆积分本身容易得多吗? “倒过来”,这一思想非常优美,也的确非常简单、平凡。但勒让得苦苦思索40年,却从来没有想到过它。科学史上并不乏这样的例证“优美、简单、深刻、富有成果的思想,需要的并不是知识和经验的单纯积累,不是深思熟虑的推理,不是对研究题材的反复咀嚼,需要的是一种能够穿透一切障碍深入问题根柢的非凡的洞察力,这大概就是人们所说的天才吧。“倒过来”的想法像闪电一样照彻了这一题材的奥秘,凭借这一思想,阿贝尔高屋建瓴,势如破竹地推进他的研究。他得出了椭圆函数的基本性质,找到了与三角函数中的π有相似作用的常数K,证明了椭圆函数的周期性。他建立了椭圆函数的加法定理,借助于这一定理,又将椭圆函数拓广到整个复域,并因而发现这些函数是双周期的,这是别开生面的新发现;他进一步提出一种更普遍更困难类型的积分——阿贝尔积分,并获得了这方面的一个关键性定理,即著名的阿贝尔基本定理,它是椭圆积分加法定理的一个很宽的推广。至于阿贝尔积分的反演——阿贝尔函数,则是不久后由黎曼(B.Riemann,1826-1866)首先提出并加以深入研究的。事实上,阿贝尔发现了一片广袤的沃土,他个人不可能在短时间内把这片沃土全部开垦完毕,用埃尔米特(Hermite)的话来说,阿贝尔留下的后继工作,“够数学家们忙上五百年”。阿贝尔把这些丰富的成果整理成一长篇论文《论一类极广泛的超越函数的一般性质》。此时他已经把高斯置诸脑后,放弃了访问哥延根的打算,而把希望寄托在法国的数学家身上。他婉辞了克雷勒劝其定居柏林的建议后,便启程前往巴黎。在这世界最繁华的大都会里, 荟萃着像柯西(A.L.Cauchy,1789-1857)、勒让得、拉普拉斯P.S.LapLace,1749-1827)、傅立叶(I.Fourier,1768-1830)、泊松(S.D.Poisson,1781-1840)这样一些久负盛名的数字巨擘,阿贝尔相信他将在那里找到知音。 巨星的陨落 1826年7月,阿贝尔抵达巴黎。他见到了那里所有出名的数学家,他们全都彬彬有礼地接待他,然而却没有一个人愿意仔细倾听他谈论自己的工作。在这些社会名流的高贵天平上,这个外表腼腆、衣着寒酸、来自僻远落后国家的年轻人能有多少份量呢?阿贝尔在写给霍姆伯谈巴黎观感的信中说道:“法国人对陌生的来访者比德国人要世故得多。你想和他们亲密无间简直是难上加难,老实说我现在也根本不奢望能有些荣耀。到头来,任何一个开拓者要想在此间引起重视,都得遇到巨大的障碍。尽管阿贝尔非常自信,但对这一工作能否得到合理评价已经深有疑虑了。他通过正常渠道将论文提交法国科学院。科学院秘书傅立叶读了论文的引言,然后委托勒让得和柯西负责审查。柯西把稿件带回家中,究竟放在什么地方,竟记不起来了。直到两年以后阿贝尔已经去世,失踪的论文原稿才重新找到,而论文的正式发表,则迁延了12年之久。 从满怀希望到渐生疑虑终至完全失望,阿贝尔在巴黎空等了将近一年。他寄居的那家房东又特别吝啬刻薄,每天只供给他两顿饭,却收取昂贵的租金。一天他感到身体很不舒畅,经医生检查,诊断为肺病,尽管他顽强地不相信,但实情是他确已心力交瘁了。阿贝尔只好拖着病弱的身体,怀着一颗饱尝冷遇而孤寂的心告别巴黎回国。当他重到柏林时,已经囊空如洗。幸亏霍姆伯及时汇到一些钱,才使他能在柏林稍事休整后返回家园。 是谁该对阿贝尔的厄运负责呢?人们很自然会想起审评阿贝尔论文的柯西、勒让得。柯西当时38岁,正年富力强,创造力旺盛,忙于自己的事,顾不上别人而疏忽铸下了大错。勒让得怎么样呢?年逾古稀,功成名就,在法国科学界享有崇高的威望,他当时不可能像柯西那样忙着搞研究,理应对培养、识拔年轻一代的科学人才负有更多责任。然而主要的是,阿贝尔这篇论文所处理的题材恰恰是勒让得所熟悉的,从某种意义上来说,是他的世袭领地。尽管论文里包含着许多新奇、艰深的概念,但导致这些概念的基本思想却是简单的。一个外行也许没有能力欣赏这种简单思想的优美性和深刻性,但勒让得对所论问题却决非外行,他自己思者过几十年,深知在旧有基本思想框架内,知识业已达到饱和状态,要获取新的知识,除非打破框架,引进新的基本思想。对他来说,其实根本无须仔细阅读论文,只有稍事点拨,三言两语说明一下基本思想,就足以起到振聋发聩的作用。但是他却好像毫无感受,实在令人费解。事实上,阿贝尔论文的内容,他并非一无所知,当他得知另一位青年数学家雅可比(Jacobi)也独立做了椭圆函数理论方面相当系统的工作后,他曾告诉过雅可比,有一个年轻的斯堪的纳维亚人已先他而专美于家了。雅可比如饥似渴地读完阿贝尔那篇失落两年又奇迹般出现的论文,不禁气愤地写信责问科学院:“阿贝尔先生作出了一个多么了不起的发现啊!有谁看到过别的堪与比美的发现呢?然而,这项也许称得上我们世纪最伟大的数学发现,两年以前就提交给你们科学院了,却居然没有引起你们的注意,这究竟是怎么一回事呢”?勒让得复信为自己提出的辩解是令人失笑的:“我们感到论文简直无法阅读,因为它是用几乎白色的墨水写的,字母拼写得很糟糕,我们都认为应该要求作者提供一个较清楚的文本。真是掩耳盗铃,文过饰非。” 让我们再看看高斯。高斯一生勤勉,有许多伟大的数学发现,却错过了发现这个伟大数学人才的机会。科学史经常在告诫:大凡富有创造性的见解,开始总是与传统观念相抵触的。 但阿贝尔最终毕竟还是幸运的,他回挪威后一年里,欧洲大陆的数学界渐渐了解了他。继失踪的那篇主要论文之后,阿贝尔又写过若干篇类似的论文,都在“克雷勒杂志”上发表了。这些论文将阿贝尔的名字传遍欧洲所有重要的数学中心,他已成为众所瞩目的优秀数学家之一。遗憾的是,他处境闭塞,孤陋寡闻,对此情况竟无所知。甚至连他想在自己的国家谋一个普通的大学教职也不可得。1829年1月,阿贝尔的病情恶化,他开始大口吐血,并不时陷入昏迷。他的最后日子是在一家英国人的家里度过的。因为他的未婚妻凯姆普(Kemp)是那个家庭的私人教师。阿贝尔已自知将不久于人世,这时,他唯一牵挂的是他女友凯姆普的前途,为此,他写信给最亲近的朋友基尔豪(Kiel-hau),要求基尔豪在他死后娶凯姆普为妻。尽管基尔豪与凯姆普以前从未觌面,为了让阿贝尔能死而瞑目,他们照他的遗愿做了。临终的几天,凯姆普坚持只要自己一个人照看阿贝尔,他要“独占这最后的时刻”。1829年4月6日晨,这颗耀眼的数学新星便过早地殒落了。阿贝尔死后两天,克雷勒的一封信寄到,告知柏林大学已决定聘请他担任数学教授。损失是难以估计的,如果阿贝尔活到应的的寿命,他又将要做出多少新的贡献啊! 评价 通过阿贝尔的遭遇,我们认识到,建立一个客观而公正的科学评价体制是至关重要的。科学界不仅担负着探索自然奥秘的任务,也担负着发现从事这种探索的人才的任务。科学是人的事业,问题是要靠人去解决的。科学评价中的权威主义倾向却往往有害于发现和栽培科学人才。科不权威意味着他在科学的某一领域里曾做过些先进工作,他可能是科学发现方面踌躇满志的权威,却不一定是评价、发现、培养科学人才的权威,尤其当科学新分支不断涌现,所要评价的对象是天于连权威都陌生的新领域的工作时,情况更是如此。 阿贝尔奖 为了纪念挪威天才数学家阿贝尔诞辰200周年,挪威政府于2003年设立了一项数学奖——阿贝尔奖。这项每年颁发一次的奖项的奖金高达80万美元,相当于诺贝尔奖的奖金,是世界上奖金最高的数学奖。 阿贝尔雕像 自16世纪以来,随着三次、四次方程陆续解出,人们把目光落在五次方程的求根公式上,然而近300年的探索一无所获,阿贝尔证明了一般五次方程不存在求根公式,解决了这个世纪难题,在挪威皇宫有一尊阿贝尔的雕像,这是一个大无畏的青年的形象,他的脚下踩着两个怪物——分别代表五次方程和椭圆函数。来源于 百度百科 另外在给你推荐一个同时期的传奇人物 罗巴切夫斯基 为了非欧几何奋斗了30年
《数学大世界》《数学研究与应用》
《中国科教创新导刊》《数学大世界》《数学学习与研究》《数理化解题研究》《理科考试研究》等等可以发表。可进我空间参考参考
感觉这个网站应该对你很有帮助..进去自己看看吧..
欧拉 【来源:中国数学会网站】 欧拉,L.(Euler,Leonhard)1707年4月15日生于瑞士巴塞尔;1783年9月18日卒于俄国圣彼得堡.数学、力学、天文学、物理学. 欧拉的祖先原来居住在瑞士东北部博登湖(康斯坦斯湖)畔的小城——林道.16世纪末,他的曾祖父汉斯·乔治·欧拉(HansGeorg Euler)带领全家顺莱茵河而下,迁居巴塞尔.这个家族几代人多为手艺劳动者.欧拉的父亲保罗·欧拉(Paul Euler)则毕业于巴塞尔大学神学系,是基督教新教的牧师.1706年,保罗与另一位牧师的女儿玛格丽特·勃鲁克(Margarete Brucker)结婚.翌年春,欧拉降生.1708年,保罗举家迁居巴塞尔附近的村庄——里亨(Riehen).欧拉就在这田园静谧的乡村度过他的童年. 欧拉的父亲很喜爱数学.还在大学读书时,他就常去听雅格布·伯努利(Jakob Bernouli)的数学讲座.他亲自对欧拉进行包括数学在内的启蒙教育,并盼望儿子成为教门的后起之秀.贤惠的母亲为了使欧拉及时受到良好的学校教育,把他送到巴塞尔外祖母家生活了几年,入那里的一所文科中学念书.可是,这所学校不教数学.勤勉好学的欧拉独自随业余数学家J.伯克哈特(Bu-rckhart)学习.欧拉聪敏早慧,酷爱数学.他曾下苦功研读C.鲁道夫(Rudolf)的《代数学》(Algebra,1553)达数年之久.1720年秋,年仅13岁的欧拉进了巴塞尔大学文科.当时,约翰·伯努利(Johann Bernoulli)任该校数学教授.他每天讲授基础数学课程,同时还给那些有兴趣的少数高材生开设更高深的数学、物理学讲座.欧拉是约翰·伯努利的最忠实的听众.他勤奋地学习所有的科目,但仍不满足.欧拉后来在自传中写道:“……不久,我找到了一个把自己介绍给著名的约翰·伯努利教授的机会.……他确实忙极了,因此断然拒绝给我个别授课.但是,他给了我许多更加宝贵的忠告,使我开始独立地学习更困难的数学著作,尽我所能努力地去研究它们.如果我遇到什么障碍或困难,他允许我每星期六下午自由地去找他,他总是和蔼地为我解答一切疑难……无疑,这是在数学学科上获得成功的最好的方法.”约翰的两个儿子尼吉拉·伯努利第二(Nikolaus Bernoulli II)、丹尼尔·伯努利(Daniel Bernoulli),也成了欧拉的挚友.1722年夏,欧拉在巴塞尔大学获学士学位.翌年,他又获哲学硕士学位.但授予这一学位是在1724年6月8日的会议上正式通告的.此前,他为了满足父亲的愿望,于1723年秋又入神学系.他在神学、希腊语、希伯莱语方面的学习并不成功.他仍把大部分时间花在数学上.尽管欧拉后来彻底放弃了当牧师的念头,但他却终生虔诚地信奉基督教.欧拉18岁开始其数学研究生涯.1726年,他在《博学者》(Acta eruditorum)上发表了关于在有阻尼的介质中的等时曲线结构问题的文章.翌年,他研究弹道问题和船桅的最佳布置问题.后者是这年巴黎科学院的有奖征文课题.欧拉的论文虽未获得奖金,却得到了荣誉提名.此后,从1738年至1772年,欧拉共获得巴黎科学院12次奖金.在瑞士,当时青年数学家的工作条件非常艰难,而俄国新组建的圣彼得堡科学院正在网罗人才.1725年秋,尼古拉第二和丹尼尔应聘前往俄国,并向当局力荐欧拉.翌年秋,欧拉在巴塞尔收到圣彼得堡科学院的聘书,请他去那里任生理学院士助理.然而,故土难离.欧拉开始用数学和力学方法研究生理学,同时仍期望在巴塞尔大学找到职位.恰好,这时该校有一位物理学教授病故,出现空席.欧拉向学校教授评议会递交了“论声音的物理学原理”(Dissertatio physica de sono,1727)的论文,争取教授资格.在激烈的竞争中,未满20岁的欧拉落选了.1727年4月5日欧拉告别故乡,5月24日抵达圣彼得堡.从那时起,欧拉的一生和他的科学工作都紧密地同圣彼得堡科学院和俄国联系在一起.他再也没有回过瑞士.但是,出于对祖国的深厚感情,欧拉始终保留了他的瑞士国籍.欧拉到达圣彼得堡后,立即开始研究工作.不久,他获得了在真正擅长的领域从事研究工作的机会.1727年,他被任命为科学院数学部助理院士.他撰写的关于圣彼得堡科学院学术会议情况的调查报告,也开始在《圣彼得堡科学院汇刊(1727)》(Comme-ntarii Academiae scientiarum imperialis Petropolitanae)第二卷(St.Petersburg,1729)上发表.尽管那些年俄国政局动荡,圣彼得堡科学院还处在艰难岁月之中,但周围的学术气氛对发展欧拉的才华特别有利.那里聚集着一群杰出的科学家,如数学家C.哥德巴赫(Goldbach)、丹尼尔·伯努利,力学家J.赫尔曼(Hermann),三角学家F.梅尔(Maier),天文学家和地理学家J.N.德莱索(Delisle)等.他们同欧拉的个人情谊与共同的科学兴趣,使得彼此在科研工作中配合默契、相得益彰.1731年,欧拉成为物理学教授.1733年,丹尼尔·伯努利返回巴塞尔后,欧拉接替了他的数学教授职务,担负起领导科学院数学部的重任.这对亲密的朋友,以后通信40多年,促进了科学的竞争和发展.是年冬,欧拉和科学院预科学校的美术教师、瑞士画家G.葛塞尔(Gsell)的女儿柯黛林娜·葛塞尔(Katharina Gsell)结婚.翌年,其长子约翰·阿尔勃兰克(Johann Albrecht)降生.1740年,卡尔(Karl)出世.恬静、美满的家庭生活伴随着欧拉科学生涯的第一个黄金时期.还在圣彼得堡科学院建成之初,俄国政府就责成它除了进行纯科学研究之外,还要培养、训练俄国科学家.为此,科学院建立了一所大学和预科学校,大学办了近50年,预科学校一直办到1805年.俄国政府还委托科学院制定俄国的地图,解决各种具体技术问题.欧拉积极参与并领导了科学院的这些工作.从1733年起,他和德莱索成功地进行了地图研究.从30年代中期开始,欧拉以极大的精力研究航海和船舶建造问题.这些问题对于俄国成为海上强国,是具有重大意义的.欧拉是各种技术委员会的成员,又担任科学院考试委员会委员.他既要为科学院的期刊撰稿、审稿,还要为附属大学、预科学校准备讲义、开设讲座,工作十分忙碌.然而,他的主要成就是在数学研究上.在圣彼得堡的头14年间,欧拉以无可匹敌的工作效率在分析学、数论和力学等领域作出许多辉煌的发现.截止1741年,他完成了近90种著作,公开发表了55种,其中包括1936年完成的两卷本《力学或运动科学的分析解说》(Mechanica sive motus scie-ntia analytice exposita).他的研究硕果累累,声望与日俱增,赢得了各国科学家的尊敬.欧拉从前的导师约翰·伯努利早在1728年的信中就称他为“最善于学习和最有天赋的科学家”,1737年又称他是“最驰名和最博学的数学家”.欧拉后来谦逊地说:“……我和所有其他有幸在俄罗斯帝国科学院工作过一段时间的人都不能不承认,我们应把所获得的一切和所掌握的一切归功于我们在那儿拥有的有利条件.”由于过度的劳累,1738年,欧拉在一场疾病之后右眼失明了.但他仍旧坚韧不拔地工作.他热爱科学,热爱生活.他非常喜欢孩子(他一生有过13个孩子,除了5个以外都夭亡了).写论文时往往膝上抱着婴儿,大一点的孩子则绕膝戏耍.他酷爱音乐.在撰写艰深的数学论文时,他的“那种轻松自如是令人难以置信的”.1740年秋冬,俄国政局再度骤变,形势极不安定.欧拉此时与圣彼得堡科学院粗鲁、专横的顾问J.D.舒马赫尔(Schuma-cher)也产生了磨擦.为了使自己的科学事业不受损害,欧拉希望寻求新的出路.恰好这年夏天继承了普鲁士王位的腓特烈(Frederick)大帝决定重振柏林科学院,他热情邀请欧拉去柏林工作.欧拉接受了邀请.1741年6月19日,欧拉启程离开圣彼得堡,7月25日抵达柏林.柏林科学院是在G.W.莱布尼茨(Leibniz)的大力推动下于1700年创立的,后来它衰落了.欧拉在柏林25年.那时,他精力旺盛,不知疲倦地工作.他鼎力襄助院长P.莫佩蒂(Maupe-rtuis),在恢复和发展柏林科学院的工作中发挥了重大作用.在柏林,欧拉任科学院数学部主任.他是科学院的院务委员、图书馆顾问和学术著作出版委员会委员.他还担负了其他许多行政事务,如管理天文台和植物园,提出人事安排,监督财务,以及历书和地图的出版工作.当院长莫佩蒂外出期间,欧拉代理院长.1759年莫佩蒂去世后,虽然没有正式任命欧拉为院长,但他实际上一直领导着科学院的工作.欧拉和莫佩蒂的友谊,使欧拉能对柏林科学院的一切活动,尤其是在选拔院士方面,施加巨大影响.欧拉还担任过普鲁士政府关于安全保险、退休金和抚恤金等问题的顾问,并为腓特烈大帝了解火炮方面的最新成果(1745年),设计改造费诺运河(1749年),曾主管普鲁士皇家别墅水力系统管系和泵系的设计工作.他和德国许多大学的教授保持广泛联系,对大学教科书的编写和数学教学起了促进作用.在此期间,欧拉一直保留着圣彼得堡科学院院士资格,领取年俸.受该院委托,欧拉为其编纂院刊的数学部分,介绍西欧的科学思想,购买书籍和科学仪器,同时推荐研究人员和课题.他在培养俄国的科学人才方面起了重大的作用.他还经常把自己的学术论文寄往圣彼得堡.他的论文约有一半是用拉丁文在圣彼得堡发表的,另一半用法文在柏林出版.另外,他还先后当选为伦敦皇家学会会员(1749年)、巴塞尔物理数学会会员(1753年)及巴黎科学院院士(1755年).柏林时期是欧拉科学研究的鼎盛时期,其研究范围迅速扩大.他与J.K.达朗贝尔(D’Alembert)和丹尼尔·伯努利展开的学术竞争奠定了数学物理的基础;他与A.克莱罗(Clairaut)和达朗贝尔一起推进了月球和行星运动理论的研究.与此同时,欧拉详尽地阐述了刚体运动理论,创立了流体动力学的数学模型,深入地研究了光学和电磁学,以及消色差折射望远镜等许多技术问题.他写了大约380篇(部)论著,出版了其中的275种.内有分析学、力学、天文学、火炮和弹道学、船舶建造和航海等方面的几部巨著,其中1748年出版的两卷集著作《无穷分析引论》(Introdu-ctio in analysin infinitorum)在数学史上占有十分重要的地位.欧拉参加了18世纪40年代关于莱布尼茨和C.沃尔夫(Wolff)的单子论的激烈辩论.欧拉在自然哲学方面接近R.笛卡儿(Descartes)的机械唯物主义,他和莫佩蒂都是单子论的“劲敌”.1751年,S.柯尼格(K nig)以耸入听闻的新论据,发表了几篇批评莫佩蒂的“最小作用原理”的文章.欧拉翌年撰文反驳,并同莫佩蒂用更浅显的语言来解释最小作用原理.除了这些哲学和科学的争论以外,对于数学的发展来说,欧拉参加了另外三场更重要的争论:与达朗贝尔关于负数对数的争论;与达朗贝尔、丹尼尔·伯努利关于求解弦振动方程的争论;与J.多伦(Dollond)关于光学问题的争论.1759年莫佩蒂去世后,欧拉在普鲁士国王的直接监督之下负责柏林科学院的工作.欧拉同腓特烈大帝之间的关系并不融洽.1763年,当获悉腓特烈想把院长的职务授予达朗贝尔后,欧拉开始考虑离开柏林.圣彼得堡科学院立即遵照卡捷琳娜(Catherine)女皇旨意寄给欧拉聘书,诚挚希望他重返圣彼得堡.但是达朗贝尔拒绝长期移居柏林,使腓特烈一度推迟就院长入选作最后的决定.“七年战争”之后,腓特烈粗暴地干涉欧拉对柏林科学院的事务管理.1765年至1766年,在财政问题上,欧拉与腓特烈之间引发了一场严重的冲突.他恳请普鲁士国王同意他离开柏林.1766年7月28日,欧拉重返圣彼得堡,他的三个儿子和两个女儿也回到俄国,伴于身旁.欧拉的家安置在涅瓦河畔离圣彼得堡科学院不远的舒适之处.他的长子阿尔勃兰克这年成为科学院院士、物理学部教授,三年后又被任命为科学院的终身秘书.1766年,欧拉父子还同时当选为科学院执行委员.欧拉的工作是顺心的,然而,厄运也接二连三地向他袭来.回到圣彼得堡不久,一场疾病使欧拉的左眼几乎完全失明.这时,他已经不能再看书了.只能勉强看清大字体的提纲,用粉笔在石板上写很大的字母.1771年,欧拉双目完全失明.这一年,圣彼得堡的一场特大火灾又使欧拉的住所和财产付之一炬,仅抢救出欧拉及其手稿. 1773年 11月,欧拉夫人柯黛琳娜去世.三年后,她同父异母的妹妹莎洛姆·葛塞尔(SalomeGsell)成为欧拉的第二个妻子.欧拉晚年遭受双目失明、火灾和丧偶的沉重打击,他仍不屈不挠地奋斗,丝毫没有减少科学活动.在他的周围,有一群主动的合作者,包括:他的儿子阿尔勃兰克和克利斯朵夫(Christoph); W.L.克拉夫特(Krafft)院士和A.J.莱克塞尔(Lexell)院士;两位年轻的助手N.富斯(Fuss)和M.E.哥洛文(Golovin).欧拉和他们一起讨论著作出版的总计划,有时简要地口述研究成果.他们则使欧拉的设想变得更加明确,有时还为欧拉的论著编纂例证.据富斯自己统计,七年内他为欧拉整理论文250篇,哥洛文整理了70篇.欧拉非常尊重别人的劳动.1772年出版的《月球运动理论和计算方法》(Theoria motuum lunae, nova methodoPertractata)是在阿尔勃兰克、克拉夫特和莱克塞尔的帮助下完成的,欧拉把他们的名字都印在这本书的扉页上. 重返圣彼得堡后,欧拉的著作出版得更多.他的论著几乎有一半是1765年以后出版的.其中,包括他的三卷本《积分学原理》(Institutiones calculi integralis, 1768—1770)和《关于物理学和哲学问题给德韶公主的信》(Lettresà une princesse d’AllemagneSur divers sujets de physique et de philosophie, 1768—1772).前者的最重要部分是在柏林完成的.后者产生于欧拉给普鲁士国王的侄女的授课内容.这本文笔优雅、通俗易懂的科学著作出版后,很快就在欧洲翻译成多种文字,畅销各国,经久不衰.欧拉是历史上著作最多的数学家.欧拉的多产也得益于他一生非凡的记忆力和心算能力.他70岁时还能准确地回忆起他年轻时读的荷马史诗《伊利亚特》(Iliad)每页的头行和末行.他能够背诵出当时数学领域的主要公式和前100个素数的前六次幂.M.孔多塞(Condorcet)讲述过一个例子,足以说明欧拉的心算本领:欧拉的两个学生把一个颇为复杂的收敛级数的17项相加起来,算到第50位数字时因相差一个单位而产生了争执.为了确定谁正确,欧拉对整个计算过程进行心算,最后把错误找出来了.1783年9月18日,欧拉跟往常一样,度过了这一天的前半天.他给孙女辅导了一节数学课,用粉笔在两块黑板上作了有关气球运动的计算,然后同莱克塞尔和富斯讨论两年前F.W.赫歇尔(Herschel)发现的天王星的轨道计算.大约下午5时,欧拉突然脑出血,他只说了一句“我要死了”,就失去知觉.晚上11时,欧拉停上了呼吸.欧拉逝世不久,富斯和孔多塞分别在圣彼得堡科学院和巴黎科学院的追悼会上致悼词.孔多塞在悼词的结尾耐人寻味地说:“欧拉停止了生命,也停止了计算.”欧拉的菩作在他生前已经有多种输入了中国,其中包括著名的、1748年初版本的《无穷分析引论》.这些著作有一部分曾藏于北京北堂图书馆.它们是18世纪40年代由圣彼得堡科学院赠给北京耶稣会或北京南堂耶稣学院的.这也是中俄数学早期交流的一个明证.19世纪70年代,清代数学家华蘅芳和英国人傅兰雅(John Fryer)合译的《代数术》(1873)和《微积溯源》(1874),都介绍了欧拉学说.在此前后,李善兰和伟烈亚力(Alexander Wylie)合译的《代数学》(1859)、赵元益译的《光学》(1876)、黄钟骏的《畴人传四编》(1898)等著作也记载了欧拉学说或欧拉的事迹(详见文献[32]).中国人民是很早就熟悉欧拉的.欧拉不仅属于瑞士,也属于整个文明世界.著名数学史家A.П.尤什凯维奇(Юшкевич)说,人们可以借B.丰唐内尔(Fontenelle)评价莱布尼茨的话来评价欧拉,“他是乐于看 到自己提供的种子在别人的植物园里开花的人.”在欧拉的全部科学贡献中,其数学成就占据最突出的地位.他在力学、天文学、物理学等方面也闪现着耀眼的光芒.(转自《数学家传记大辞典》,张洪光)
1. 文献书籍
1.1 英文文献
研享网,页面很干净,可通过关键词、题目、论文 DOI 进行搜索。
Sci-Hub,大多数英文文献均可通过 DOI 在该网站进行下载,域名可能会随时间变化,该链接失效时需找其他新域名。
好的论文app有:超级论文、论文指南、论文帮、科技论文在线,这几个比较好,没有广告,运行的快
保罗,埃尔德什
我可以写,私信
欧拉是历史上最多产的数学家,他生前发表的著作与论文有560余种。
保罗·埃尔德什(1913-1996),数学家,犹太人,一生发表学术论文1475篇(部分与他人合写)
培养系统掌握历史学基础知识、基本理论,并掌握一般教育及历史学专业教育理论和教学方法,具有较宽的 知识面,德、智、体全面发展,综合素质较高,具有较强适应能力和一定研究创造能力的专门人才。 史学理论及史学史博士点是在原同名硕士点的基础上,于1998年正式批准设立。该学科为我系传统的优势学科,在国内史学界有重要影响。设立至今,共招收博士研究生11人,已有6人获博士学位。史学理论及史学史是阐述历史学的理论、方法及历史学自身发展过程和规律的学科领域。该博士点以培养深入掌握马克思主义唯物史观、熟悉中外史学理论和史学史、具有创造性研究能力的高水平学术人才为目标,致力于以新方法、新理论促进跨学科史学的发展,以丰富和发展马克思主义史学理论。主要研究方向为:(一)马克思主义唯物史观和史学方法论;(二)唯物史观与现代化进程比较研究。(三)唯物史观与历史文化比较研究。该学科学术队伍整齐,年龄结构合理,后备力量雄厚。现有教授4人,副教授4人,讲师4人。曾多人次承担国家级、省部级七五、八五、九五项目,在重要学术刊物上发表论文150余篇,出版专著(译著等)30余部,获国家级、省部级奖励多项。李学智教授作为本学科的学术带头人,长期从事唯物史观与史学理论、现代化问题以及历史文化问题的比较研究,承担各级多项重要研究课题。 史学理论及史学史硕士点1982年批准设立,1983年正式招生。该专业以培养掌握马克思主义史学理论与方法、具有较宽广的中外史学理论知识、能从事独立研究的高素质人才为目标,已招收硕士研究生48人,毕业41人。本硕士点研究方向、发展状况。学术队伍组成与同名称博士学位点一致。“世界史”博士点介绍(正在建设中) 世界史博士点是在原同名硕士点的基础上,于2005年正式批准设立。该学科为我系传统的优势学科,在国内史学界有重要影响。该学科学术队伍整齐,年龄结构合理,后备力量雄厚。学科带头人为王亚平教授。本专业课程设置依据21世纪历史学发展趋势、培养目标和研究方向确定。课程设置强调理论化、数量化、系统化、经济化、生态化和社会化,体现历史与现实相结合的特点,努力建设成为具有坚实理论基础和研究能力并举的硕士学位点。主要学位课程有: 世界中世纪史、世界近代史、西欧经济-社会史平;选修课程有:西欧法律制度史、宗教社会史、西欧教会史、转型时期中西经济-社会比较、西欧中世纪乡村生活研究、中西民众宗教信仰比较研究,等等。本学科点的指导教师都具有相当的坚实的学术基础,其中几位指导教师曾在德国、英国进修或者作为访问学者或客座教授进行教学和研究工作;承担过多项国家科研基金项目;出版了近10部专著,先后在《历史研究》、《世界历史》等各种学术期刊上发表过60余篇论文;获得省市和学校科研成果奖4项。本学科的指导教师在教学方面也具有相当丰富的教学经验,已经培养了10余名硕士研究生,在大学以及新闻机构工作。并有三人在复旦大学、东北师大以及德国汉堡大学继续攻读博士学位。本学科点拥有相当数量的图书资料和学术刊物供学习和研究使用,其中有各类学科级的期刊,如:《中国社会科学》、《历史研究》、《世界历史》、《哲学研究》、《经济研究》,人大复印资料历史、哲学、宗教、文化各专集均自创刊起连续订阅。有Economic History Review,Past and Present, History and Theory等十余种西文期刊。 经济-社会史(专门史)也是我院长期从事研究的优势学科,富有学术前沿性、中外史学交融性和关照我国的现代化事业的现实性等特点,在国内史学界已产生了较大影响的专门史研究领域。经济-社会史在西方已有数十年的发展史,目前已成为西方史学界的重要新兴学科。它将经济史与社会史紧密结合起来,有助于从社会整体上和长时段的大趋势上研究和说明问题。经济-社会史在我国还处于起步阶段。天津师大的经济社会史学科颇有特色,可概括为一个中心、两个交叉、三个特征:那就是以西欧向近代社会转型问题研究为中心,实现经济史与社会史的交叉、世界史与中国史的交叉,坚持人文的、大众的和整体的历史观。主要研究方向为:(一)西欧经济史与社会转型;(二)西欧宗教文化与社会转型;(三)西欧性别妇女史与与社会转型;(四)中西经济-社会史比较。本学科以中青年学者为主体,年富力强,4名正教授、3名副教授,3名讲师,其中一名博士生导师(同时兼职东北师大世界史专业博士生导师),四名硕士生导师,平均年龄46岁,成员全部具有博士学位或在读博士。曾多人次承担国家级、省部级七五、八五、九五项目,国家级十五重点教材,经常在国内外重要学术刊物上发表论文,多种学术专著出版。近年推出的《经济-社会史研究丛书》(2001年)、《史学研究新方向:经济-社会史》(2002年)等引起学术界的关注。侯建新教授作为本学科的学术带头人,长期从事英国及西欧经济-社会史、中西经济-社会史比较研究,推出了一批系统的、高质量的学术成果,承担各级多项重要研究课题,其研究成果多次获得奖励,有广泛的社会反响。 中国古代史是历史系具有较深厚的学术积累和较高学术水准的骨干学科。20世纪80年代,一批知名学者如万九河、周乾荣、李光霁先生等在该学科任教时,曾培养了先秦史、魏晋南北朝隋唐史两个方向多届硕士研究生。该硕士点于2000年批准设立,2001年正式开始招生。中国古代史是以先秦至鸦片战争的中国历史为研究对象、揭示中国社会发展规律的学科领域,该硕士点以培养具有较坚实的理论基础和系统专业知识、掌握基本研究手段、具有较强科研能力的学术人才为目标,主要研究方向为:(一)隋唐史;(二)先秦史;(三)中国古代社会史。本学科学术队伍以以中青年学者为骨干,成熟稳定并具有较大的发展潜力。在由9人组成的学术梯队中,教授5人,副教授3人,讲师1人。完成国家级、部(省)级等20余项研究课题,发表论文120余篇,出版各类著作近30部。研究领域覆盖中国古代政治、经济、社会思想文化等多个方面,多篇(本)论著获得全国性和天津市奖励。学科带头人马俊民教授在隋唐史研究领域具有扎实的学术功底和创新精神,对一系列史实的考证和论述成果有独到之处,或在前人研究基础上有所突破,或填补了研究空白,为国内史学界专家和港台学者广泛承认。“中国近现代史”硕士点介绍(正在建设中) 教育硕士专业学位是具有特定教育职业背景的专业性学位,主要是培养面向基础教育、教学和管理工作需要的高层次人才。早在1989年,历史系就设置了历史教育理论与方法硕士点,长期从事历史教育学硕士的培养,积累了较为丰富的实践经验。该硕士点以培养具有扎实的历史教育理论和基础知识,对历史教育的发展有较深刻的认识,能够从事高水平教学和科研的人才为目标。本学科学术队伍齐整,年龄、职称结构合理,教学实践经验丰富。现有成员6人,教授2人,副教授3人。科研成果丰厚。自1990年以来,曾承担教育部师范司高师历史专业面向21世纪人才培养规格和相应课程体系的理论与实践等十余项研究课题,出版《历史学概论》、《历史教育学》、《中学历史教育理论与方法》等著作十余部,在国家及省级报刊、杂志上发表论文80余篇。冯培兰副教授作为本学位的学术带头人,现任中国教育学会历史教学研究会理事,天津市历史教学研究会副理事长。主要从事历史教育理论方面的研究,有一系列重要著述发表,曾参与人民教育出版社历史室主持的高中历史教师参考用书的编写工作。日前,以该学科为骨干,我院被教育部批准为新课程改革国家培训基地。
深圳大学历史系分数线:520分。
深圳大学,简称深大,位于广东省深圳市南山区南海大道3688号,1983年经国务院批准创办。学校办学层次由学士、硕士到博士教育,是一所综合性大学。
1995年学校通过国家首批本科教学合格评价,1996年经国务院学位委员会批准成为硕士学位授予单位。1997年实行学院制,明确了以本科教育为主、积极发展研究生教育的办学思路。
2006年1月经国务院学位委员会批准为博士学位授予单位。2014年11月27日,深圳大学正式成立研究生院。
学术建设:
2017年,学校科研总经费超过10亿元;新增国家自然科学基金项目281项,SCI收录论文2280篇,SSCI收录论文202篇。获科研奖励2160项。获专利授权327项,其中发明专利授权211项。
学校SCI收录论文由2012年的398篇增至2017年2126篇,年均增长率近40%,高引论文2017年达到107篇。
在Nature、Science的子刊、特刊及旗下期刊发表论文十余篇,相关领域顶级期刊发表论文50余篇。截至2017年12月,学校的发明专利申请量达到2498件,实用新型申请量622件,其中发明专利授权830件,实用新型授权545件。
选择专业很重要,本人对地理专业比较了解(其他不敢妄言)回答如下:1、先从兴趣爱好考虑:地理学专业方向分为三支:自然地理学(研究方向有水文、地貌、气候、生物、泥炭等)、人文地理学(研究方向有城市规划、区域经济、人口资源与环境等)、地理信息系统(研究方向有地图、遥感、GIS等)。楼主是学经济学的,初步建议考虑人文地理学,当然其他二支也绝对可以学。具体考试科目不同招考学校也不同,建议进一步咨询,有的放矢。2、再从从就业方面考虑:1、中学教师(初中、高中地理教师)2、大学教师(城乡规划、旅游方向,大部分要求地理专业学士学位及以上)2、城乡规划研究院(大部分要求地理专业硕士学位及以上,专业主要为城市规划、地理信息系统等)3、国土资源厅(局)(大部分要求地理专业硕士学位及以上,专业主要为自然地理学、城市规划等)4、公司(例如大名鼎鼎的北京超图信息公司等,大部分要求地理专业硕士学位及以上,研究方向主要为城市规划、地理信息系统等)5、水文水利厅(局)(大部分要求地理专业学士学位及以上,专业主要为自然地理学等)6、环境保护局(大部分要求地理专业学士学位及以上,专业主要为自然地理学,研究方向为综合地然地理等)7、气象局(大部分要求地理专业学士学位及以上,专业主要为自然地理学,研究方向为气候学等)8、研究所(大部分要求地理专业硕士学位及以上,各专业均需求)9、其他就业方向(本人尚未了解到的)3、考研该怎样选择学校?从考不考高等数学考虑:据我了解东北师大三专业都考高数(二),不考高数的我知道两所学校:华中师范大学,华南师范大学等,当然到相关网站查询各校的招生简章才是关键。4、考福建师大的人文地理学研究生难吗?个人认为相对自然地理专业要难一点,不过能考上研究生总是有实力的,建议加强个人修为,坚持到最后!希望对你有帮助!个人宣言:我是hk——honestking——诚实的国王,不是香港的英文缩写,切记切记……
论文参考题目
1、非10进制记数的利和弊。
2、数的概念的发展与人类认识能力提高的关系。
3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学发展的启迪作用。
4、为什么毕达哥拉斯学派关于不可公度量的发现会在数学中产生危机?
5、欧几里得《原本》中的代数。
6、欧几里德《几何原本》与公理化思想;
7、在几何学中有没有“王者之路”。
8、无所不在的斐波那契数列。
9、文艺复兴时期数学发展的重要因素。
10、达•芬奇与数学。
11、十进制小数的历史。
12、圆周率的历史作用。
13、“圆”中的数学文化。
14、明代中国商业算术处于突出地位的原因。
15、近代中国数学落后的原因。
16、芝诺悖论与微积分的关系。
17、未解决的问题在数学中的重要性。
17、黄金分割引出的数学问题。
18、试论数学悖论对数学发展的影响。
19、第一次数学危机及其克服。
20、第二次数学危机及其克服。
21、第三次数学危机及其克服。
22、数学对当代社会文化的影响。
23、试论数学的发展对人类社会的进步的推动作用。
24、从历史观看数学。
25、数学符号的价值。
26、谈对数学本质的认识。
27、试论数学科学的价值。
28、函数概念的发展。
29、空间概念的发展。
30、曲线概念的发展。
31、数学对天文学的推动。
32、数学中无穷思想的发展。
33、数学中的美。
34、音乐中的数学。
35、艺术中的数学。
36、浅谈数学语言的特点。
37、论数学的抽象性。
38、关于数学的严谨性。
39、关于数学的真理性。
40、数学家的不幸。
41、数学家的幸运。
42、从数学史中扩展的数学知识。
43、从程大位的《算法统宗》“首篇”河图、洛书等看《易经》与珠算之联44、梵语的盛行——十进制的发明之谜 45、中国古代数学发展缓慢的启示
46、从矩阵的萌芽论中国传统数学的文化底蕴
47、《九章算术》刘徽注中的算法分析工作与算法分析思想
48、《费马大定理》读后感 49、黎曼猜想浅谈
50、再论《巧排九方》——一个传统的数字推理趣题之详解及其推广
51.、数学史上的三次危机
52、笛卡儿解析几何思想的文化内涵 53、理性数学的哲学起源
54、中国数学教育史研究进展
希望对你有帮助。
一篇有关数学史的论文(网上搜索不到)研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。具体地说,它所研究的内容是:①数学史研究方法论问题;②总的学科发展史——数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;等等。按其研究的范围又可分为内史和外史。内史 从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;外史 从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。人们研究数学史的历史,由来甚早。古希腊时就曾有人写过一部《几何学史》,可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。中世纪阿拉伯国家的一些传记作品和数学著作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。12世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是当时的数学研究,也是对古典数学著作的整理和保存。近代西欧各国的数学史研究,是从18世纪,由J.É.蒙蒂克拉、C.博絮埃、A.C.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经J.de拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。①通史研究 代表作可以举出M.B.康托尔的《数学史讲义》(4卷,1880~1908)以及C.B.博耶(1894、1919)、D.E.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派也写了一部数学史收入《数学原理》丛书之中。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所著《古今数学思想》一书,被认为是70年代以来的一部佳作。②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有J.L.海贝格、胡尔奇、T.L.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范?德?瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范?德?瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。④断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于(J.-)H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。”⑤历代数学家的传记以及他们的《全集》、《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。⑥专业性学术杂志 最早出现于19世纪末,M.B.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书?律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书?律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。在中国古算书的序、跋中,经常出现数学史的内容。如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位 《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人。②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的。经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。参考资料:数学史自建国以来,由於中算史专家李俨教授、钱宝琮教授、严敦杰教授的提倡,在国内有不少自发的人员从事于数学史研究,这些人员都是各自独立地进行研究,相互之间,在学术上很少进行磋商,但是,在中国数学史、外国数学史上确有许多急需解决的疑难问题,也就是由於当时形势的需要,急需把这些“个体户”组织起来,按“互助组”的形式进行研究。自1977年“互助组”成立以来,已有十五年了。在这期间,相互切磋、相互提携、相互支援、相互协助共同为中国科学、技术史作了不少可喜工作。例如,1984年受国家教委的委托,在北京师范大学举办了“中、外数学史讲习班”,除有百余所高等院校派员参加学习外,还有当代著名数学家江泽涵教授、吴文俊教授、王梓坤教授光临“讲习班”,进行指导并讲话,“讲习班”还邀请了全国十多名著名数学史家前来授课或作专题讲演;在“讲习班”期间,不但播放了中国数学古籍的幻灯片、故宫博物院库藏科、技文物幻灯片,而且有幸参观了故宫博物院库藏数百种科、技文物的实物。这次“讲习班”的活动,收到非常丰硕的效果,之后,有很多人对数学史产生了浓厚兴趣,加入了数学史的行列,从而对数学史进行学习、探讨、研究;也有人积极进行准备,拟开设数学史课,从而改变了全国只有十一所高校开设数学史课的极不相称之局面。在中国古典数学中,《九章算术》及《数书九章》是两部著名学术著作,其中有许多千古未解之谜及疑难问题,为了解决这些研究中以及教学中的难题,受国家教委的委托,于1986年在徐州师范学院举办了“《九章算术》暨《数书九章》暑期讲习班”,全国有四、五十所高等院校派员参加了这次“讲习班”。一致认为这次“讲习班”解决了在中国数学史的研究中、教学中的实际困惑和难点。“讲习班”期间,除讲授课程、专题报告外,还组织了多次“专题讨论”;在“专题讨论”中,可以自由发言,讲述个人的不同观点,并可以进行辩论和答问;因而“专题讨论”收到了意想不到的效果。之后,还参观了徐州地区的古迹和出土文物展览。原先,由开设数学史课程的十一所高校,后来逐渐扩展为六十多所高校,但是这种大范围的扩展,使得数学史的教材成了当务之亟的问题,因而组织有关人员进行教材的编撰工作;于1986年、1987年分别出版了《中国数学简史》、《外国数学简史》两部高校教材,不止解决了一些高校缺少数学史教材问题,也可供给某些研究生作为业余的读物,这两部教材现已被广大高校所采用。为了统一各高校数学史的教学要求,为了划一数学史研究生的培养方案,受国家教委的委托,于1984年在北京师范大学召集了八所高等学校,共同制定了《高校中、外数学史教学大纲(草案)》、《数学史研究生培养方案(草案)》,并呈报给国家教委备案。在培养研究生方面,不但使研究生互访“互助组”各校的有关人员,而且还相互邀请“互助组”各校的有关人员前来授课,从而促进各校之间对研究生培养的联系;至於前来北京师大进修的德国慕尼黑大学进修生、日本东海大学高级进修生、日本东北大学进修生,也得到“互助组”各校有关人员的支持。为了深入探讨中国古典数学名著,制定了《中国数学史研究丛书》的规划,于1982年、1987年分别出版了两部学术专著,即《〈九章算术〉与刘徽》、《秦九韶与〈数书九章〉》。这两部书出版后,在国内、外引起强烈反应,得到国内、外许多专家的高度评价,认为中国数学史的研究,不但不是没有可深入研究的问题,而相反的是,认为中国数学史的研究前景,是非常广阔而大有作为的。因之,使得国内、外许多学者从事于中国数学史的研究。由於这两部专著的专题性很强,有些其他方面的学术论文不便收录,所以于差不多同时,先后出版了《中国数学史论文集(一)》、《中国数学史论文集(二)》、《中国数学史论文集(三)》;从而为广大学者和读者,提供了学术园地。为了弘扬中国古代优秀科技文化,经国家教委批准,并经国家自然科学基金委两次资助以及其他五单位资助,分别于1987年、1991年在北京师范大学举办了“秦九韶《数书九章》成书740周年纪念暨学术研讨国际会议”、“《九章算术》暨刘徽学术思想国际研讨会”,像这样的专题性学术研讨会在国际上并不多见,因而受到国际学术界的重视,会前收到不少国际学术界知名人士的贺电,会后分别寄赠会议论文集,前来参加会议的学者,包括十多个国籍,分别为50余人、60余人;这两次专题性的国际会议,在国际学术界产生了巨大影响。为了深入钻研中国古典数学,原拟计划先后出版《中国数学史论文集(四)》、《刘徽研究》、《中国数学史大系》、《南北朝数学》以及《隋唐数学》等书。其中《中国数学史论文集(四)》,早已发稿,由於技术上的原因,推迟了发排的时间;《中国数学史大系》,正在加紧撰写稿件;是国家“八五”期间重点图书,任重而道远,各位执笔者有信心完成任务。《刘徽研究》一书,是《〈九战算术〉与刘徽》一书的继续和发展。经过六年准备,克服了许多困难,终至与读者见面,由于种种原因,还有许多不尽人意的地方,请作者和读者们谅解和批评、指正。《刘徽研究》能得以出版,还是与台湾九章出版社、陕西人民教育出版社、孙文先先生、杨益先生的鼎力相助和大力支持分不开的,在此,特致以由衷的谢意。原来计划全面而深入地探讨刘徽的各项成就,但是,由於发稿较晚、发排较迟、校对也费了不少时日,在这里特向读者致以深切的歉意。到现在,“互助组”已不适合当前形势的需要,乃代替以“才团”,我们实事求是,继续前进,争取新的成绩。
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!
数学史的教育功能
摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。
关键词数学史教育功能创新思维功能体现
1 数学史的教育功能之一 ——提高学生们学习数学的兴趣
兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。
例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。
2 数学史的教育功能之二——培养学生们的数学应用意识
数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。
例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;
又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。
再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。
从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。
3 数学史的教育功能之三——提高学生们的数学素养
对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。
4 数学史的教育功能之四——培养学生们对世界观的正确认知
从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。
总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。
参考文献
[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.
[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.
[3]李正银.数学史与数学教育[J].海南师范学院学报,2003.16(3):98-10.
[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).
[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).
[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).
数学史在大学数学教学中的意义与价值
摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。
关键词: 数学史 高等数学 教学改革
1.数学史
数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
2.数学史在大学数学教学中的意义与价值
我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。
数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。
(1)数学史是数学文化的最佳载体
传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。
(2)数学史是激发兴趣的有效途径
几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。
纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。
数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。
(3)数学史是理解数学的必由之路
数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。
从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。
(4)数学史是思想教育的良好素材
数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。
欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。
3.结语
数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”
参考文献
[1]靳玉乐.现代教育学[M].四川教育出版社,2006.
[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.
[3]杨泰良.以史为鉴 注重反思[J].数学通报.2004.2.
[4]J.N.Kapur.数学家谈数学本质[M].北京大学出版社,1989.
[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.