首页 > 职称论文知识库 > 生物信息学发表论文怎么写

生物信息学发表论文怎么写

发布时间:

生物信息学发表论文怎么写

应该可以吧。。。

不知道,生物信息学,比较难

微生物技术在城市生活垃圾处理中的应用 摘要:本文结合堆肥化、卫生填埋两种现行的城市生活垃圾处理工艺,主要介绍了城市生活垃圾生物处理过程中的微生物种群,以及通过分析开发出的新的微生物技术,指出了应用于城市生活垃圾处理的高效的微生物技术的研究方向。 关键词:城市生活垃圾 微生物 强化微生物处理技术 基因工程 ; 随着城市化进程在全球范围的加速,城市化带来的污染和人类聚居状况恶化等问题,已成为世界各国共同关心的问题。城市生活垃圾(Municipal solid waste, 简称MSW)是在城市日常生活及为城市生活提供服务的活动中产生的固体废弃物,是城市环境的主要污染物之一。目前,城市生活垃圾处理处置的方法主要包括卫生填埋(Sanitary landfill)、堆肥化(Composting)、焚烧(Incineration)三种,其中前两种处理方式均属于生物处理技术。具体来说,MSW生物处理技术就是城市生活垃圾中固有的或外添加的微生物,在一定控制条件下,进行一系列的生物化学反应,使得MSW中的不稳定的有机物代谢后释放能量或转化为新的细胞物质,从而MSW逐步达稳定化的一个生化过程。 1. 城市生活垃圾生物处理中主要的微生物。。。

摘 要:随着计算机科学和生物科学的迅猛发展,生物信息学成为一门独立学科,它将会成为21 世纪生命科学中的重要研究领域之一。本文对生物信息学在本科教学中的教学方法、实验教学、考核办法以及如何与现代教育技术相结合进行了初步的探索,并对如何提高教学效果培养跨学科的生物信息学人才做了深入思考。 关键词:生物信息学 课堂教学 实验教学 现代教育技术 前言 生物信息学(Bioinformatics)是一门新兴的交叉学科。广义地说,生物信息学从事对生物信息的获取、加工、储存、分配、分析和解释,并综合运用数学、计算机科学和生物学工具,以达到理解数据中的生物学含义的目标[1]。其含义是双重的:一是对海量数据的收集、整理与服务,即管理好这些数据;二是从中发现新的规律,也就是使用好这些数据。以1987年出现Bioinformatics这一词汇为标志,生物学已不再是仅仅基于试验观察的科学。伴随着21世纪的到来,生物学的重点和潜在的突破点已经由20世纪的试验分析和数据积累,转移到数据分析及其指导下的试验验证上来。生物信息学作为一门学科被广泛研究的根本原因,在于它所提供的研究工具对生物学发展至关重要,因此成为生命科学研究型人才必须掌握的现代知识。今天的实验生物学家,只有利用计算生物学的成果,才能跳出实验技师的框架,作出真正创新的研究。现在基因组信息学和后基因组信息学资源已经成了地球上全人类的共同财富。如何获取和利用基因组和后基因组学提供的大量信息,如何具有享用全人类共有的资源的初步能力,成了当今世纪生命科学学生必须掌握的基本技术和知识以及必须具有的初步能力[2]。 生物信息学以互联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种生物信息分析,以理解海量分子数据中的生物学含义。区别于其他生命科学课程,其在教学过程中要求有发达的互联网和计算机作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000M主干带宽的高校已占调查总数的64.9%,2005年一些综合类大学和理工类院校已率先升级到万兆校园网[3],这些都为生物信息学课程在高校开设提供了良好的物质基础。该门课程与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较其他课程更具优势。另外,该门课程尚未完全形成成熟的课程体系,为教师学习借鉴先进的教育思想与教学实践经验,在各方面尝试教学改革提供了广阔的空间。 1 课堂教学 生物信息学主要以介绍原理、方法为主,深入浅出,注重知识更新。课堂讲授以介绍生物信息学的相关算法、原理、方法为主,而这也是教学的重点和难点。在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免空洞复杂的算法讲解,以免学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,望而生畏;注重讲解算法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进地掌握复杂的内容,介绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系及其他学科的思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物学问题的科学素质。在教学工作中教师必须能够紧跟学科发展方向,随时进行知识更新,了解最新的前沿动态,掌握新方法,将最新的知识和方法教给学生。同时,也要在教学中鼓励学生通过各种途径自觉地关注学科发展动态,拓宽知识面,培养其自学能力和创新意识。 2 充分利用现代化教育技术,采用启发式教学 目前,高等院校在教室内配备的多媒体投影播放系统促进了多媒体教学的广泛应用。生物信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等内容涉及的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和掌握,提高学生理论与实践相结合的能力。同时,由于生物信息学依赖于网络资源和互联网上的分析工具和软件,教室内的多媒体计算机连接到互联网,极大地提高了教学效果。但在实际教学中发现,多媒体教室也有局限性,学生主要以听讲为主,不能及时实践,教师讲解与学生实践相脱节,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式,就可以解决上述问题。在教学中采用启发式教学,可为学生建立教学情景,学生通过与教师、同学的协商讨论、参与操作,能够发现知识、理解知识并掌握知识。 3 采用讲、练做一体化的教学模式,注重学生实践能力的培养 生物信息学课堂教学应积极学习借鉴职业培训和计算机课程教学中讲、练、做一体化的教学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变传统的以教师为中心、以教材和讲授为中心的教学方式。根据教学内容和学生的认知规律,应灵活地采用先理论后实践或先实践后理论或边理论边实践的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、综合的发展。 通常可采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解可采取进行实际演示的方法,教师边讲解边示范,学生在听课时边听讲、边练习,或者教师讲解结束后学生再进行练习。理论与实践高度结合,可充分发挥课堂教学的生动性、直观性,加深学生对知识的理解,培养和提高学生的实践操作能力。 4 优化生物信息学实验教学内容,发挥网络教学优势 生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识解决问题的能力和独立思考、综合分析的能力。 生物信息学实验教学内容的选择与安排应按照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教师在网上批改实验报告后将成绩和 评语 发送给学生,让学生及时了解自己的学习情况。教师可以通过网上论坛、聊天室和及时通讯工具QQ、MSN等对学生的实验进行指导,与其讨论问题等。网络环境下的生物信息学实验教学不仅能提高学生的学习兴趣,给学生的学习和师生的互动带来极大的方便,提高教师的工作效率,而且可以及时了解掌握学生的学习情况,有利于教师不断调整教学方案,达到更好的教学效果。 5 生物信息学采用无纸化考试,加强实践能力考核 生物信息学主要是学习利用互联网、计算机和应用软件进行生物信息分析的基本理论和基本方法。考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力。因此,在生物信息学考试中可尝试引入实践技能考试,通过上机实践操作重点考核学生知识应用能力。实践技能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行解释,不仅可考查学生对基本知识和基本原理的掌握,而且可考查学生进行生物信息分析的实际能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,可促进学生注重提高理论用于实践的综合能力,同时可更有效地提高学生计算机应用能力。学生成绩评定大部分是以学生的考试成绩为主,难以对学生的学习情况和学习过程作全面地评价。因此,除采用实践技能考试并将其作为学生成绩的主要部分外,还应加强对学生平时学习态度、学习能力、创新思维等方面的考查。 总之,生物信息学教学是网络环境下生物教学的全新内容。上述教学措施提高了学生的学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,教师自身素质的提高和进一步的教学改革,将会不断完善生物信息学教学,培养具有跨越生命科学、信息科学、数理科学等不同领域的“大科学”素质和意识的生物信息学人才。 参考文献: [1]赵国屏等.生物信息学[M].科学出版社,2002. [2]钟杨,张亮,赵琼.简明生物信息学[M].北京:高等教育出版社,2001. [3]教育部科技发展中心对大学校园网建设应用状况调查结果显示.千兆已成主流,应用全面透[J].中国教育网络,2005,(5):36-39.

生物信息学怎么发表论文

最好先阅读几篇相应文章和相今似的论文,比如你的课题是油菜,你可以搜有关其他物种如小麦的。根据论文写作步骤制定实验计划。要练习使用一些常用软件,如NCBI,GenBank,在用时最好先下载安装有道词典,因为是英文网站,不容易懂,专业名词也太多!不要怕,万事开头难!好好准备,入了门就好了!

最好是多收集点生物信息方面的资料,题目可以写生物信息的发展历程,等等

生信文章不需要上传原始代码。可以选择放在论文的附录中,或者干脆不公开。但是,如果你一旦写在了论文的正文当中,那么就意味着代码也是正文的一部分,相当于对所有人公开了。因此,如果你的数据比较敏感,那么尽量少写或者不放在论文里。

生信文章特点

现在的纯生信不但要比拼创新,还需要比拼速度,如果能够补实验更能锦上添花,这就是现在的纯生信行情。纯生信是指不用做实验就可以发表的生信文章,生信文章是指生物信息学类的文章。近年来越来越多的人对生物信息学感兴趣,因为它不需要任何实验就可以发SCI,仅依靠生物信息的相关筛选和统计分析便可发文。

生信分析论文写法如下:

这次我们来讲解的这边文献是 2019-10-12 发表的 OTT 杂志上的一篇生信加少量实验验证的文章。实话实说,目前对于生信最最最基本的,如果没有实验验证还是不好发文章的。所以一般都会加一些实验验证的。

这个文章的主要流程是个这样的:这里我们就基于文童的材料方法来说一下具体的内容:公共数据获取:当中关于公共数据获取部分提到了这些东西。使用了 GEO 数据库来进行候选数据筛选。

这 GEO 里面找到了三个芯片,其中描述了这三个芯片的平台。差异表达分析:作者使用了 GEO2R 来进行数据的筛选。富集分析:接着作者对差异表达的基因进行了富集分析,其中包括 GO 分析和 KEGG 分析。

作者使用的富集分析的软件是 DAVID,这个软件我们也吐槽过说,更新不及时,是很好用,所以推荐是 WebSestalt 富集分析软件,或者 clusterprofiler。蛋白相互作用分析:5TCGA 数据库验证再往下作者做的其实是 TCGA 的数据库验证,但是在材料方法里面没写。我们可以在结果当中具体的过程。

对于肿瘤研究,现在如果只是用 GEO 数据集分析,不用 TCGA 再看一下的话,都觉得不好意思,所以一般的肿瘤研究可能都会用到 TCGA 的验证的。其目的也就类似于多加了一个数据集来增加结果准确性。但是对于 TCGA 有些肿瘤正常样本很少。分析的结果可能偏差更大。文章使用的 GEPIA 的数据库。这个数据库对于查询 TCGA 表达结果还是很好用的,简单上手。

核心基因甲基化相关分析:在核心基因选择之后,利用了 TCGA 的甲基化数据MEXPRESS 来查看基因的田基化水平有没有变化。由于版本的更新。现在的这个数据库的 2.0 版本的结果会比之前的更加详细一些。

生物信息学投稿期刊怎么投

有粉丝问:如何找到适合自己的纯生信友好期刊呢?这就需要从以下五方面进行考虑: 第一,就是单位政策 有些科研水平高的单位往往都会建立期刊黑名单,目的就是不想让你们发这些期刊,不然的话就没有办法毕业或者评职称、没有科研经费资助等等。这些期刊往往都是江湖四大神刊类期刊,还有就是在预警期刊名单上的期刊。如果你单位有些规定,只能避开这些期刊,另寻别的期刊;如果没有这些规定,就没有影响。 第二,就是时间问题 如果你急需要发表文章,等着文章来用的,只能找一些审稿周期短、门槛比较低的期刊。一般都是影响因子低的期刊门槛较低,OA期刊的门槛比非OA期刊低,4区期刊比3区低。如果你时间足够,什么时候发表这篇文章都没有关系,你选择的期刊就更多了,审稿周期长的期刊可以选择,影响因子高一点的也可以尝试,可以先冲高分,然后再做打算。 第三,就是文章本身质量问题 这里首先要考虑就是创新点,没有人发过的,一般都是比较好发的,更容易发高分。例如坏死性调亡,目前基本没有找到相关的纯生信文章,这种热点肯定比那些已经烂大街的热点好发。此外,还要看数据结果的阳性程度,阳性程度越高越好发。因此,如果这个研究热点,你是第一个发的,而且结果非常好,这样的文章是非常有必要尝试一下高分期刊。 第四,就是避开一些不接收纯生信的期刊 现在有一些期刊是不接收纯生信文章,例如 PeerJ、Bioengineered、Frontiers in Oncology ,这些可以到期刊公告上查看,或者到期刊论坛问一下。当然你不相信的话,你可以自己去投稿一下,自己实践一下就是最清楚的。 第五,就是问一下有经验的人 问一下别人目前哪些生信期刊好投,参考一下,当然别人给出的期刊也不一定适合你。也有可能今天这本期刊还大量接收纯生信SCI,明天突然开始不接收纯生信,因为没有人知道明天会发生什么。 总结: 最好投的期刊就是向你约稿的期刊(一般约稿都不会拒稿),最不好投的期刊就是你自身要求太多(一区、非OA、声誉好、审稿周期快等)而自己文章质量既没有创新点也没有非常好的阳性结果。

在正常的情况下,很多人普遍认为SCI期刊的影响因子越低,就越好投,就是容易发表。一般情况下,这样的思维和想法都是对的。但是对于一些特殊类的文章,这种想法是行不通的,例如纯生信(没有补任何实验的)。 现在做纯生信的人非常多,竞争很大,特别是比较旧的分析套路,一般都是比较难发表。为什么比较旧的纯生信分析套路难发?原因就是在于成本低,可能随便在网上都能找到免费的资源, 所以基本上人人都可以做,文章特别容易弄出来。做的人多了,文章自然就多,但是期刊的版面是有限的,即使这本期刊再怎么水,也不可能把所有文章都接收出版。 有的人是这样想的:虽然自己的文章没有什么创新,3分以上的期刊发不了,3分以下的期刊总可以投吧,不行的话,1分的期刊也可以考虑。最怕就是有无数的人都是这样想的,结果造成扎堆投稿,拒稿率自然就大。 之前有朋友的纯生信文章总挑影响因子低的投稿,首先是投了 Med Sci Monit (IF:2.649,6月份之前是1点多的),结果被秒拒了,然后再投 Bioengineered (IF:3.269,6月份之前是2点多的),还是被秒拒。 后面有一次偶然的机会,被人鼓励投了一本接近5分的期刊,结果小修之后就被接收出版 。 Med Sci Monit 、 Bioengineered 的影响因子不高,为啥这么难投? 原因很简单,人家对纯生信极度友好, 但是就是太出名了,造成扎堆投稿,期刊主编没有办法筛选稿件送审了,只能通过补实验来过滤。 有些高分一点的期刊反而还比较容易投,原因也很好理解, 人家愿意接收纯生信,而且投稿的人不多,命中的机会自然就多 。 总结 纯生信投稿的秘诀: 先搜索一下自己的文章,检查是否有类似文章发表,自己的文章是不是热点套路,是否抓住机会,再来决定期刊的影响因子。 出名的期刊尽量不投,不管其影响因子高不高 , 因为扎堆投稿的拒稿率从来都不低。

生物信息学发表论文

哪些论文可以发表在期刊生物信息学上如微生物高效菌能够将氰化物(氰化钾、氰氢酸、氰化亚铜等)分解成二氧化碳和氨;利用专门分解硫化物的微生物可以从废水中回收硫磺;利用能够降解石油烃的超级菌以清除油对水质的污染等。还可以将大量的微生物高效菌凝聚在泥粒上形成活性污泥,用来分解和吸附废水中的有毒物质,污水净化后沉积的污泥中存在丰富的氮、磷、钾等元素,是很好的有机肥料。3、大气污染的生物处理随着现代工、农业的发展,大量有毒、有害气体被排出,严重污染环境。

生物类的呗,医学类的呗,都是可以的,还可以看下在生物医学期刊上

这个问题可能需要从两方面进行回答,生物信息学和系统生物学的定义与界定方法;何为顶期刊。一句回答,按照我个人的理解,发表在CNS级别的文章中,基于生物信息学,以及系统生物学方法手段的曾经有很多,现在也一直有发表,未来很可能也会是一种很普遍的现象。原因见下:首先生物信息学和系统生物学是不可以混为一谈进行探讨的,我理解的生物信息学是一门基于数据挖掘、分析与计算对生物问题进行归纳,统计,解释并预测的科学。而系统生物学则更像是一种生物学研究的一种概念,倾向于从表型入手,通过人群分析,基因组,转录组,翻译组,蛋白组,等组学的大数据的分析,全面的了解一项生物问题。两者在一些问题上的研究方法是类似的,但是系统生物学的数据更具多样性,更偏向生物。顶级期刊这个概念很难划定范围,但是如果你持续关注CNS,你会发现利用以上两种手段进行分析研究的文章是持续有发表的。比如基于各种肿瘤的大样本测序在nature和science上经常有发表,又比如最近science上也有对英国人群的全基因组测序。但是如果牵涉到是否易于发表,我认为只要是一个很严谨的杂志,对每一个研究每一篇文章的要求都是很高的,你可能暗示说最近结构生物学的文章总是出现在nature正刊的article里,但就算结构生物学的文章易于发表,并不意味着发表了的文章易于完成。

生物类的,医学类的期刊都可以发啊

生物信息学论文发表

不知道。这个主要看所选的目标期刊了,都是不一样的,半年一年的都有,主要是审稿周期的长短的问题,如何判断审稿周期。注意事项:1、摘要中应排除本学科领域已成为常识的内容。切忌把应在引言中出现的内容写入摘要,一般也不要对论文内容作诠释和评论尤其是自我评价。2、不得简单重复题名中已有的信息。比如一篇文章的题名是几种中国兰种子试管培养根状茎发生的研究,摘要的开头就不要再写:为了,对几种中国兰种子试管培养根状茎的发生进行了研究。

这个问题可能需要从两方面进行回答,生物信息学和系统生物学的定义与界定方法;何为顶期刊。一句回答,按照我个人的理解,发表在CNS级别的文章中,基于生物信息学,以及系统生物学方法手段的曾经有很多,现在也一直有发表,未来很可能也会是一种很普遍的现象。原因见下:首先生物信息学和系统生物学是不可以混为一谈进行探讨的,我理解的生物信息学是一门基于数据挖掘、分析与计算对生物问题进行归纳,统计,解释并预测的科学。而系统生物学则更像是一种生物学研究的一种概念,倾向于从表型入手,通过人群分析,基因组,转录组,翻译组,蛋白组,等组学的大数据的分析,全面的了解一项生物问题。两者在一些问题上的研究方法是类似的,但是系统生物学的数据更具多样性,更偏向生物。顶级期刊这个概念很难划定范围,但是如果你持续关注CNS,你会发现利用以上两种手段进行分析研究的文章是持续有发表的。比如基于各种肿瘤的大样本测序在nature和science上经常有发表,又比如最近science上也有对英国人群的全基因组测序。但是如果牵涉到是否易于发表,我认为只要是一个很严谨的杂志,对每一个研究每一篇文章的要求都是很高的,你可能暗示说最近结构生物学的文章总是出现在nature正刊的article里,但就算结构生物学的文章易于发表,并不意味着发表了的文章易于完成。

生物信息学和系统生物学是两个很有意义,也应该受到更多关注,采用的研究方法和研究领域,只要你选对了新颖有意义的研究方向,设计了非常严谨的实验,并且得到了令人信服的结果并描述得当,我想还是和其他领域的文章一样可以发表在顶级杂志的。如果科学家仅仅将自己当成数学家、统计学家、计算机科学家、物理学家,因为在这些学者各自的领域里,确实有许多好的理论建模问题。但如果这些学者是认真对待生物信息学的研究,这个回答不OK。许多0级生物信息学家们从来不读或者不发表生物学期刊上的论文,也不参加生物学的会议,因此这个级别属于“未入门级”。根据人以类聚,物以群分的原则,0级生物信息学家们通常只阅读自己或者其他0级生物信息学家的论文,并且,并且引用也是自引或者被同级别的学者引用。

  • 索引序列
  • 生物信息学发表论文怎么写
  • 生物信息学怎么发表论文
  • 生物信息学投稿期刊怎么投
  • 生物信息学发表论文
  • 生物信息学论文发表
  • 返回顶部