首页 > 职称论文知识库 > 基因组学投稿期刊

基因组学投稿期刊

发布时间:

基因与基因组学期刊投稿

5分以上的杂志:

control release、Adv Drug Deliv Rev 、Annu Rev Pharmacol Toxicol   、Nature Communications

Elife——国人文章作者一般为国内科研大牛或科研团队,国人发文占比约6%

Elife是一本起点很高的综合期刊,旨在向读者提供最前沿的生命科学和生物科技研究。从该期刊最新文章进行分析来看,其收录范围非常广,有关生命科学和生物医学的论著和综述均可投稿。但注意这本期刊严谨而又大胆创新的编辑共同审稿模式,不仅缩短了审稿周期,也对稿件质量把控得更加严格。据说投稿到该期刊超过2/3的文章都会在外审前被编辑退稿。

基因组学和应用生物学是一种复杂的科学,因此编辑们希望投稿者能够提供详细而完整的答案,以便他们能够准确地评估投稿者的知识水平。因此,编辑们要求投稿者提供最少200字最多500字的回答,并且要求回答完整,不要出现重复。

据我所知这个杂志是北大核心期刊,审稿时间一般为一两个月,该杂志接受邮箱投稿,如果没录用会邮件通知的。附图为这个杂志知网版权页照片,有投稿邮箱和联系方式。

基因组学与应用生物学投稿为什么都是编辑回复答案如下:因为基因组学与应用生物学投稿都是编辑回复,中午时分,太阳把树叶都晒得卷缩起来。

基因组学投稿期刊

《基因组学与应用生物学》中国科技核心期刊、中国科学引文数据库来源期刊、《中文核心期刊要目总览》核心期刊及中国期刊方阵“双效”期刊、广西高校优秀学报。广西大学主管、主办。聘请李宁院士为主编;罗达博士、研究员为副主编;方宣钧、朱玉贤博士为执行主编以及 26名国内知名专家教授组成的编委会。实现优质管理,严把政治和学术质量关。《广西农业生物科学》由广西大学主管和主办, 是原广西农业大学主办的 《广西农业大学学报》变更而来, 创刊于 1982 年, 季刊, 国内外公开发行。二十一世纪, 基因组学已成为生物科学领域中的理论与技术的核心平台, 为了适应基于基因组时代的现代生物科学的发展, 经国家新闻出版总署批准, 从 2009 年开始, 《广西农业生物科学》更名为《基因组学与应用生物学》(《Genomics and Applied Biology》) 。更名后的期刊仍由广西大学主管和主办, 公开发行, 双月刊, 双月 28 日出版。由中国科学院院士及美国国家科学院外籍院士张启发博士任主编, 北京大学教授朱玉贤博士和海南省热带农业资源研究所所长方宣钧博士任执行主编。《基因组学与应用生物学》将面向基因组学、分子遗传学、生化与分子生物学、生物信息学等基础学科领域, 着重刊登农林科学、医药科学、动物科学、环境与生态科学以及生物学实验技术与方法等应用生物学领域的最新研究进展和成果。将开设综述与专论、研究论文、新技术新基因新种质等栏目。《基因组学与应用生物学》承载着《广西农业生物科学》的悠久历史与荣誉, 进一步开拓奋进,为现代生命科学和应用生物学的研究与发展提供学术交流的平台, 使之成为中国科学家走向世界的桥梁。《广西农业生物科学》自创刊以来, 得到各级领导、国内外学术单位以及广大科研人员的支持和厚爱,受到来自全国30多个省、市、自治区及国外的科研院所、大专院校的两千多名作者的支持与厚爱,刊发了研究论文、研究报告、评述与展望等类型的科研论文共400余篇,内容涵盖基因组学、分子遗传学、生化与分子生物学、生物信息学以及应用生物学等基础学科与应用学科。 值此更名之际, 我们向支持和厚爱本刊的科研院所、大专院校及广大科技工作者表示衷心的感谢! 更名后, 我们将不辜负大家的信任和期望, 以十分鲜明的特色, 为广大的科学家服务。

据我所知这个杂志是北大核心期刊,审稿时间一般为一两个月,该杂志接受邮箱投稿,如果没录用会邮件通知的。附图为这个杂志知网版权页照片,有投稿邮箱和联系方式。

基因组投稿期刊

转自:

基因组(Denovo sequencing),即基因组从头测序,指在不依赖参考基因组的情况下绘制该物种的全基因组序列图谱,从而获取该物种的全部遗传信息。高连续性基因组的获得,对后续功能基因定位,结构变异检测具有重要的意义。结合近几年的文章我们不难发现,基因组研究主要以下面几种方向为出发点开展: 1)大型/多倍体/超复杂物种基因组破译,技术创新改革; 2)0 Gap基因组/单体型基因组构建,序列优化打磨; 3)未知基因组破译联合多组学分析,经济价值挖掘; 4)品种泛基因组构建解析功能变异,覆盖多样表型; 5)科属水平谱系基因组构建与分析,探索进化功能; 6)多种基因组联合多组学比对剖析,解析性状特征。 ... ...

前5种好理解,第6种方向能做什么呢?其实我们想要了解一个物种,往往单一基因组难以完整解析,例如

等等棘手但是却又热门的研究话题。

接下来我将通过百迈客最近三篇动植物上的成功案例带大家看看,如何通过数个材料基因组结合多组学的手段解析性状特征。

合作单位:中科院南海海洋研究所 发表期刊:Science Advances 影响因子:14.131 发表时间:2021.08 研究材料:Denovo:雌性与雄性草海龙(Phyllopteryx taeniolatus);雌性与雄性绿海龙(Syngnathoides biaculeatus) 个体重测序:2只雄性草海龙 RNA-seq:脑、眼、鳃、肝、肠、肌肉、鳍、皮肤和附叶 测序方案

Denovo:雌性、雄性草海龙与雄性绿海龙PacBio平台;雌性绿海龙Nanopore平台,雌性、雄性草海龙与雄性绿海龙进行Hi-C测序。三代测序技术对应测序数据如下表所示: 个体重测序:~30X PacBio

草海龙最终组装大小为~659 Mb(♂)与 ~663Mb(♀), contig N50分别为10.0 Mb与12.1 Mb。绿海龙分别组装~637 Mb(♂)与~648 Mb(♀),contig N50分别为18.0Mb与21.0 Mb。4个基因组BUSCO评估显示范围在94.00- 94.40%。并分别在草海龙和绿海龙中确定了31个和33个发生 扩张的基因家族 。通过19条鳍鱼类全基因组数据集进行 系统发育分析 ,明确草海龙与绿海龙在系统发育地位上属于海龙亚科(Syngnathinae)的姊妹群,并于 27.3 百万年前 左右发生分化。

草海龙的头部、颈部、腹部、背部和尾部区域有叶子状的附属物,可以与周围环境相融合,使草海龙以完美拟态隐匿于海草床中。这些结构是该物种的一种适应性进化产物,主要由骨基质和富含胶原纤维的结缔组织组成。

通过转录组学分析,发现其表达基因(如msx,dlx,fgf)主要从皮肤和鳍等器官募集而来,暗示了相关基因对新器官产生和维持的重要作用。而“附叶”与鳍相比缺乏肢体发育特异性的hox基因。草海龙的附叶在捕食者的袭击中经常受到损伤,为了研究相关机制,作者通过转录组分析研究发现在其附叶中炎症和损伤修复相关基因表现出高表达水平, 说明这些基因可能与其附叶的快速愈合和再生能力相关 。 同时草海龙特异性扩张的MHC I基因也在附叶中显著高表达,能为其提供额外的免疫保护。

通过雄性和雌性叶海龙Illumina reads正反比对雄性和雌性的全基因组序列,来确定叶海龙中假定的性染色体和性别基因座。结果显示 Chr4上的一个~47-kb区域仅在雄性中存在 , 且reads覆盖度为Chr4平均值的一半,该片段经Hi-C互作分析结果支持。

注释及比较分析发现草海龙和绿海龙的性别决定基因均为amhr2的雄性特异性拷贝amhr2y,但两者的基因座不相同。系统发育分析表明,amhr2y起源于它们最近共同祖先的重复事件,而黄鲈amhr2y是从其谱系中的独立重复事件进化而来。研究发现amhr2y比amhr2受到的选择压力更强,其整体结构与amhr2相似。

草海龙与其他海龙科物种一样具有缺乏牙齿的管状吻。 研究表明,大部分富含P/Q的分泌型钙结合磷蛋白(SCPP)基因的缺失可能是导致syngnathids无牙的原因。 为了验证海龙科中因 假基因化丧失功能 这一点,作者使用CRISPR-Cas9技术构建了两个斑马鱼scpp5突变系,发现scpp5-/-突变体斑马鱼牙齿的数量减少且颌骨中存在用于附着牙齿的凹坑。

研究结论 该研究通过雌雄性海龙基因组的破译,结合 重测序分析、转录分析、比较基因组分析 等研究揭示了海龙科物种性别决定基因的产生和演化历程,为海洋鱼类的环境适应性进化研究提供了重要理论依据。

合作单位:浙江大学 发表期刊:Plant Biotechnology Journal 影响因子:9.801 发表时间:2021.08 研究材料:Denovo:Brassica juncea菜用芥菜T84-66、油用芥菜AU213; 个体重测序:12个油菜品种; 遗传进化:183份油用与菜用芥菜; 测序方案: Denovo:菜用芥菜分别146 Gb Illumina(~150X)+ 251 Gb PacBio( 200X)+Hi-C( 200X );油用芥菜147 Gb Illumina(~150X)+205 Gb PacBio( 200X)+Hi-C( 200X ) 个体重测序:~20X Nanopore 遗传进化与GWAS:~10X illumina

研究内容

在着丝粒附近的异染色质状态中具有相对较低的基因表达模式。

系统地鉴定了T84-66 和AU213的A和B亚基因组中的全基因组单核苷酸多态性(SNP)、插入/缺失(InDels)和存在/缺失变异(PAV)。在T84-66和AU213之间的A和B亚基因组中鉴定了24,768个PAV(> 100 bp), 其中3,634个PAV导致6,425个基因的变异。随机选择了几个PAV并使用PCR来确保这些PAV的保真度。其中一些基因组变异位于基因区域内,预计会影响T84-66和AU213作物中涉及生物和非生物胁迫的基因功能。

为了破译芥菜基因组菜用和油用品种之间SVs衍生的功能差异,作者基于Nanopore重测序技术,系统比较了菜用和油用芥菜群体基因组结构变异(structural variation,SV) ,挖掘到包括1, 354个高可信度的插入、缺失、重复、倒位、易位等变异。其中两个重要的基因位点TGA1和HSP20在ChrA06和ChrB08,可能与B.juncea基因组的菜用与油用品种之间对生物和生物应力的反应的自然变异有关。 这些变异研究为菜用芥和油用芥两个典型分化群体的演化提供了基因组变异基础。

使用T84-66作为参考基因组,对183份油用与菜用芥菜进行进化关系分析,并通过SGS-GWAS(scored genomic SNPs based GWAS)基因定位,在A02和A09中发现了两个参与控制芥菜硫苷(GSL)积累变异的关键遗传位,并首次发现A09中的MYB28与B. jucnea中GSL的积累有关。经过进一步研究并同过ONT验证发现,MYB28基因的拷贝数变异(copy number variations,CNVs)是导致芥菜种群中硫苷积累差异的原因,该基因的拷贝数变异在低硫苷芥菜群体中普遍存在。

研究小结 该研究将为多倍基因组进化研究和精确基因组选择研究提供重要研究信息,对芥菜风味品质和油脂质量的分子遗传改良具有重要科学和应用价值。

合作单位:华中农业大学 发表期刊:Molecular Biology And Evolution 影响因子:16.241 发表时间:2021.05 研究材料:基因组、Hi-C:圆叶棉G. rotundifolium(K2)、亚洲棉G. arboreum(A2)、雷蒙德氏棉G. raimondii(D2)新鲜叶片

测序方案 denovo:illumina K2、A2和D5分别108×, 118×, 132×;Nanopore K2、A2和D5分别124×, 131×, 167× Hi-C挂载:6碱基酶HindⅢ;K2、A2和D5分辨率分别为20kb、20kb、10kb Hi-C互作:4碱基酶DpnⅡ;分辨率20 Kb, 50 Kb, 100 Kb

研究内容

利用Nanopore测序技术组装了圆叶棉( K2 )基因组,组装大小为2.44Gb(contigN50 = 5.33 Mb);提升了亚洲棉( A2 )和雷蒙德氏棉( D5 )的基因组,组装大小分别为1.62 Gb (contigN50 = 11.69 Mb)和0.75 Gb(contigN50 =17.04 Mb )。Hi-C挂载率均超过99%,BUSCO结果分别为92.5%, 93.9%,及95.4%。

重复序列注释表明,相对于D5,K2和A2中棉种 特异的反转录转座子扩增是造成这三个基因组大小三倍变化的原因,特别是Gypsy和DIRS类型。全长转座子插入时间分析表明K2基因组中转座子插入最为古老,A2基因组有更多新的转座子。

比较基因组分析表明,A2和K2基因组在Chr01与Chr02染色体间存在一个大的易位;K2和D5基因组在Chr13与Chr05染色体间存在一个大的易位。三个棉种在57-71百万年前存在一次共同的全基因组复制事件,并在5.1-5.4百万年前发生物种分化,基因共线性分析表明每个基因组大约有15%特异的基因家族。

通过HiC染色质互作数据揭示三个棉种染色体大小的规律,A2与K2比D5多了约7000个基因,三个基因组中17%的共线性同源基因表现为A/B区室的染色质状态改变,这与活跃的转座子扩增相关。

K2与A2及与D5相比更多的倾向于A向B的转化。K2和A2中有更多的基因处于A compartment,D5中有更多的基因处于B compartment。

大约60%的拓扑结构域(TAD)在三个基因组中发生了重新组织,K2基因组中有更多特异的TAD。基于边界TE覆盖度,边界TE表达以及TE插入时间分析,发现K2不保守的TAD边界存在特异的和较新的转座子(物种分化后爆发的TE)插入。这些结果表明最近在K2和A2基因组中表达的TEs的扩增可能有助于在三个物种分化后形成谱系特异性TAD边界。基于这些结果,作者提出了三个棉种分化过程中,基因组扩张-转座子扩增介导的A/B区室转换和TAD重组的进化模型。

研究小结

本次研究首次公布了棉属中二倍体圆叶棉基因组,并对亚洲棉和雷蒙德氏棉基因组进行了升级,解析了转座子活动驱动的基因组大小进化特征,从转座子扩增和染色质空间结构角度为棉花物种进化提供新的见解,为植物中转座子活动介导的转录调控进化研究提供参考。

5分以上的杂志:

control release、Adv Drug Deliv Rev 、Annu Rev Pharmacol Toxicol   、Nature Communications

Elife——国人文章作者一般为国内科研大牛或科研团队,国人发文占比约6%

Elife是一本起点很高的综合期刊,旨在向读者提供最前沿的生命科学和生物科技研究。从该期刊最新文章进行分析来看,其收录范围非常广,有关生命科学和生物医学的论著和综述均可投稿。但注意这本期刊严谨而又大胆创新的编辑共同审稿模式,不仅缩短了审稿周期,也对稿件质量把控得更加严格。据说投稿到该期刊超过2/3的文章都会在外审前被编辑退稿。

2001年人类基因组的草图发表在《自然》(Nature)杂志期刊。

2001年2月12日,由6国的科学家共同参与的国际人类基因组公布了人类基因组图谱及初步分析结果。这个被誉为生命科学“登月计划”的研究项目取得重大进展,为人类揭开自身奥秘奠定了坚实的基础。

美、英、法、德、日和中国6国先后参加人类基因组对23对染色体DNA大规模测序的国际合作,最终绘制了一张类似化学元素周期表的人类基因组精确图谱。人类基因组计划中最实质的内容,就是人类基因组的DNA序列图。

人类基因组计划起始、争论焦点、主要分歧、竞争主战场等都是围绕序列图展开的。在序列图完成之前,其他各图都是序列图的铺垫。也就是说,只有序列图的诞生才标志着整个人类基因组计划工作的完成。人类基因组图谱的绘就,是人类探索自身奥秘史上的一个重要里程碑。

它被很多分析家认为是生物技术世纪诞生的标志,也就是说,21世纪是生物技术主宰世界的世纪。正如一个世纪前量子论的诞生被认为揭开了物理学主宰的20世纪一样。

作用

人类基因组精确图谱将成为21世纪生命科学领域的领头学科,这一点在国际上已得到认同,我们今天站在新世纪的门槛上,回想20世纪初,物理学在自然科学领域占绝对的领导地位,那时候的物理学如此风光。

源于它在理论上的重大突破,牛顿力学、热力学第二定律、量子力学以及随后的相对论等等这些理论,给物理学的发展、物理学的冒尖打下了基础,这些理论是过去没有的,是人类创新性的理论,这就是物理学能在20世纪初成为自然科学领头学科的最根本的原因。

癌症基因组投稿期刊

发表期刊:Nature  发表日期:2020.02 影响因子:42.778 癌症是全球第二大常见死因,每年超过800万人因癌症丧命。预计在未来十年,癌症发生率将增加50%以上。癌症是体细胞亚克隆自主发展和扩散类疾病的总称。癌症克隆控制多个细胞通路,打破正常细胞的生长和调控等限制,获取自主发展和扩散的特征。单个细胞通路改变不足以引发癌症。每个癌症由潜在的致病异常“池”中的多个异常通路组合而引发。 肿瘤异质性来自于达尔文进化的随机性。达尔文进化的三个先决条件:(1)群体中的特征是变化的;(2)变异从亲本遗传到子代;(3)群体为了生存进行竞争。一部分突变改变细胞表型,一部分突变使克隆获取逃逸正常生理控制的优势。提供选择优势的突变称为驱动突变,反之称为乘客突变。 选用2834个患者人全基因组测序数据(WGS),去除176个患者低质量数据,共计2658个患者的WGS数据,其中有2583个患者高质量数据。2658个患者共取2605个原发肿瘤和173个转移或复发肿瘤,正常样本平均测序深度为39×,肿瘤测序深度分别为38×和60×。研究群体包括1469男性(55%)和1189女性(45%),平均年龄56岁,覆盖38种肿瘤类型。其中,1222个患者具有RNA-seq数据。 利用以上数据分析somatic SNVs, somatic Indels, somatic CNVs, somatic SVs,体细胞逆转录事件,线粒体DNA突变、端粒长度以及germline SNV, Indel, SVs等事件。 利用3个核心变异检测流程和额外10个变异检测流程,对63对tumor-normal变异检测,估测3个核心流程的敏感度和精确度。并对其中50对进行高深度靶向测序验证。3个核心流程检测到真实变异的敏感度为80~90%,每个流程检测的95%以上变异是真实的somatic mutations。针对Indel检测,3个核心流程的敏感度是40~50%,精确度是70~95%。SV检测算法的精确度在80~95%。 对3个核心流程的变异结果合并,评估合并集合中突变的属性:Somatic SNVs敏感度为95%(90%置信区间,88~98%),精确度为95%(90%置信区间,71~99%)。Somatic Indels 检测敏感度为60%(34~72%)和精确度91%(73~96%)。合并的Somatic SVs 敏感度为90%,精确度为97.5%。多种方法检测变异提高了低频突变检出的准确性。 分析2583个患者数据,共检测到43,778,859个somatic SNVs,410,123个somatic 多核酸突变,2,418,247个somatic Indels,288,416个somatic SVs,19,166 体细胞逆转录事件,8,185个新线粒体突变。通过相关性分析,发现诊断年龄和体细胞突变数量相关:年龄每增长一年,增加约190个SNVs,约22个Indels。 3.1癌症驱动突变全景图 根据突变的性质和已知癌症相关基因,预测肿瘤的驱动基因;利用已知的启动子和增强子分析非编码驱动突变。结果发现,91%的肿瘤至少有1个驱动突变,每个肿瘤平均有4.6个驱动突变(癌种之间变化较大)。对于编码区点突变,每个肿瘤平均有2.6个驱动突变。除此之外, 13%(785/5913)的驱动点突变是非编码突变,而且1/3(237/785)突变发生在 TERT 启动子上;25%肿瘤具有非编码驱动突变。说明:非编码区驱动点突变频率较编码区低;与 TERT 启动子相比,其他启动子和增强子并不常发生驱动突变。 根据肿瘤类型,SVs和点突变致力于不同的癌症发生机制。驱动SVs常发生在乳腺癌和卵巢腺癌;驱动点突变常出现在在结肠腺癌和成熟B细胞淋巴瘤。 文章发现抑癌基因的驱动突变多为二次打击事件。例如,954个肿瘤具有 TP53 突变,736(77%)个肿瘤样本的两个等位基因均发生突变,其中96%(707/736)是等位基因突变和等位基因缺失同时发生。17%的病人在癌症相关基因上具有稀少的胚系蛋白截断体突变,5.4%病人由于somatic mutations导致以上基因次等位基因失活。 3.2没有驱动突变的PCAWG肿瘤数据分析 90%以上的PCAWG样本鉴定到驱动突变,仍有181个样本未检测到驱动突变。分析肿瘤样本未找到驱动突变的原因,有以下几点:(1)样本质量低:4/181个样本的正常对照被肿瘤DNA污染,每个对照含有超过5%的肿瘤DNA;同理,肿瘤样本中肿瘤细胞含量较低也会影响突变检出;(2)驱动突变位点覆盖度较低无法满足突变检出:6个肝细胞癌和2个胆管癌在高深度靶向测序后检测到 TERT 突变;(3)生信分析方法:35个骨髓增生性肿瘤未检测到 JAK2 V617F 突变,由于利用Panels of normals作为对照去除测序影响导致。2~5%的健康人群具有造血克隆,可能涵盖了驱动突变;(4)驱动基因检测力不足,说明某些肿瘤中存在未被发现的基因富集;(5)染色体变异:19/43肾细胞癌和18/81前列腺癌缺少驱动突变,但发生染色体异常,有可能单凭染色体扩增或缺失足以引发癌症。 3.3成簇突变和SVs模式 癌症中,单个灾难性事件可产生多个聚集性突变,导致基因组大量重组。主要包含:(1)染色体重排:不同染色体的DNA双链断裂修复导致重排发生;(2)Kataegis(雷雨):单链DNA局部超突变,导致聚集性核苷酸替换;(3)染色体碎裂:数十数百个DNA断裂同时发生在一个或者几个染色体,产生的碎片随机组合在一起。 467个样本(17.8%)发生染色体重排和平衡易位,主要发生在前列腺癌、淋巴系统恶性肿瘤和甲状腺癌。重排事件导致甲状腺癌的部分融合基因的产生,例如 RET 、 NTRK3 和 IGF2BP3 等等。 60.5%癌症中发生Kataegis事件,例如肺鳞癌、膀胱癌、肢端黑色素瘤和肉瘤等。Kataegis主要包含(1)由APOBEC活性导致TpC的C>N 突变;(2)聚合酶导致 T pT或Cp T 的T > N突变。81.7%的Kataegis事件与 APOBEC3B 表达水平相关,5.7%与易错聚合酶相关,以及2.3%事件是GpC 或 CpC的胞嘧啶脱氨导致的。Kataegis事件与SV断点相关,尤其是缺失和复杂重排事件,包括在缺失附近10-25kb内Cp T pT的T>N 突变。 Kataegis事件包含4种局部超突变类型:(1)脱靶体细胞超突变和局部Cp T pT的T>N 突变;(2)与复杂重排相关的APOBEC;(3)后随链和早期复制区域的APOBEC;(4)后两种类型混合。 587(22.3%)个染色体碎裂样本,主要为肉瘤、脑胶质瘤、肺鳞癌、黑色素瘤和乳腺癌样本。染色体碎裂伴随全基因组重复,相关的驱动基因为 TP53 。肉瘤和B细胞淋巴瘤患者中,女性发生染色体碎裂的频率高于男性;前列腺患者中,晚期患者具有更高频率的染色体碎裂。染色体碎裂区域包含3.6%驱动基因和7%拷贝数驱动。 3.4进化中时间聚集性突变 根据分子时钟分析每个肿瘤的进化史:主克隆发生在早期,亚克隆突变发生在后期;拷贝数扩增区域,分子时间根据突变发生在拷贝之前或者之后进行划分。染色体碎裂通常发生在主克隆,特别是在脂肪肉瘤、前列腺癌和肺鳞癌说明是癌症进化早期事件。在黑色素瘤中,染色体碎裂扩增涉及到较多的癌症相关基因,例如 CCND1 ,  TERT ,  CDKN2A ,  TP53 和 MYC 。 在扩增的染色体碎裂事件中,利用SNV的拷贝数目计算扩增发生的时间,SNV发生在扩增之前,将会有很高比例的reads携带SNVs。相反,SNV发生在拷贝数变异之后,将只有一条染色体携带SNV,具有较低的变异频率。肢端黑色素瘤的 CCND1 扩增区域具有较少的高频突变,而皮肤黑色素瘤更多突变发生在扩增之前。 3.5胚系突变对somatic mutations的影响 根据检测到的胚系突变分析胚系突变对体细胞突变率和模式的影响作用。利用欧洲群体中MAF>5%的胚系突变位点进行GWAS分析,发现 APOBEC3B 突变机制可以利用22q13.1预测,信号最强位点是rs12628403。该位点标记了常见的30kb胚系 APOBE3B 编码序列缺失和 APOBEC3B 的3’非翻译区域 APOBE3A 编码序列融合。除此,文章在22q13.1位置发现一个新的突变位点rs2142833,并验证其与 APOBEC3B 突变相关性。rs12628403和 rs2142833在欧洲群体中是独立遗传的,rs2142833是 APOBEC3B 的eQTL。 利用稀有突变(MAF<0.5%)分析欧洲群体中胚系蛋白截短体(PTVs)和体细胞DNA重排相关性。胚系BRCA2和BRCA1蛋白截短体和小于10kb的体细胞缺失和串联重复负荷相关。BRCA1蛋白截短体和模板插入具有显著相关。20/21个BRCA1相关肿瘤出现模板插入表型,且胚系突变和体细胞突变均发生在该基因上。说明 BRCA1 基因的次等位基因失活驱动模板插入SV表型。 稀有突变关联分析发现胚系MBD4蛋白截短体突变增加CpG位置的体细胞C>T突变。 MBD4 编码DNA修复基因,移除甲基化CpG上的T:G错配的胸腺嘧啶。 评估LINE调控体细胞反转座子事件,验证114个胚系LINE对体细胞反转座激活能力,包含70个人类基因组相关插入和53个连锁不平衡SNP。16个L1元件介导67%(2440/3669)的转座事件,以两种形式进行体细胞激活,称为Strombolian和Plinian;Strombolian在人群中分布频率较高,引发中小规模的体细胞L1激活;Plinian在群体中频率很低,引发严重的体细胞L1激活。 3.6复制的永生 癌症特征之一是逃避细胞衰老,保持端粒长度是癌症永久复制的因素之一。16%的肿瘤在 ATRX ,  DAXX 和 TERT 基因上发生突变。聚类端粒序列的12个特征得到4个肿瘤亚型,说明 ALT 和 TERT 介导的端粒变异的不同。 体细胞驱动突变在四个亚型中分布不同。C1主要富集 RB1 突变和影响 ATRX 的SV,C2主要富集 ATRX 和 DAXX 的体细胞点突变,C3样本主要发生 TERT 启动子突变。 RB 基因缺失与端粒延长相关。高频发生端粒异常机制的肿瘤主要由于组织中低复制活性。 总结 利用泛癌全基因组测序数据对驱动突变、结构变异、克隆进化以及转座子事件和端粒模式进行详细分析,绘制泛癌基因组特征和阐明引发癌症的多样性因素。 参考文献 ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020, 578(7793): 82-93. 原文链接:

标题:The integrated genomic and epigenomic landscape of brainstem glioma 期刊:nature communications 影响因子:14.912 发表时间:2020 摘要 脑干胶质瘤是一组异质性肿瘤,既包括手术切除治愈的良性肿瘤,也包括没有有效治疗的高致死性肿瘤。本文作者对一大组脑干胶质瘤(包括弥漫性固有脑桥胶质瘤)进行了综合研究,包括表观遗传学和基因组分析。在这里,他们根据DNA甲基化数据分为H3-Pons, H3-Medulla, IDH,和PA-like的不同簇,每个簇都与独特的基因组和临床特征相关。H3-PON和-H3-Medulla的大多数肿瘤含有H3F3A突变,但显示出不同的甲基化模式,分别与桥脑或髓质内的解剖定位相关。临床数据显示,这些集群之间的总体生存率存在显著差异,路径分析表明这些样本中存在不同的致癌机制。研究结果表明,整合遗传学和表观遗传学数据有助于更好地理解脑干胶质瘤的发生和分类,并指导未来研究开发新的治疗方法。 背景 脑干胶质瘤是一组起源于中脑、桥脑或髓质的异质性肿瘤。在这些肿瘤中,儿童弥漫性固有桥脑胶质瘤(DIPG)的中位总生存期为9-12个月,由于化疗和放射治疗的不可操作性和耐药性,在过去50年中一直是主要的研究重点。大约80%的儿童DIPG含有影响H3F3A或HIST1H3B/C1的K27M突变。这些K27M突变肿瘤与特别差的预后相关。本文整合了全基因组测序、RNA测序和基于阵列的全基因组甲基化数据分析,以获得这些脑肿瘤分子组成的更全面的图像。 结果 1.患者队列特征 126名患者的肿瘤样本和配对的血液样本。肿瘤部位包括中脑被盖(11/126,8.7%)、顶盖(5/126,4.0%)、桥脑连接(2/126,1.6%)、桥(38/126,30.2%)、小脑中脚(7/126,5.6%)、桥髓(16/126,12.6%)、髓质(42/126,33.3%)和中脑丘脑(5/126,4.0%)。根据WHO分类对肿瘤进行分级,包括8.7%(11/126)WHO I级、41.3%(52/126)WHO II级、31.0%(39/126)WHO III级和19.0%(24/126)WHO IV级肿瘤。最初的组织病理学诊断主要为星形细胞瘤(59,46.8%),其次是少星形细胞瘤(21.4%)、胶质母细胞瘤(19.0%)、毛细胞性星形细胞瘤(PA)(6.3%)、神经节胶质瘤(2.4%)、毛粘液样星形细胞瘤(PMA)(1.6%)、多形性黄色星形细胞瘤(PXA)(0.8%),少突胶质细胞瘤1例(0.8%)。本研究包括的肿瘤的甲基化微阵列(n=123)和RNA测序(RNAseq)(n=75),配对肿瘤和正常(生殖系)对照的全基因组(n=97)和靶向测序(n=21)。 2.甲基化分类显示脑干胶质瘤中不同的H3簇与肿瘤位置相关 利用20000多个探针进行聚类,将样本分成了四类甲基化特征差异的样本。 3.不同甲基化簇的肿瘤的不同的基因组landscape Fig3.每个样本每个兆基数的突变数。b脑系统胶质瘤样本中的临床信息和基因改变。c每个基因突变的频率。 为了识别这个脑干胶质瘤组群中的体细胞遗传变化,在肿瘤样本和匹配血液中都使用了68个常见突变脑肿瘤基因的全基因组测序和靶向测序。H3-Pons和H3-Medulla都富含H3突变,而PPM1D、FGFR1和NF1的突变频率在H3-Medulla中比在H3-Pons中更高(Fig. 4a)。Fig. 4b每个集群的潜在驱动因素和重大的非编码突变 4.基因表达分析揭示了丰富独特的基因组甲基化集群H3-Pons和H3-Medulla。 5.Fusion genes and copy number alterations. 验证了分析中确定的几个复发性融合基因,包括C15orf57-CBX3基因(n = 3)和NTRK2-其他基因(n =6)。Sanger sequencing是为了确认这些样本中的融合基因和特定 breakpoints 。 6.H3-medulla is correlated with better survival than H3-Pons 分析了不同cluster的生存情况。Kaplan-Meier分析显示,根据这四组甲基化聚类进行分层的患者有明显的生存曲线(图6a)。与H3 clusters相比,IDH表现出更长的总体生存期H3-medulla 和H3-Pons,尽管H3和TP53通路突变的基因改变相似,但总体生存趋势明显(Log-rank检验,p < 0.0001)(图6b)。与其他组相比,PA-like病例显示了更好的总长期生存率。 讨论 通过甲基化数据,本文发现脑干胶质瘤可以分为四种主要的甲基化簇:H3- Pons, H3- medulla, IDH和PA-like。作者在图7中总结了这些亚型的综合遗传和临床特征。研究发现H3突变肿瘤存在两个不同的表观遗传亚群,H3- pons和H3- Medulla。这两组患者的生存趋势有显著差异,H3- pons组比H3- medulla的病程更严重。基于RNA-seq的差异表达分析,发现这些肿瘤具有不同的基因表达途径富集,其中h3 -髓质肿瘤富集于免疫应答相关途径,而更侵袭性的H3-Pons肿瘤富集于细胞周期相关途径。尽管这些肿瘤具有相似的突变模式,核心突变(如H3F3A)有共同的改变,但这些表观遗传和表达模式的显著差异可能表明肿瘤微环境的不同来源或影响,需要进一步研究。这些发现表明甲基化状态可能改善脑干胶质瘤的分类,并指导临床决策。 还利用全基因组测序数据建立脑干胶质瘤的突变格局,发现甲基化模式与突变格局密切匹配。在这些基因簇中发现了几个频繁突变的基因,包括H3F3A、HIST1H3B、IDH1、TP53、PPM1D、ATM、ATRX、FGFR1、PIK3CA、NF1、PTEN、PDGFRA和TCF12。 利用来自不同解剖位置的100多个脑干胶质瘤的整合基因组分析,本文展示了脑干肿瘤的分子图谱,以改进肿瘤分类和了解其分子基础,并识别新的潜在治疗靶点,所有这些都是为了改善这些患者的预后。

线粒体基因组学投稿期刊

题目: Zygnema circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution 轮藻 Zygnema circumcarinatum  UTEX 1559叶绿体和线粒体基因组为陆生植物进化提供了新见解 发表期刊: Journal of Experimental Botany  发表时间: 2020-3-24   影响因子: 5.36轮藻的完整叶绿体和线粒体基因组为陆地植物的陆生化提供了新的线索。在此,研究者报道了UTEX 1559的细胞器基因组,以及绿藻、轮藻和陆地植物的33个质体和18个线粒体基因组的比较基因组学研究。通过这些质体和线粒体基因组确定基因的存在/缺失。UTEX 1559 (157,548 bp)和SAG 698-1a (165,372 bp)质体之间的比较揭示了非常相似的基因,但是基因组发生了实质性的重排。令人惊讶的是,这两个质体只有85.69%的核苷酸序列一致性。UTEX 1559线粒体基因组大小为215,954 bp,是所有测序轮藻中最大的。有趣的是,这个大的线粒体基因组包含一个50 kb的区域,与任何其他细胞器基因组都没有同源性,其两侧是两个86 bp的正向重复序列,包含15个ORFs。这些ORFs与来自细菌和植物的蛋白质具有显著的同源性,具有诸如引物酶、RNA聚合酶和DNA聚合酶的功能。本研究结论为:(i)先前发表的SAG 698-1a质体可能来自不同的双星藻属 Zygnema 物种,以及(ii)UTEX 1559线粒体基因组中的50 kb区域可能是最近获得的可移动元件。 图1、两种 Z. circumcarinatum 藻种SAG 698-1a(上)和UTEX 1559(下)的MAUVE比对。结果显示了大量的重排和不同的质体长度,表明这些藻种可能不是同种的。A框显示了含有 ccsA 基因和 trnI 基因的区域,这是两个质体之间极少数保存完好的区域。B框显示了一个位于 ndhJ 基因和tRNA, trnL ( uag )之间的大区域,该区域是最大的区域(100kbp),在该区域内共享保守的基因序列,但在位置上相对于其他区域非常显著地发生了重排。 图2、基于质体基因构建的系统发育图,热图代表基于基因GO的功能基因分组。 图3、基于线粒体基因构建的系统发育图,热图代表基于基因GO的功能基因分组。 图4、本研究包括的线粒体基因组的基因密度图。x轴为每个线粒体基因组中基因序列的百分比。y轴为物种。圆的大小为基因间间隔的百分比(IGS)。圆的颜色代表线粒体基因组大小。除了 A. thaliana 和 Z. circumcarinatum   UTEX 1559以外的所有物种都保持40%或更高的基因密度。UTEX 1559的基因密度为29.4%,不包括移动元件中的基因。当考虑移动元件中存在的额外基因时,UTEX 1559仍然保持低于40%的基因密度。 图5、UTEX 43 1559线粒体基因组中50 kb“基因沙漠”区域示意图。通过ORFfinder和序列相似性搜索,在该区域共发现16个基因(15个CDSs和1个tRNA)。

审核比较快的期刊,这个其实没有多快的,都是比较慢的,都是在3-4个月左右,慢的有的得5-6个月,也是有的。快的可能是2个月吧。这个也没有一个期刊名单说哪个期刊审核比较快,不是说二区三区的就审核慢,四区的就审核快,不一定的,不同的刊物不一样的。如果你着急发表,去淘淘论文网上看下,那边有一些可以相对快一点发表,也只是相对快而已。

《基因组学与应用生物学》,非常好的3核心期刊,科技核心+CSCD核心+中文核心。主办单位:广西大学出版周期:月刊该刊被以下数据库收录:CA 化学文摘(美)(2014)Pж(AJ) 文摘杂志(俄)(2014)中国科技论文统计源期刊(20165-2016年度)CSCD 中国科学引文数据库来源期刊(2015-2016年度)(含扩展版)北京大学《中文核心期刊要目总览》来源期刊:2014年版

  • 索引序列
  • 基因与基因组学期刊投稿
  • 基因组学投稿期刊
  • 基因组投稿期刊
  • 癌症基因组投稿期刊
  • 线粒体基因组学投稿期刊
  • 返回顶部