尔梅洛于依99吧式发表论文,公布关RNA干扰机制发现 RNA能够充信使,传递DNA(脱氧核糖核酸)遗传信息,其用于蛋白质产合研究显示,向物体内注入微RNA片段,干扰物体本身RNA信使功能,导致相应蛋白质合,关闭特定基科家认,采用RNA干扰技术直接源让致病基沉默,许更效治疗某些疾病种技术初曾用研究植物蠕虫等,科家发现哺乳物细胞效例,美哈佛医院科家已经功利用RNA干扰技术治愈实验鼠肝炎目前,RNA干扰治疗技术快速进入体试验阶段些公司资助用项技术治疗黄斑变性、乙肝等疾病试
rna干扰技术论文篇二 RNA干扰技术在消化系肿瘤基因治疗中的应用 【关键词】 RNA干扰 小干涉RNA 消化系肿瘤 基因治疗 RNA干扰(RNA interference,RNAi)是由内源性或外源性双链RNA(double stranded RNA,dsRNA)所诱发,高度特异性降解细胞内同源mRNA,使基因沉默的现象。这种现象发生在转录后水平,故又称为转录后基因沉默(post?transcriptional gene silencing,PTGS)[1]。RNAi是生物体在进化过程中抵御病毒入侵,抑制由转座子移动或重复序列的积累引起的基因组不稳定的保护机制,另外还是基因表达调控的一条重要途径。小干涉RNA(small inter?fering RNA,siRNA)是指干涉RNAi过程中在细胞内产生的长约21~23核苷酸(nt)的小双链RNA分子,是RNAi发挥功能的重要中间效能分子。RNAi自从1998年发现以来,就以其独特的优势在功能基因组学研究中迅速占有一席之地,迄今已成为基因研究中不可或缺的工具之一,并且随着对其作用机制的逐步了解和应用技术的日渐成熟,已开始应用于疾病防治等多个方面。本文就其机制,主要特征,以及在消化系肿瘤中的研究作一简单综述。 1 作用机制及主要特征 1.1 作用机制 RNAi在哺乳动物细胞中有两种作用机制:一种是大于30 nt的长双链RNA(dsRNA)产生的广泛的、非特异性效应。其机制可能是激活了细胞内的蛋白激酶R和RNA酶L,从而导致了非特异性的细胞凋亡。另一种是21~23 nt的短双链RNA(siRNA)产生的相对具体的、特异性效应。目前,RNAi在抗病毒及肿瘤中的研究主要集中在siRNA产生的特异性效应,故下面主要介绍siRNA的作用机制。 siRNA的作用机制目前尚未完全阐明,但已基本达成共识,即①dsRNA在细胞内与DICER酶(一种RNAaseIII家族中特异性识别dsRNA的酶)结合,随即被分割成21~23个核苷酸的短链dsRNA,在这个过程中需要ATP的参与。②分割下来的短链dsRNA即为siRNA,它是RNAi的起始诱导物,与DICER酶形成RNA引导的沉默复合体(RISC),此时RISC无活性,随后,siRNA经历一个依赖ATP的解双链过程激活RISC[2]。③siRNA特异性地识别靶基因转录的mRNA,并引导RISC结合mRNA,RISC中的DICER酶将mRNA切割成21~23个核苷酸片段,此后mRNA被逐步降解,导致不能进行翻译过程,从而引起目的基因沉默,抑制靶基因的表达。④新产生的dsRNA(siRNA)可继续形成RISC复合物进入新一轮RNAi的循环,产生正反馈效应。这一过程需在RNA依赖RNA聚合酶(RdRP)的条件下进行。除上述机制外,转基因真核生物dsRNA 还可引起相应基因的甲基化,促使异常RNA产生,最终导致基因沉默[3,4]。 1.2 主要特征 1.2.1 高度特异性 RNAi严格遵循碱基配对原则,只降解与之同源的基因的RNA,达到阻止基因表达的目的。 1.2.2 高效性 相对很少量的dsRNA分子(数量远远少于mRNA的数量)就能完全抑制相应基因的表达,在哺乳动物中虽没发现扩增效应,但在细胞实验中只需摩尔级浓度的 siRNA 即可有效抑制目标基因的表达。 1.2.3 可传递性和可遗传性 RNAi抑制基因表达的效应可跨越细胞的界限,甚至可以传播至整个有机体及子代细胞。 1.2.4 浓度、时间双重依赖性 在一定时间内RNAi的效应强度随siRNA的浓度增高而增强,或浓度一定的情况下,随着时间延长,siRNA在细胞内发生正反馈效应,导致浓度增高,使RNAi效应增强。 1.2.5 ATP依赖性 目前研究发现RNAi中至少有2个步骤消耗ATP[5]:DICER酶切割dsRNA成为siRNA并使其5′端磷酸化或胞内磷酸化酶使导入的siRNA 5′端磷酸化而使其成为有活性的siRNA的过程;RISC活化即siRNA解双链的过程。 2 RNAi在消化系肿瘤治疗中的应用 肿瘤的发生、发展与原癌基因的激活,抑癌基因的失活,以及凋亡相关基因的异常表达等均有密切的关系。因此我们可以针对这些因素,利用RNAi相关技术在不影响正常基因功能的条件下抑制突变基因表达或基因的表达过量,从而达到基因治疗的目的。另外,肿瘤是多个基因相互作用的基因网络调控的结果,当单一癌基因的阻断不能完全抑制或逆转时,可以设计一种针对同一家族多个基因的保守序列的siRNA分子,便可以同时抑制这一家族的多个基因表达,且抑制效果互不干扰。 2.1 原癌基因 原癌基因是细胞基因组内正常的组成成分,自然状态下无致癌作用,其主要作用是通过编码生长因子等调节正常细胞的生长、分化。原癌基因激活是肿瘤发生的根本原因之一,因此,如何抑制原癌基因的激活成为目前研究肿瘤治疗的热点之一。 2.1.1 Ras基因 Ras基因是目前已知的在人类肿瘤中呈活化状态最普遍的原癌基因,有数据显示此基因的突变现象存在于30%~50%的肿瘤组织中,在胰腺癌中可高达85%。Brummelkamp等[6]建立了突变体的表达系统即pSUPER?K?rasv12,转染人胰腺癌CAPAN?1细胞系后,观察到pSUPER?K?rasv12能显著降低K?rasv12的mRNA表达水平。构建突变体K?rasv12的siRNA病毒载体转染CAPAN?1细胞亦能抑制细胞克隆生长,并阻止裸鼠肿瘤的形成;而对照组细胞生长良好并产生克隆,体内裸鼠实验5周内均长出肿瘤,因此证明了该siRNA具有明显的特异性和抑制肿瘤生长的作用。 同时,他们采用反转录病毒载体RNA系统在体外也成功地抑制了ras基因的表达。 2.1.2 Fos基因 Fos基因是一个重要的促进肿瘤细胞转移的基因,其产物Fos蛋白与肿瘤细胞的运动有关。Fra?1蛋白是Fos蛋白家族的成员之一,主要在大肠癌Hct?116细胞株和BE细胞株中表达。用siRNA 转染fosL基因,然后再转染到BE细胞中,发现Fra?1蛋白对细胞的增殖没什么影响,却极大地降低了BE细胞的运动能力,大约降低为原来的1/10[7]。 2.2 抑癌基因 由于抑癌基因在细胞增殖调控中起重要作用,因此也成为基因治疗的重要目标之一。p53基因是最早利用RNAi技术研究的基因之一,人体内大约50%肿瘤的发生是p53基因突变的结果。p53基因能够抑制DNA合成及诱导DNA修复来抑制细胞生长,使细胞停滞在G1期。突变型p53失去对细胞增殖的负调控作用,导致细胞增殖失控发生癌变。Martinez等[8]的报道中,将H1299细胞转染野生型p53和突变型p53的RNA表达型质粒,结果,野生型siRNA明显抑制野生型p53蛋白的表达,对突变型几乎无效;而突变型siRNA显著抑制突变型p53蛋白表达,野生型基因则不受影响。由此证明,RNA序列能特异性地分别抑制这两个基因的表达,并且对突变型p53的抑制可在一定程度上恢复野生型基因的表达和功能。这就为选择性和个体化治疗肿瘤提供了可能。 2.3 细胞凋亡相关基因 细胞增殖和凋亡之间的动态平衡对于机体的生长发育有着举足轻重的影响。凋亡过程的失调可能导致肿瘤的发生。有研究表明[9],将表达有绿色荧光蛋白(GFP)的Bcl?XLsiRNA转染人胃癌细胞株MGC?803,用RT?PCR和免疫荧光法检测Bcl?XL的表达,48 h后发现,与siRNA阴性组相比,实验组GFP明显减少,Bcl?XL蛋白和Bcl?XL mRNA表达减少到基准水平以下,并有自发的细胞凋亡现象,凋亡率达21.17%。这就说明Bcl?XL特异性siRNA能够抑制凋亡抑制基因Bcl?XL的表达,从而诱导胃癌细胞株MGC?803凋亡。 2.4 其他相关基因 2.4.1 Her2基因 Her2基因在胃癌等肿瘤的发病中起到重要作用,尤其见于弥散型胃癌。有研究表明将核仁蛋白NoL8特异性siRNA转染3种弥漫型胃癌细胞ST?4,MKN45,TMK?1,可以有效地降低该基因的表达,并能诱导这些细胞发生凋亡。因此,可以考虑把Her2作为胃癌基因治疗的又一新的靶点[10]。 2.4.2 β?连环蛋白和APC基因 β?连环蛋白和APC基因是WNT信号传导途径的关键成分。这些基因的突变可引起β?连环蛋白表达水平增加,导致细胞过度增生,促进结肠息肉和结肠癌的发生。Verma等[11]构建了β?连环蛋白的多个靶区域,使得蛋白表达量降低90%。有学者进一步用转染β?连环蛋白siRNA 的结肠癌HCT116细胞注射裸鼠,发现有50%的老鼠存活超过70 d,而对照组则全部死亡。 2.4.3 血管内皮细胞生长因子(VEGF) VEGF是体内一种重要的促血管生成因子,在恶性肿瘤的发生、发展及预后过程中均有着极其重要的作用。Zhang等[12]设计了针对鼠VEGF各亚型的siRNA,以DNA为模板在细胞内诱导小片段双链RNA的形成,干扰结果均特异性抑制相应VEGF的表达。同时,Takei等[13]设计了针对人VEGF的siRNA,采用体外合成法得到相应的siRNA,将其注入到荷瘤鼠模型的肿块中。结果肿瘤组织中的VEGF在mRNA水平和蛋白水平的含量明显低于对照组,肿瘤体积亦明显小于对照组。徐文华等[14]设计两组针对VEGF?mRNA 的siRNA,用脂质体转染人胃腺癌细胞系SGC?7901,观察其细胞周期的变化。发现G0/G1期细胞增多, S期细胞减少,细胞周期阻滞于G0/G1期;并能诱导细胞凋亡产生凋亡小体。这些结果无疑将给肿瘤的基因治疗提供了新的思考方向。 2.4.4 TGF?β1 TGF?β1是一种多功能生长调节因子,与多种肿瘤的转移关系密切。它可使胃癌细胞表达的黏附分子如CD44表达增多;抑制腹腔内淋巴细胞活性使其无法有效杀伤腹腔内游离癌细胞以及血管生成,同时可使间皮细胞变形,腹膜纤维化等。吴涛等[15]利用载体介导的RNAi技术干扰TGF?β1,发现TGF?β1蛋白在人胃癌细胞株SGC?7901中下降约65.8%,腹膜间皮细胞TGF?β1蛋白下降约61.8%。这一结果有力证明了siRNA能抑制TFB?β1在人胃癌细胞株SGC?7901和腹膜间皮细胞中的表达,为今后胃癌腹膜转移靶向治疗奠定了坚实的基础。 2.4.5 埃兹蛋白(Ezrin) Ezrin作为ERM (ezrin radixin moesin)蛋白家族的成员,是一种细胞膜与细胞骨架的连接蛋白,其主要功能是参与细胞的生长和信号转导,接受胞外信号,使骨架蛋白重新排布,并增加细胞运动能力。近来发现, Ezrin的表达与大多数肿瘤转移相关,如Ezrin表达水平与黑素瘤的分级[16]和乳腺癌的发生转移[17]均呈正相关。颜歌等[18]采用小干扰RNA 方法抑制肠癌细胞系Lovo和SW480中的Ezrin的表达,发现Ezrin mRNA和蛋白表达水平均显著下调,肿瘤细胞的运动侵袭能力下降,穿过人工基底膜的细胞数量明显减少。这预示Ezrin蛋白有可能成为抑制肠癌发展、转移的新靶点。 2.4.6 多药耐药(multidrugresistance,MDR) MDR一直是肿瘤治疗的棘手问题之一。研究证实抑癌基因Runx3的缺失和胃癌MDR相关, Guo等[19]应用siRNA敲除Runx3基因后发现癌细胞对多种化疗药物耐药,将携带Runx3的真核生物表达载体转染人类胃癌耐药细胞系SGC7901,体外药敏性分析显示SGC?7901 对各种化疗药物敏感。进一步分析显示Runx3可以抑制MDR?1和MDR相关蛋白1 (MRP?1)启动子的活性, Runx3的高表达可能通过下调MDR?1,MRP?1,Bcl?2的表达,进而使胃癌细胞对化疗敏感。另外,其中的MDR1基因的过度表达及其基因产物P糖蛋白增加是导致MDR的重要原因之一,Nieth等[20]设计了特异的siRNA分别处理胰腺癌EPG85?257RDB细胞和胃癌EPG85?181RDB细胞来抑制MDR1的表达。结果发现这两种细胞的MDR1的mRNA和蛋白表达量可降低90%以上,癌细胞对柔红霉素的耐药作用分别降低了89%和58%。这也提示我们,siRNA介导RNAi技术为克服肿瘤耐药问题可能提供新的策略。 2.4.7 保罗样激酶1(Polo?like kinase 1, Plk1) Plk1是丝氨酸-苏氨酸激酶之一,参与了有丝分裂的不同阶段。Jang等[21]检测发现280例胃癌患者中Plk1表达率高达95%(268/280),用RNAi的方法阻断Plk1表达后,癌细胞的生长明显受抑。用siRNA敲除Plk1基因后,细胞周期调节蛋白B的表达增加,胃癌细胞堆积于G2/M期,有丝分裂纺锤体形态异常,染色体分离延迟,胞质分裂延迟或者停止,增殖减慢[22,23]。另外,Plk1基因的缺失亦伴随癌细胞凋亡的增加,提示Plk1可能成为胃癌基因治疗的理想靶点。 3 问题与展望 RNAi这一方兴未艾的新技术,为肿瘤及其他疾病的基因治疗提供了新的途径。但是仍有许多问题亟待解决:①如何在体内实现靶基因RNA转移到所有肿瘤细胞并稳定持久地抑制癌基因表达;②如何确定21~23 nt左右的核甘酸序列作为siRNA模板的选择原则;③如何提高载体系统的效率等等。总之,RNAi技术作为一种研究的新工具,治疗的新手段,随着对其机制的不断认识和技术的改进,必将在消化系肿瘤的研究及治疗中担任不可替代的角色,同时也预示着后基因组时代里一个崭新的RNA时代的到来。 【参考文献】 [1] Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double?stranded RNA in Caenorhabditis elegans[J].Nature, 1998,391(6669): 806-811. [2] Schwarz DS,Hutvagner G,Haley B,et al.Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways[J].Mol Cell, 2002, 10(3): 537-548. [3] Hannon GJ.RNA interference[J].Nature,2002,418(6894):244-251. [4] Cerutti H.RNA interference:traveling in the cell and gaining functions?[J].Trends Genet,2003,19(1):39-46. [5] Nykanen A,Haley B,Zamore PD.ATP requirements and small interfering RNA structure in the RNA interference pathway[J].Cell,2001,107(3):309-321. 看了“rna干扰技术论文怎么写”的人还看: 1. rna干扰技术论文 2. rfid定位技术论文 3. smt管理技术论文 4. it技术论文 5. pcr技术论文
加大打击力度,应该惩罚的更厉害。除了罚款,还要对他们以后的征信产生很大影响,这样就可以让他们不敢这样做了。
如果想要减少学术论文的抄袭现象,就需要给研究生有更多的权利,让他们不被他们的导师压榨
首先国家要出台相关法律或政策,对抄袭学术论文的行为进行严惩,如果导师被举报剽窃,一旦查实,免去其硕导、博导资格,学生抄袭论文被查实,延期毕业或取消学位
很多毕业生听到学术论文四个字便头发慌、手发抖不知道怎么写!究其原因无非有三种,一是题目目不是自己定的,二是毕业论文和自己的专业擅长没有太大关系,三有一些学生更适合实践(毕业设计)。针对这三种原因做出改进,就能有效的整改抄袭现象。
1.题目自定
我记得在我写论文的时候很早就想好了自己要写什么方面的论文,所以便自拟了题目,找到了我的论文老师,让她帮我修改重新制定。然而能够想到自拟题目的人太少了,很多学生都是分配到哪个老师,就在她出的题里选一个,这种情况下写论文很被动,也没有兴趣,更没与灵魂。所以,很多人便想到了抄,复制别人再降重。
2.专业相关
很多老师会根据院内专业制定题目,可是有些老师已经带了很多届的论文了,难免会插入一些和专业相关但是又不是专业的东西。譬如我们作为广播电视编导的学生,有一位同窗在老师的题目下选择到了昆曲分析,那个老师对昆曲确实很有研究,可是那个男同学他甚至都没听过昆曲啊。对自己不感兴趣的东西短时间内了解透彻是很难的,这种情况下除了疯狂恶补知识外就只能是抄了。
3.毕业设计+毕业论文
很多的专业其实是动手能力非常强、技能方面要求很高的,所以为什么一定要局限于文字版的论文呢?我们学校当时美术和编导专业都是可以毕业设计+毕业论文结合的,这也是我非常满意的一点。第一,毕业设计能充分的体现了该学生大学时期所学到的专业,多年后回顾也是一段青春,也是学习能力的体现。第二,根据自己的毕业设计写文论还用抄袭么?自己的设计都在里面,岂不是两全其美的办法。
虽说很多原因迫使学生们对论文头疼,但是抄袭是万万不可的!这种行为是对自己的不负责、更是对老师的不负责任。
rna干扰技术论文篇二 RNA干扰技术在消化系肿瘤基因治疗中的应用 【关键词】 RNA干扰 小干涉RNA 消化系肿瘤 基因治疗 RNA干扰(RNA interference,RNAi)是由内源性或外源性双链RNA(double stranded RNA,dsRNA)所诱发,高度特异性降解细胞内同源mRNA,使基因沉默的现象。这种现象发生在转录后水平,故又称为转录后基因沉默(post?transcriptional gene silencing,PTGS)[1]。RNAi是生物体在进化过程中抵御病毒入侵,抑制由转座子移动或重复序列的积累引起的基因组不稳定的保护机制,另外还是基因表达调控的一条重要途径。小干涉RNA(small inter?fering RNA,siRNA)是指干涉RNAi过程中在细胞内产生的长约21~23核苷酸(nt)的小双链RNA分子,是RNAi发挥功能的重要中间效能分子。RNAi自从1998年发现以来,就以其独特的优势在功能基因组学研究中迅速占有一席之地,迄今已成为基因研究中不可或缺的工具之一,并且随着对其作用机制的逐步了解和应用技术的日渐成熟,已开始应用于疾病防治等多个方面。本文就其机制,主要特征,以及在消化系肿瘤中的研究作一简单综述。 1 作用机制及主要特征 1.1 作用机制 RNAi在哺乳动物细胞中有两种作用机制:一种是大于30 nt的长双链RNA(dsRNA)产生的广泛的、非特异性效应。其机制可能是激活了细胞内的蛋白激酶R和RNA酶L,从而导致了非特异性的细胞凋亡。另一种是21~23 nt的短双链RNA(siRNA)产生的相对具体的、特异性效应。目前,RNAi在抗病毒及肿瘤中的研究主要集中在siRNA产生的特异性效应,故下面主要介绍siRNA的作用机制。 siRNA的作用机制目前尚未完全阐明,但已基本达成共识,即①dsRNA在细胞内与DICER酶(一种RNAaseIII家族中特异性识别dsRNA的酶)结合,随即被分割成21~23个核苷酸的短链dsRNA,在这个过程中需要ATP的参与。②分割下来的短链dsRNA即为siRNA,它是RNAi的起始诱导物,与DICER酶形成RNA引导的沉默复合体(RISC),此时RISC无活性,随后,siRNA经历一个依赖ATP的解双链过程激活RISC[2]。③siRNA特异性地识别靶基因转录的mRNA,并引导RISC结合mRNA,RISC中的DICER酶将mRNA切割成21~23个核苷酸片段,此后mRNA被逐步降解,导致不能进行翻译过程,从而引起目的基因沉默,抑制靶基因的表达。④新产生的dsRNA(siRNA)可继续形成RISC复合物进入新一轮RNAi的循环,产生正反馈效应。这一过程需在RNA依赖RNA聚合酶(RdRP)的条件下进行。除上述机制外,转基因真核生物dsRNA 还可引起相应基因的甲基化,促使异常RNA产生,最终导致基因沉默[3,4]。 1.2 主要特征 1.2.1 高度特异性 RNAi严格遵循碱基配对原则,只降解与之同源的基因的RNA,达到阻止基因表达的目的。 1.2.2 高效性 相对很少量的dsRNA分子(数量远远少于mRNA的数量)就能完全抑制相应基因的表达,在哺乳动物中虽没发现扩增效应,但在细胞实验中只需摩尔级浓度的 siRNA 即可有效抑制目标基因的表达。 1.2.3 可传递性和可遗传性 RNAi抑制基因表达的效应可跨越细胞的界限,甚至可以传播至整个有机体及子代细胞。 1.2.4 浓度、时间双重依赖性 在一定时间内RNAi的效应强度随siRNA的浓度增高而增强,或浓度一定的情况下,随着时间延长,siRNA在细胞内发生正反馈效应,导致浓度增高,使RNAi效应增强。 1.2.5 ATP依赖性 目前研究发现RNAi中至少有2个步骤消耗ATP[5]:DICER酶切割dsRNA成为siRNA并使其5′端磷酸化或胞内磷酸化酶使导入的siRNA 5′端磷酸化而使其成为有活性的siRNA的过程;RISC活化即siRNA解双链的过程。 2 RNAi在消化系肿瘤治疗中的应用 肿瘤的发生、发展与原癌基因的激活,抑癌基因的失活,以及凋亡相关基因的异常表达等均有密切的关系。因此我们可以针对这些因素,利用RNAi相关技术在不影响正常基因功能的条件下抑制突变基因表达或基因的表达过量,从而达到基因治疗的目的。另外,肿瘤是多个基因相互作用的基因网络调控的结果,当单一癌基因的阻断不能完全抑制或逆转时,可以设计一种针对同一家族多个基因的保守序列的siRNA分子,便可以同时抑制这一家族的多个基因表达,且抑制效果互不干扰。 2.1 原癌基因 原癌基因是细胞基因组内正常的组成成分,自然状态下无致癌作用,其主要作用是通过编码生长因子等调节正常细胞的生长、分化。原癌基因激活是肿瘤发生的根本原因之一,因此,如何抑制原癌基因的激活成为目前研究肿瘤治疗的热点之一。 2.1.1 Ras基因 Ras基因是目前已知的在人类肿瘤中呈活化状态最普遍的原癌基因,有数据显示此基因的突变现象存在于30%~50%的肿瘤组织中,在胰腺癌中可高达85%。Brummelkamp等[6]建立了突变体的表达系统即pSUPER?K?rasv12,转染人胰腺癌CAPAN?1细胞系后,观察到pSUPER?K?rasv12能显著降低K?rasv12的mRNA表达水平。构建突变体K?rasv12的siRNA病毒载体转染CAPAN?1细胞亦能抑制细胞克隆生长,并阻止裸鼠肿瘤的形成;而对照组细胞生长良好并产生克隆,体内裸鼠实验5周内均长出肿瘤,因此证明了该siRNA具有明显的特异性和抑制肿瘤生长的作用。 同时,他们采用反转录病毒载体RNA系统在体外也成功地抑制了ras基因的表达。 2.1.2 Fos基因 Fos基因是一个重要的促进肿瘤细胞转移的基因,其产物Fos蛋白与肿瘤细胞的运动有关。Fra?1蛋白是Fos蛋白家族的成员之一,主要在大肠癌Hct?116细胞株和BE细胞株中表达。用siRNA 转染fosL基因,然后再转染到BE细胞中,发现Fra?1蛋白对细胞的增殖没什么影响,却极大地降低了BE细胞的运动能力,大约降低为原来的1/10[7]。 2.2 抑癌基因 由于抑癌基因在细胞增殖调控中起重要作用,因此也成为基因治疗的重要目标之一。p53基因是最早利用RNAi技术研究的基因之一,人体内大约50%肿瘤的发生是p53基因突变的结果。p53基因能够抑制DNA合成及诱导DNA修复来抑制细胞生长,使细胞停滞在G1期。突变型p53失去对细胞增殖的负调控作用,导致细胞增殖失控发生癌变。Martinez等[8]的报道中,将H1299细胞转染野生型p53和突变型p53的RNA表达型质粒,结果,野生型siRNA明显抑制野生型p53蛋白的表达,对突变型几乎无效;而突变型siRNA显著抑制突变型p53蛋白表达,野生型基因则不受影响。由此证明,RNA序列能特异性地分别抑制这两个基因的表达,并且对突变型p53的抑制可在一定程度上恢复野生型基因的表达和功能。这就为选择性和个体化治疗肿瘤提供了可能。 2.3 细胞凋亡相关基因 细胞增殖和凋亡之间的动态平衡对于机体的生长发育有着举足轻重的影响。凋亡过程的失调可能导致肿瘤的发生。有研究表明[9],将表达有绿色荧光蛋白(GFP)的Bcl?XLsiRNA转染人胃癌细胞株MGC?803,用RT?PCR和免疫荧光法检测Bcl?XL的表达,48 h后发现,与siRNA阴性组相比,实验组GFP明显减少,Bcl?XL蛋白和Bcl?XL mRNA表达减少到基准水平以下,并有自发的细胞凋亡现象,凋亡率达21.17%。这就说明Bcl?XL特异性siRNA能够抑制凋亡抑制基因Bcl?XL的表达,从而诱导胃癌细胞株MGC?803凋亡。 2.4 其他相关基因 2.4.1 Her2基因 Her2基因在胃癌等肿瘤的发病中起到重要作用,尤其见于弥散型胃癌。有研究表明将核仁蛋白NoL8特异性siRNA转染3种弥漫型胃癌细胞ST?4,MKN45,TMK?1,可以有效地降低该基因的表达,并能诱导这些细胞发生凋亡。因此,可以考虑把Her2作为胃癌基因治疗的又一新的靶点[10]。 2.4.2 β?连环蛋白和APC基因 β?连环蛋白和APC基因是WNT信号传导途径的关键成分。这些基因的突变可引起β?连环蛋白表达水平增加,导致细胞过度增生,促进结肠息肉和结肠癌的发生。Verma等[11]构建了β?连环蛋白的多个靶区域,使得蛋白表达量降低90%。有学者进一步用转染β?连环蛋白siRNA 的结肠癌HCT116细胞注射裸鼠,发现有50%的老鼠存活超过70 d,而对照组则全部死亡。 2.4.3 血管内皮细胞生长因子(VEGF) VEGF是体内一种重要的促血管生成因子,在恶性肿瘤的发生、发展及预后过程中均有着极其重要的作用。Zhang等[12]设计了针对鼠VEGF各亚型的siRNA,以DNA为模板在细胞内诱导小片段双链RNA的形成,干扰结果均特异性抑制相应VEGF的表达。同时,Takei等[13]设计了针对人VEGF的siRNA,采用体外合成法得到相应的siRNA,将其注入到荷瘤鼠模型的肿块中。结果肿瘤组织中的VEGF在mRNA水平和蛋白水平的含量明显低于对照组,肿瘤体积亦明显小于对照组。徐文华等[14]设计两组针对VEGF?mRNA 的siRNA,用脂质体转染人胃腺癌细胞系SGC?7901,观察其细胞周期的变化。发现G0/G1期细胞增多, S期细胞减少,细胞周期阻滞于G0/G1期;并能诱导细胞凋亡产生凋亡小体。这些结果无疑将给肿瘤的基因治疗提供了新的思考方向。 2.4.4 TGF?β1 TGF?β1是一种多功能生长调节因子,与多种肿瘤的转移关系密切。它可使胃癌细胞表达的黏附分子如CD44表达增多;抑制腹腔内淋巴细胞活性使其无法有效杀伤腹腔内游离癌细胞以及血管生成,同时可使间皮细胞变形,腹膜纤维化等。吴涛等[15]利用载体介导的RNAi技术干扰TGF?β1,发现TGF?β1蛋白在人胃癌细胞株SGC?7901中下降约65.8%,腹膜间皮细胞TGF?β1蛋白下降约61.8%。这一结果有力证明了siRNA能抑制TFB?β1在人胃癌细胞株SGC?7901和腹膜间皮细胞中的表达,为今后胃癌腹膜转移靶向治疗奠定了坚实的基础。 2.4.5 埃兹蛋白(Ezrin) Ezrin作为ERM (ezrin radixin moesin)蛋白家族的成员,是一种细胞膜与细胞骨架的连接蛋白,其主要功能是参与细胞的生长和信号转导,接受胞外信号,使骨架蛋白重新排布,并增加细胞运动能力。近来发现, Ezrin的表达与大多数肿瘤转移相关,如Ezrin表达水平与黑素瘤的分级[16]和乳腺癌的发生转移[17]均呈正相关。颜歌等[18]采用小干扰RNA 方法抑制肠癌细胞系Lovo和SW480中的Ezrin的表达,发现Ezrin mRNA和蛋白表达水平均显著下调,肿瘤细胞的运动侵袭能力下降,穿过人工基底膜的细胞数量明显减少。这预示Ezrin蛋白有可能成为抑制肠癌发展、转移的新靶点。 2.4.6 多药耐药(multidrugresistance,MDR) MDR一直是肿瘤治疗的棘手问题之一。研究证实抑癌基因Runx3的缺失和胃癌MDR相关, Guo等[19]应用siRNA敲除Runx3基因后发现癌细胞对多种化疗药物耐药,将携带Runx3的真核生物表达载体转染人类胃癌耐药细胞系SGC7901,体外药敏性分析显示SGC?7901 对各种化疗药物敏感。进一步分析显示Runx3可以抑制MDR?1和MDR相关蛋白1 (MRP?1)启动子的活性, Runx3的高表达可能通过下调MDR?1,MRP?1,Bcl?2的表达,进而使胃癌细胞对化疗敏感。另外,其中的MDR1基因的过度表达及其基因产物P糖蛋白增加是导致MDR的重要原因之一,Nieth等[20]设计了特异的siRNA分别处理胰腺癌EPG85?257RDB细胞和胃癌EPG85?181RDB细胞来抑制MDR1的表达。结果发现这两种细胞的MDR1的mRNA和蛋白表达量可降低90%以上,癌细胞对柔红霉素的耐药作用分别降低了89%和58%。这也提示我们,siRNA介导RNAi技术为克服肿瘤耐药问题可能提供新的策略。 2.4.7 保罗样激酶1(Polo?like kinase 1, Plk1) Plk1是丝氨酸-苏氨酸激酶之一,参与了有丝分裂的不同阶段。Jang等[21]检测发现280例胃癌患者中Plk1表达率高达95%(268/280),用RNAi的方法阻断Plk1表达后,癌细胞的生长明显受抑。用siRNA敲除Plk1基因后,细胞周期调节蛋白B的表达增加,胃癌细胞堆积于G2/M期,有丝分裂纺锤体形态异常,染色体分离延迟,胞质分裂延迟或者停止,增殖减慢[22,23]。另外,Plk1基因的缺失亦伴随癌细胞凋亡的增加,提示Plk1可能成为胃癌基因治疗的理想靶点。 3 问题与展望 RNAi这一方兴未艾的新技术,为肿瘤及其他疾病的基因治疗提供了新的途径。但是仍有许多问题亟待解决:①如何在体内实现靶基因RNA转移到所有肿瘤细胞并稳定持久地抑制癌基因表达;②如何确定21~23 nt左右的核甘酸序列作为siRNA模板的选择原则;③如何提高载体系统的效率等等。总之,RNAi技术作为一种研究的新工具,治疗的新手段,随着对其机制的不断认识和技术的改进,必将在消化系肿瘤的研究及治疗中担任不可替代的角色,同时也预示着后基因组时代里一个崭新的RNA时代的到来。 【参考文献】 [1] Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double?stranded RNA in Caenorhabditis elegans[J].Nature, 1998,391(6669): 806-811. [2] Schwarz DS,Hutvagner G,Haley B,et al.Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways[J].Mol Cell, 2002, 10(3): 537-548. [3] Hannon GJ.RNA interference[J].Nature,2002,418(6894):244-251. [4] Cerutti H.RNA interference:traveling in the cell and gaining functions?[J].Trends Genet,2003,19(1):39-46. [5] Nykanen A,Haley B,Zamore PD.ATP requirements and small interfering RNA structure in the RNA interference pathway[J].Cell,2001,107(3):309-321. 看了“rna干扰技术论文怎么写”的人还看: 1. rna干扰技术论文 2. rfid定位技术论文 3. smt管理技术论文 4. it技术论文 5. pcr技术论文
对于影响因素类的毕业论文,需要综合考虑本研究涉及到的所有可能影响主题的因素,这些因素可能包括但不限于以下几方面:1. 宏观环境因素,如政策、经济、社会、文化、科技等因素对于研究主题的影响。2. 组织内部因素,如人力资源、组织文化、管理制度、技术等因素对于研究主题的影响。3. 个人因素,如年龄、性别、教育程度、经验等因素对于研究主题的影响。4. 行业因素,如市场竞争、市场需求、技术创新等因素对于研究主题的影响。5. 特别是在实证研究中,还需要考虑样本大小、信度和效度、数据收集方法等因素的干扰和控制。总之,对于影响因素类的毕业论文,需要从多个维度和层面考虑并分析可能的因素,以便更全面和深入地理解研究对象的影响因素。
在撰写影响因素类毕业论文时,考虑所有可能的因素是很重要的。但是,在一些情况下,您可能无法考虑到所有可能的因素。在这种情况下,您应该尽力考虑任何与研究主题相关的因素,并且可以通过查阅相关文献或与专家进行讨论来确定这些因素。此外,需要注意的是,在撰写论文过程中,您还需要正确地界定和定义研究主题。这将有助于您更好地了解哪些因素对研究主题具有影响,并将使您能够更好地集中注意力和资源。总之,如果您认真思考和仔细规划,则可以确保在撰写影响因素类毕业论文时考虑到所有可能的因素,并且能够在报告中充分讨论它们。
要考虑,第一,注意选题不要太冷门。很多同学出于论文查重率的考虑,在论文选题时,特意选择一些比较冷门的题目写。冷门的论文写的人少查重率确实不会很高,但是往往这样的论文撰写难度大,参考资料也较少,建议选择自己比较擅长的方面写。第二,选题范围。选题时一定要谨慎,题目不宜过大。论文题目过大,范围太广难以掌控,内容会显得很空泛找不到重点。也不宜过小,论文选题过小,都是别人研究过的内容,没有可以拓展的空间。第三,可行性。题目要能正确揭示事物的客观规律,论文当中所分析的问题要实事求是,而且所引用的资料要全面、准确。否则即便论点再新颖、再独特,只要脱离了科学性,都是白写。第四,创新。创新是学术研究的灵魂所在,创新的论文可以吸引更多读者阅读。只有论文的题目新颖,才能吸引更多人阅读。在研究的视角上创新,打破传统的研究方法,给读者带来全新的感观体验。在研究的内容上创新,对于具体研究的事物,要有独特、创新的想法,探索别人所未挖掘的内容
可以看到活细胞RNA的成像。现在的人们生活条件好了,相比之下有了很大的提高,不管是生活质量方面还是其他的方面都有很大的提升。同时,随着中国科技发展得如此快出现了越多越多的高科技产品就比如说。韩春雨组发表高分论文,开发出新型RNA追踪平台,该平台有何优势?这问题引起了社会上很多人的关注,他们对此有不同的看法下面,我就来给你们说一说,我自己的看法。
我们大家都知道这个开发出新型的RNA追踪平台,他是可以看到活细胞RNA的成像这样,不管是对于我们的生物研究还是病理方面的研究都有很大的帮助。我们大家都知道如果生了病之后都需要去医院进行检查,如果因为技术方面的菊香,造成检查不出来,还是非常难过的一件事情。
当然出现了这个平台之后会给我们的生活带来非常大的啊,帮助啊,我们可以通过这个平台追踪RNA的活动迹象,查找的工价经血是非常方便了一件事情,同时我们国家的研发人员也在时时刻刻地为我们国家的技术进行研发在这里还是非常感谢他们的预算就是小编个人的看法和意见了,希望大家可以认真仔细地看一看,对于大家来说帮助还是非常大的呢?
可以帮助我们看到身体的RNA成像,监测RNA在我们人体当中的活动迹象,帮助我们更好的了解我们的身体构造和RNA,是非常有灵敏性的,对人体的细胞观测是非常好的,对我们国家研究生物病理也是非常有帮助的。
这个平台速度很快,追踪的特别的准确。并且能够很快的定位。并且误差很小很小。而且注册的话也不麻烦。
时隔6年,韩春雨再次发表新论文,论文中有很多的信息都是值得关注的。比如说开发出了基于CAS6的RNA荧光追踪技术,这样的一个技术也让该论文可以在顶级的杂志上进行发表,并且也让人们更加关注韩春雨所作的生物科学相关的实验。
韩春雨是河北科技大学的副教授,同时也是硕士研究生导师.韩春雨在2016年的时候就发表过一个顶级的文章研究成果,是指发明的一种新的基因编辑技术,所以引发了强烈的关注,而且很多人都存在这一个技术是非常强的,而且也是非常吸引的。但是论文发表不代表就有相关的成果,一定要具有可重复性,所以有人就提出韩春雨的实验室无法重复的,有人也说是可以重复的,总而言之就是之前的实验成果备受争议。不过韩春雨并没有放弃,而是进行新技术的研发,开发出了基于CAS6的RNA荧光追踪技术,这样的一个系统其实还是属于基因上的编辑和追踪,而且是跟RNA有关的,也是人体中的基因部分,所以还是说明了韩春雨本人的科研能力是比较强的。
韩春雨本人可以说是处于舆论漩涡中,但是韩春雨自己的科研实力还是非常不错的,并且也能够体现出韩春雨的团队是能够继续的去进行相关的研发。只要韩春雨能够按照正确的方向,或者说自己想要研究的方向不断的努力,那么也是能够获得让更多人认可的实验成果,最终也能获得很多荣誉的。而且相关的知识科研性比较高,也只有同行来进行评判,才能够知道究竟是学术造假还是真正可以借鉴的实验成果。
科学研发的过程中必然会出现一些争议性的事情,这是很正常的。只要是有一定的科学证据是可以支撑的,那么都应该值得肯定。
你可以接听但不说话,浪费它们的电话费,看他们还打不
最近总有杂志社的电话打给我~问我有没有医学论文要发表…今天接到了电话杂志社:你好!先生请问你有没有医学论文要发表??我:有啊!杂志社:那太好了…能给我说一说你论文的研究方向么?我:论母牛的饮食与发情期长短的关系杂志社:先生!你什么科室的??我:八年的兽医…杂志社:嘟嘟嘟………
现在的骚扰电话是很多很多,你可以在手机上安装个腾讯手机管家就可以拦截骚扰电话了。腾讯手机管家拥有智能云拦截功能。它能智能的拦截陌生人的号码,智能的拦截一切骚扰电话和东西等。不会拦截正常的电话和短信。大家还可以同时设置黑白名单设计下新的拦截关键字等方式。主动拦截骚扰信息垃圾短信拦截率高达百分九八以上。
解药两方:损招:直接打给杂志社社长通知他你的情况或给杂志社发声明电子邮件,拒绝骚扰,要措辞严厉!绝招:自己换个电话号码吧!保证药到病除!