arXiv.org,这个不能发中文论文,而且2009后发英文论文也很困难。无名研究者只能挂主流杂志发表过的文章,arXiv.org拒绝非主流杂志比如GALILEAN ELECTRODYNAMICS和PHYSICS ESSAYS等的论文。可能因为名气搞大了,万一你有个大成果抢先欧美研究人员发表在上面了,以后你就是第一发现者了,那是他们不愿意的;另一方面的原因是后来出现很多与主流观点不一致的论文也往那儿投,arXiv.org推崇主流观点,不欢迎任何与主流观点不一致的东西。中国研究者对现在欧美所谓SCITOP期刊和预印服务器必须有一个清醒的认识,开创性的论文提交给那些期刊或预印服务,作用仅仅是启发他们的研究人员抢先写出论文发表,你的论文必然被退回来。这不仅仅因为学术上的小利益,更重要的是科学意识形态称霸世界的政治大利益。arXiv.org原本是挂尚未发表的论文的预印服务器,2009后就升级成为欧美霸权的重要意识形态工具之一了。中科院极力推崇欧美TOP期刊,分什么一、二、三、四区,或因对国际政治斗争认识水平过低所致,抑或欧美培养的学术汉奸推波助澜。我读过nature和pr系列某个领域的大量文章,nature基本上不讲究计算论证,只讲究像写文学作品样写得很好地介绍一些东西,prl很多数学计算是完全错误的。考古方面我无发言权,与理论物理相关的我可以负责任告诉你,作为中国研究人员,如果你写什么光子纠缠量子通信那样有可能消耗很大国力而实际上属于纯粹胡扯的非开创性文章,nature和science或arXiv有可能发表。
arxiv上的论文一般是用作发表手稿或者预出版的论文,标准符合康奈尔大学学术要求即可。
arxiv是一个提供学术文章在线发表的服务器,领域涵盖物理学、数学、非线性科学、计算机科学、定量生命科学、计量金融学和统计学。发表arXiv的论文不需要通过审核,因此被用作发表手稿或者预出版的论文,提交到arXiv的文章必须符合康奈尔大学学术标准。
arXiv(X依希腊文的χ发音,读音如英语的archive)是一个收集物理学、数学、计算机科学、生物学与数理经济学的论文预印本的网站,成立于1991年8月14日。
同行评价:
arXiv(3)尽管arXiv上的文章未经同行评审,但在2004年起采行了一套“认可”系统。在这套系统下,作者首先要得到认可,这种认可可能来自另一位具认可资格者的背书,或者依照某些内部规定而自动授予。
来自著名学术机关的作者通常会自动得到认可。包括诺贝尔物理奖得主布赖恩·约瑟夫森在内的十九位科学家曾抗议他们的部分文章被arXiv管理者退回,而其它文章则被强迫更改分类,依其见解,原因出在研究主题的争议性,或者是文章抵触了弦理论的正统观点。
由于arXiv上的文章多半都会投稿到学术期刊,作者对文章多半保持严谨态度。少部分文章则一直保持预印本的形式,其中包括一些极具影响力的作品,例如格里戈里·佩雷尔曼对庞加莱猜想的证明。arXiv上的民间科学家作品为数不多,通常被归入诸如“一般数学”(General Mathematics)等项下。
论文: Generative adversarial network in medical imaging: A review 这篇文章发表于顶刊Medical Imaging Analysis 2019上,文章细数了GAN应用于医学图像的七大领域——重建(图像去噪)、合成、分割、分类、检测、配准和其他工作,并介绍了包括医学图像数据集、度量指标等内容,并对未来工作做出展望。由于笔者研究方向之故,本博客暂时只关注重建、合成部分的应用。关于该论文中所有列出的文章,均可在 GitHub链接 中找到。 GAN在医学成像中通常有两种使用方式。第一个重点是生成方面,可以帮助探索和发现训练数据的基础结构以及学习生成新图像。此属性使GAN在应对数据短缺和患者隐私方面非常有前途。第二个重点是判别方面,其中辨别器D可以被视为正常图像的先验知识,因此在呈现异常图像时可以将其用作正则器或检测器。示例(a),(b),(c),(d),(e),(f)侧重于生成方面,而示例 (g) 利用了区分性方面。下面我们看一下应用到分割领域的文章。 (a)左侧显示被噪声污染的低剂量CT,右侧显示降噪的CT,该CT很好地保留了肝脏中的低对比度区域[1]。 (b)左侧显示MR图像,右侧显示合成的相应CT。在生成的CT图像中很好地描绘了骨骼结构[2]。 (c)生成的视网膜眼底图像具有如左血管图所示的确切血管结构[3]。(d)随机噪声(恶性和良性的混合物)随机产生的皮肤病变[4]。 (e)成人胸部X光片的器官(肺和心脏)分割实例。肺和心脏的形状受对抗性损失的调节[5]。 (f)第三列显示了在SWI序列上经过域调整的脑病变分割结果,无需经过相应的手动注释训练[6]。 (g) 视网膜光学相干断层扫描图像的异常检测[7]。 通常,研究人员使用像像素或逐像素损失(例如交叉熵)进行分割。尽管使用了U-net来组合低级和高级功能,但不能保证最终分割图的空间一致性。传统上,通常采用条件随机场(CRF)和图割方法通过结合空间相关性来进行细分。它们的局限性在于,它们仅考虑可能在低对比度区域中导致严重边界泄漏的 pair-wise potentials (二元势函数 -- CRF术语)。另一方面,鉴别器引入的对抗性损失可以考虑到高阶势能。在这种情况下,鉴别器可被视为形状调节器。当感兴趣的对象具有紧凑的形状时,例如物体,这种正则化效果更加显着。用于肺和心脏mask,但对诸如血管和导管等可变形物体的用处较小。这种调节效果还可以应用于分割器(生成器)的内部特征,以实现域(不同的扫描仪,成像协议,模态)的不变性[8、9]。对抗性损失也可以看作是f分割网络(生成器)的输出和 Ground Truth 之间的自适应学习相似性度量。因此,判别网络不是在像素域中测量相似度,而是将输入投影到低维流形并在那里测量相似度。这个想法类似于感知损失。不同之处在于,感知损失是根据自然图像上的预训练分类网络计算而来的,而对抗损失则是根据在生成器演变过程中经过自适应训练的网络计算的。 [10] 在鉴别器中使用了多尺度L1损失,其中比较了来自不同深度的特征。事实证明,这可以有效地对分割图执行多尺度的空间约束,并且系统在BRATS 13和15挑战中达到了最先进的性能。 [11] 建议在分割管道中同时使用带注释的图像和未带注释的图像。带注释的图像的使用方式与 [10] 中的相同。 [10] 和 [12] ,同时应用了基于元素的损失和对抗性损失。另一方面,未注释的图像仅用于计算分割图以混淆鉴别器。 [13] 将pix2pix与ACGAN结合使用以分割不同细胞类型的荧光显微镜图像。他们发现,辅助分类器分支的引入为区分器和细分器提供了调节。 这些前述的分割训练中采用对抗训练来确保最终分割图上更高阶结构的一致性,与之不同的是, [14] -- code 中的对抗训练方案,将网络不变性强加给训练样本的小扰动,以减少小数据集的过度拟合。表中总结了与医学图像分割有关的论文。 参考链接: [1] X. Yi, P. Babyn. Sharpness-aware low-dose ct denoising using conditional generative adversarial network. J. Digit. Imaging (2018), pp. 1-15 [2] J.M. Wolterink, A.M. Dinkla, M.H. Savenije, P.R. Seevinck, C.A. van den Berg, I. Išgum. Deep MR to CT synthesis using unpaired data International Workshop on Simulation and Synthesis in Medical Imaging, Springer (2017), pp. 14-23 [3] P. Costa, A. Galdran, M.I. Meyer, M. Niemeijer, M. Abràmoff, A.M. Mendonça, A. Campilho. End-to-end adversarial retinal image synthesis IEEE Trans. Med. Imaging(2017) [4] Yi, X., Walia, E., Babyn, P., 2018. Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by Wasserstein distance for dermoscopy image classification. arXiv:1804.03700 . [5] Dai, W., Doyle, J., Liang, X., Zhang, H., Dong, N., Li, Y., Xing, E.P., 2017b. Scan: structure correcting adversarial network for chest x-rays organ segmentation. arXiv: 1703.08770 . [6] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [7] T. Schlegl, P. Seeböck, S.M. Waldstein, U. Schmidt-Erfurth, G. Langs Unsupervised anomaly detection with generative adversarial networks to guide marker discovery International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 146-157 [8] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [9] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: 1804.10916 . [10] Y. Xue, T. Xu, H. Zhang, L.R. Long, X. Huang Segan: adversarial network with multi-scale l 1 loss for medical image segmentation Neuroinformatics, 16 (3–4) (2018), pp. 383-392 [11] Y. Zhang, L. Yang, J. Chen, M. Fredericksen, D.P. Hughes, D.Z. Chen. Deep adversarial networks for biomedical image segmentation utilizing unannotated images International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 408-416 [12] Son, J., Park, S.J., Jung, K.-H., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: 1706.09318 . [13] Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058 [14] W. Zhu, X. Xiang, T.D. Tran, G.D. Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018) [15] D. Yang, D. Xu, S.K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, D. Comaniciu. Automatic liver segmentation using an adversarial image-to-image network International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 507-515 [16] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: 1804.10916 . [17] Rezaei, M., Yang, H., Meinel, C., 2018a. Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation. arXiv: 1810.03871 . [18] A. Sekuboyina, M. Rempfler, J. Kukačka, G. Tetteh, A. Valentinitsch, J.S. Kirschke, B.H. Menze. Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham (2018) [19] M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, C. Meinel. A conditional adversarial network for semantic segmentation of brain tumor International MICCAI Brainlesion Workshop, Springer (2017), pp. 241-252 [20] P. Moeskops, M. Veta, M.W. Lafarge, K.A. Eppenhof, J.P. Pluim. Adversarial training and dilated convolutions for brain MRI segmentation Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer (2017), pp. 56-64 [21] Kohl, S., Bonekamp, D., Schlemmer, H.-P., Yaqubi, K., Hohenfellner, M., Hadaschik, B., Radtke, J.-P., Maier-Hein, K., 2017. Adversarial networks for the detection of aggressive prostate cancer. arXiv: 1702.08014 . [22]Y. Huo, Z. Xu, S. Bao, C. Bermudez, A.J. Plassard, J. Liu, Y. Yao, A. Assad, R.G. Abramson, B.A. Landman. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks Medical Imaging 2018: Image Processing, 10574, International Society for Optics and Photonics (2018), p. 1057409 [23]K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [24]Z. Han, B. Wei, A. Mercado, S. Leung, S. Li. Spine-GAN: semantic segmentation of multiple spinal structures Med. Image Anal., 50 (2018), pp. 23-35 [25]M. Zhao, L. Wang, J. Chen, D. Nie, Y. Cong, S. Ahmad, A. Ho, P. Yuan, S.H. Fung, H.H. Deng, et al. Craniomaxillofacial bony structures segmentation from MRI with deep-supervision adversarial learning International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2018), pp. 720-727 [26] Son, J., Park, S.J., Jung, K.-H., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: 1706.09318 . [27]Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058 [28] S. Izadi, Z. Mirikharaji, J. Kawahara, G. Hamarneh. Generative adversarial networks to segment skin lesions Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE (2018), pp. 881-884 Close [29]W. Zhu, X. Xiang, T.D. Tran, G.D. Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018)
arxiv上的论文一般是用作发表手稿或者预出版的论文,标准符合康奈尔大学学术要求即可。
arxiv是一个提供学术文章在线发表的服务器,领域涵盖物理学、数学、非线性科学、计算机科学、定量生命科学、计量金融学和统计学。发表arXiv的论文不需要通过审核,因此被用作发表手稿或者预出版的论文,提交到arXiv的文章必须符合康奈尔大学学术标准。
arXiv(X依希腊文的χ发音,读音如英语的archive)是一个收集物理学、数学、计算机科学、生物学与数理经济学的论文预印本的网站,成立于1991年8月14日。
同行评价:
arXiv(3)尽管arXiv上的文章未经同行评审,但在2004年起采行了一套“认可”系统。在这套系统下,作者首先要得到认可,这种认可可能来自另一位具认可资格者的背书,或者依照某些内部规定而自动授予。
来自著名学术机关的作者通常会自动得到认可。包括诺贝尔物理奖得主布赖恩·约瑟夫森在内的十九位科学家曾抗议他们的部分文章被arXiv管理者退回,而其它文章则被强迫更改分类,依其见解,原因出在研究主题的争议性,或者是文章抵触了弦理论的正统观点。
由于arXiv上的文章多半都会投稿到学术期刊,作者对文章多半保持严谨态度。少部分文章则一直保持预印本的形式,其中包括一些极具影响力的作品,例如格里戈里·佩雷尔曼对庞加莱猜想的证明。arXiv上的民间科学家作品为数不多,通常被归入诸如“一般数学”(General Mathematics)等项下。
你需要一个发文认可。能够给你认可的人必须在arxiv上你所在的领域里发表一定的论文。最简单的办法是随便找一篇论文,尽如摘要页面,看看“Which of these authors are endorsers”这句话链接的页面,你会很容易找到的。你最好能从你熟悉的人中间找到一个确认人,不认识也没有关系只要你能够让他认可你的专业背景,肯通过你即可。然后一旦你想要发出你的第一篇论文,填写完表单后arxiv就会自动的给你的邮箱发一封邮件,包含确认表单的链接。你只需要把这个邮件转发给确认人让他帮你确认即可。一旦收到确认信,你就可以在arxiv你所属的分类下贴论文了。按照arxiv的说明,论文贴出来后如果要修改,一定不能另外重复贴论文,而是要替换。另外,论文公布后,你也可以为论文添加所属的分类,但千万不要在别的类别下又发一次论文。按照arxiv的说明,如果你的论文是用TeX写的,最好是提交源文件。不过我也看到过只有PDF文件的论文,而微软的Word文件是不支持的。望采纳哦!
arxiv上的论文一般是用作发表手稿或者预出版的论文,标准符合康奈尔大学学术要求即可。
arxiv是一个提供学术文章在线发表的服务器,领域涵盖物理学、数学、非线性科学、计算机科学、定量生命科学、计量金融学和统计学。发表arXiv的论文不需要通过审核,因此被用作发表手稿或者预出版的论文,提交到arXiv的文章必须符合康奈尔大学学术标准。
arXiv(X依希腊文的χ发音,读音如英语的archive)是一个收集物理学、数学、计算机科学、生物学与数理经济学的论文预印本的网站,成立于1991年8月14日。
同行评价:
arXiv(3)尽管arXiv上的文章未经同行评审,但在2004年起采行了一套“认可”系统。在这套系统下,作者首先要得到认可,这种认可可能来自另一位具认可资格者的背书,或者依照某些内部规定而自动授予。
来自著名学术机关的作者通常会自动得到认可。包括诺贝尔物理奖得主布赖恩·约瑟夫森在内的十九位科学家曾抗议他们的部分文章被arXiv管理者退回,而其它文章则被强迫更改分类,依其见解,原因出在研究主题的争议性,或者是文章抵触了弦理论的正统观点。
由于arXiv上的文章多半都会投稿到学术期刊,作者对文章多半保持严谨态度。少部分文章则一直保持预印本的形式,其中包括一些极具影响力的作品,例如格里戈里·佩雷尔曼对庞加莱猜想的证明。arXiv上的民间科学家作品为数不多,通常被归入诸如“一般数学”(General Mathematics)等项下。
你需要一个发文认可。能够给你认可的人必须在arxiv上你所在的领域里发表一定的论文。最简单的办法是随便找一篇论文,尽如摘要页面,看看“Which of these authors are endorsers”这句话链接的页面,你会很容易找到的。你最好能从你熟悉的人中间找到一个确认人,不认识也没有关系只要你能够让他认可你的专业背景,肯通过你即可。然后一旦你想要发出你的第一篇论文,填写完表单后arxiv就会自动的给你的邮箱发一封邮件,包含确认表单的链接。你只需要把这个邮件转发给确认人让他帮你确认即可。一旦收到确认信,你就可以在arxiv你所属的分类下贴论文了。按照arxiv的说明,论文贴出来后如果要修改,一定不能另外重复贴论文,而是要替换。另外,论文公布后,你也可以为论文添加所属的分类,但千万不要在别的类别下又发一次论文。按照arxiv的说明,如果你的论文是用TeX写的,最好是提交源文件。不过我也看到过只有PDF文件的论文,而微软的Word文件是不支持的。望采纳哦!
不可以。arXiv是一个收集物理学、数学、计算机科学、生物学与数理经济学的论文预印本的网站,成立于1991年8月14日。arXiv原先挂在洛斯阿拉莫斯国家实验室,是故早期被称为“LANL预印本数据库”。后来arXiv属于康乃尔大学,并在全球各地设有镜像站点。尽管arXiv上的文章未经同行评审,但在2004年起采行了一套“认可”系统。
arXiv是一个收集物理学、数学、计算机科学与生物学的论文预印本的网站,始于1991年8月14日。简单来说,为了防止自己的idea在论文被收录前被别人剽窃,我们会将预稿上传到arvix作为预收录,因此这就是个可以证明论文原创性(上传时间戳)的文档收录网站。
预印本服务arXiv:
它是一个涉及物理、数学、非线性科学、计算机科学等领域的e-print服务平台,其内容遵循康奈尔大学的学科标准。该数据库收录有自 1991 年以来的 631,898 篇预印本文献。
除此之外,还包括American Physical Society,Institute of Physics 等12种电子期刊全文,但不包括非学术性信息,如新闻或政策性文章等。用户可通过学科、标题、作者或关键词检索所需文献。
arxiv上的论文一般是用作发表手稿或者预出版的论文,标准符合康奈尔大学学术要求即可。
arxiv是一个提供学术文章在线发表的服务器,领域涵盖物理学、数学、非线性科学、计算机科学、定量生命科学、计量金融学和统计学。发表arXiv的论文不需要通过审核,因此被用作发表手稿或者预出版的论文,提交到arXiv的文章必须符合康奈尔大学学术标准。
arXiv(X依希腊文的χ发音,读音如英语的archive)是一个收集物理学、数学、计算机科学、生物学与数理经济学的论文预印本的网站,成立于1991年8月14日。
同行评价:
arXiv(3)尽管arXiv上的文章未经同行评审,但在2004年起采行了一套“认可”系统。在这套系统下,作者首先要得到认可,这种认可可能来自另一位具认可资格者的背书,或者依照某些内部规定而自动授予。
来自著名学术机关的作者通常会自动得到认可。包括诺贝尔物理奖得主布赖恩·约瑟夫森在内的十九位科学家曾抗议他们的部分文章被arXiv管理者退回,而其它文章则被强迫更改分类,依其见解,原因出在研究主题的争议性,或者是文章抵触了弦理论的正统观点。
由于arXiv上的文章多半都会投稿到学术期刊,作者对文章多半保持严谨态度。少部分文章则一直保持预印本的形式,其中包括一些极具影响力的作品,例如格里戈里·佩雷尔曼对庞加莱猜想的证明。arXiv上的民间科学家作品为数不多,通常被归入诸如“一般数学”(General Mathematics)等项下。
你需要一个发文认可。能够给你认可的人必须在arxiv上你所在的领域里发表一定的论文。最简单的办法是随便找一篇论文,尽如摘要页面,看看“Which of these authors are endorsers”这句话链接的页面,你会很容易找到的。你最好能从你熟悉的人中间找到一个确认人,不认识也没有关系只要你能够让他认可你的专业背景,肯通过你即可。然后一旦你想要发出你的第一篇论文,填写完表单后arxiv就会自动的给你的邮箱发一封邮件,包含确认表单的链接。你只需要把这个邮件转发给确认人让他帮你确认即可。一旦收到确认信,你就可以在arxiv你所属的分类下贴论文了。按照arxiv的说明,论文贴出来后如果要修改,一定不能另外重复贴论文,而是要替换。另外,论文公布后,你也可以为论文添加所属的分类,但千万不要在别的类别下又发一次论文。按照arxiv的说明,如果你的论文是用TeX写的,最好是提交源文件。不过我也看到过只有PDF文件的论文,而微软的Word文件是不支持的。望采纳哦!