首页 > 职称论文知识库 > 未能发表论文的数学家

未能发表论文的数学家

发布时间:

未能发表论文的数学家

他证明了困扰数学界100年的庞加莱猜想! 他拒绝了数学界的诺贝尔奖-菲尔茨奖、拒绝了克雷研究所悬赏100万美元的千禧年七大悬而未决难题的大奖、拒绝了欧洲的顶级数学大奖、 拒绝了普林斯顿大学和麻省理工学院等著名美国大学的教授职位、拒绝了俄罗斯的院士,他不屑发表论文、不屑奖励、不屑职称、不愿作假。 他说他对于学界松懈的道德规范感到非常沮丧。“不是那些违背道德标准的人被看作异类,”他说,“而是象我这样的人被孤立起来。 他辞去了工作,隐姓埋名消失了! 他就是佩雷尔曼!

请看YouTube视频:

2006年8月22日,3000多名数学家齐聚马德里,参加第25届国际数学家大会。这次数学大会上要颁发数学界的诺贝尔奖-菲尔茨奖,费尔兹奖被认为是年轻数学家的最高荣誉,和阿贝尔奖均被称为数学界的诺贝尔奖。和以往的菲尔茨奖大会不同,对于这次大会,所有数学界的顶级数学家都迫切地想要见到一位年轻的俄罗斯数学天才,他证明了困扰数学界100年的庞加莱猜想!

25届国际数学家大会 2:31

庞加莱猜想最早是由法国数学家庞加莱提出的,是美国克雷数学研究所2000年悬赏的七大千禧年大奖难题之一。

亨利·庞加莱(Henri Poincaré),法国数学家、天体力学家、数学物理学家、科学哲学家。1854年4月29日生于法国南锡,1912年7月17日卒于巴黎。他的成就不在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,只是其中的一个。

庞加莱也是一个天才,搞数学研究的人都知道,庞加莱是最后一个数学全才,即指其为最后一个在数学所有分支领域都造诣深厚的数学家。庞加莱之前,最后一个数学全才是高斯。庞加莱有句名言: 数学家是天生的,而不是造就的 。

一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”

庞加莱精通数学、天体力学、物理、哲学,对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人并为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。

物理学家洛伦兹和数学家庞加莱都已经在爱因斯坦之前已经做出了相对论的大部分结果,尽管庞加莱做了相对论的许多演讲,但他一直不接受和肯定爱因斯坦的相对论。庞加莱去世时,爱因斯坦也拒绝写纪念文章,但最后爱因斯坦在1921年的讲演中公正地肯定了庞加莱对相对论的贡献。爱因斯坦评价庞加莱为相对论先驱之一,他这么说:洛伦兹已经认出了以他命名的变换对于麦克斯韦方程组的分析是基本的,而庞加莱进一步深化了这个远见。

1904年,他在原有猜想的基础上提出了“广义庞加莱猜想”,表述如下:

每个闭n维流形,如果与n维球面Sn具有相同的同伦形,则同胚于Sn。

对于n=3的三维流形,即:

任一单连通的、封闭的三维流形与三维球面同胚。

简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。粗浅的比喻即为:如果我们伸缩围绕一个柳橙表面的橡皮筋,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮筋以适当的方向被伸缩在一个甜甜圈表面上,那么不扯断橡皮筋或者甜甜圈,是没有办法把它不离开表面而又收缩到一点的。我们说,柳橙表面是“单连通的”,而甜甜圈表面则不是。

该猜想是一个属于代数拓扑学领域的具有基本意义的命题,对“庞加莱猜想”的证明及其带来的后果将会加深数学家对流形性质的认识,甚至会对人们用数学语言描述宇宙空间产生影响,对于一维与二维的情形,此猜想是对的,现在已经知道,它对于任何维数都是对的。

庞加莱猜想让许多数学家为之疯狂,为之抑郁、为之崩溃。耗尽了一生,以失败而告终!

20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特海(Whitehead)对这 庞加莱猜想个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。但是失之东隅、收之桑榆, 在这个过程中,他发现了三维流形的一些有趣的特例,这些特例被称为怀特海流形。

30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。

帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn's Lemma)而闻名于世,喜好舞文弄墨的数学家约翰·米尔诺(John Milnor)曾经为此写下一段打油诗:

他和哈肯为破解庞加莱猜想展开了激烈的竞争,帕帕拒绝了普林斯顿大学的教授职位(即使答应他只要工作3个小时),每天早上8点半开始研究,一直到晚上。中午半个小时吃个饭。废寝忘食!当哈肯宣布证明了庞加莱猜想后,本来抑郁的帕帕仿佛生命被抽空了,幸好最后是一场虚惊。哈肯在准备提交论文时发现了错误,这次失败使哈肯换上了暴食症。他后来说换上了“庞加莱猜想综合征”。直到他转到四色问题并证明,才治愈了。

然而,帕帕这位聪明的希腊拓扑学家,却最终倒在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。

事实上,三维庞加莱猜想在整个体系中是比较难证明的,1960年,斯梅尔(S. Smale)以及后续的数学家证明了五维和五维以上庞加莱猜想的正确性;1982年,美国数学家弗里德曼(M. Friedman)和英国数学家唐纳森(S. K. Donaldson)证明了四维庞加莱猜想;只剩下三维庞加莱猜想没有完成。

斯梅尔(Smale)在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?

1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。

1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维空间和五维以上的证明,立时引起轰动。 斯梅尔由此获得1966年菲尔茨奖。

1983年,美国数学家福里德曼(Freedman)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。

拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(Thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。

美国的数学家汉密尔顿(Richard Hamilton)提出“瑞奇流”(Ricci flow),Ricci流是以意大利数学家里奇(Gregorio Ricci)命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。Ricci流成为了解决庞加莱猜想提供了新的工具。但汉密尔顿未能走得更远,他的方法产生了“奇点”——密度无穷大的点。如何处理奇点,成为解决庞加莱猜想最关键的部分。

2002年11月12日,十多位数学家收到了一封信

如果是一般人说自己证明了,这些顶级数学家懒得理这些信件。但这次不一定,新的署名是格里戈里佩雷尔曼。1982年16随的佩雷尔曼代表苏联参加国际数学奥林匹配竞赛,以满分成绩获得金奖。他的解题速度非常快,别人用许多页,他只要几行。 1994年用3页纸就解决了过去22年无人能解决的“灵魂猜想”而一举成名!

1995年接触到“庞加莱猜想”后,佩雷尔曼淡淡地说道:“我能解决这个问题。”。然后回到了苏联的斯捷克洛夫研究所闭门研究,他每次去超市购物,买的永远都是黑面包、通心粉和酸奶。靠着留美期间积攒的几万美元,他和母亲就这么生活着。邻居很少见到他,外界也失去了他的信息,整整七年,他就像从这个世界消失一般。

他根本不稀罕在某某期刊上发表论文,只是在这个论文网上上提交了文章。但没有人看懂他的这篇不是正式发表的文章。佩雷尔曼于2003年在arXiv网站粘贴了自己的第二篇文章,在2003年4月期间,佩雷尔曼应邀去美国麻省理工做讲座

讲座上他向满教室的数学家展示了他的证明过程

但90分钟下来,似乎只有他一人真正懂得证明过程

但尽管这样,教室里的数学专才们仍是很认真并充满尊敬地听完了讲座

这时候,麻省理工学院热情地向他伸出了终身教授的橄榄枝,但佩雷尔曼感到很羞辱。他很生气自己对“庞加莱猜想”的贡献被外人当作是评判他是否具备终身教授资格的标准。还是和之前一样,除了数学本身,没有人可以评价他。

到2003年的7月,佩雷尔曼已经在网上公布了他的后两篇文章。两年内,佩雷尔曼行云流水般在arXiv网站上粘贴了第二、三篇论文。数学家们开始艰难地阅读逐行解读他的论文,至少有3个核心团队独立进行核实,花了3年时间,然后硬是把佩雷尔曼最初的3篇论文变成了数百页的标注解析版,然后,2006年,大家表示,亲,终于可以看懂了。

但佩雷尔曼却拒绝领奖,甚至克雷数学研究所所长詹姆斯·卡尔森亲上门劝说,他也照样拒绝!

面对众多数学同行一辈子可望而不可及的至高荣誉,佩雷尔曼显得不屑一顾,他似乎不愿被世俗的喧嚣干扰他研究的净土

此后,佩雷尔曼不再从事数学研究,并又失踪了。

一个无法理解的灵魂,不为名,不为利,只为自己喜欢的事情,他是一个传奇,也是一个神话,他就是格里戈里·佩雷尔曼。

在列宁格勒大学学习期间,佩雷尔曼和周围同学保持着良好关系,会耐心地给同学讲解如何做题。但他决不会在考试时帮助同学作弊,因为他信奉“每个人都应当自己解答自己面对的问题。”

从我们的世界观来看,他就是一个普通的不能在通的人,是一个可以被忘记,可以被忽略的人。第一没工作;第二没钱;第三没媳妇儿;第四书呆子;第五没形象;第六邋遢;第七没朋友。

他沉默寡言,彬彬有礼,而且循规蹈矩,几乎没有朋友,如果想与他交朋友,他和社会格格不入,他讨厌条条框框。他曾经有一分研究所的工作,因为研究所要求每年发表的论文数量,他认为这不是再做数学,后来辞职不干了。

撬动世界的数学隐士:格里高利·佩雷尔曼

一个无法理解灵魂---格里戈里·佩雷尔曼

他横扫数学大奖却不屑一顾,把自己活成了数学界的谜

佩雷尔曼:看破名利的数学真隐士

破解庞加莱猜想 俄罗斯科学家恐怖到什么程度?

追寻宇宙的形状--庞加莱猜想

一个无法理解灵魂---格里戈里·佩雷尔曼

01 以往人们提起“民科”的时候,往往会嗤之以鼻,认为这些“民科”就是一些胡思乱想、未经实践的妄想科学家,然而,凡事都有例外,这里有一个人,他是一位真正的“民科”,但他对中国数学的贡献,却足以载入史册,他就是陆家羲。 陆家羲1935年出生于上海的一个穷苦市民家庭,父亲是销售酱油的小商贩,母亲给人缝洗衣服补贴家用,他的三个兄姐都因贫病夭折,他在学校里读书勤奋,成绩优秀,初中毕业前父亲去世,15岁到一家五金店当学徒,工作之余仍不断自学,在一次抗洪斗争中,陆家羲英勇抢险,获得表彰,1951年经短期培训到哈尔滨电机厂任统计员,期间仍然坚持自学高中数学、物理、俄语等课程,1957年被东北师范大学物理系录取。 大学期间,陆家羲很喜欢数学,自修了近世代数、初等数论、差集理论、有限几何、0-1矩阵以及正交拉丁方等理论,不过,真正让陆家羲下定决心走上研究数学这条路的是《数学方法趣引》这本书。 这本书里最让陆家羲感兴趣的是寇克曼女生问题,书上写道“这是非常困难的问题”、“还在未解决之列”、“至今还没法证明”.....一共6页的介绍完全吸引了这个年轻人的目光,从而为他打开了数学的大门,引导他走上了研究数学的道路。 02 1961年夏天,陆家羲从东北师范大学物理系毕业,被分配到了包头钢铁学院任教。踌躇满志的陆家羲对未来充满希望。同年12月30日,陆家羲将自己的第一篇学术论文《寇克曼系列和斯坦纳系列制作方法》寄给中科院数学研究所,然而,陆家羲等到最终的结果却是论文被寄回来和一句轻飘飘的话“如果结果是新的,可以投稿”。陆家羲没有气馁,继续完善他的论文,在资料匮乏的包头,陆家羲就利用假期自费到北京查阅图书馆资料,经过不懈努力,陆家羲解决了“寇克曼系列”。 然而,陆家羲几经投稿,他的论文始终没有被发表出去,甚至他费尽心血写出来的论文被拒稿后直接评价为“无价值”。 在陆家羲努力写论文的这段时间里,他被指责为走“白专道路”,有“成名成家”的思想。于是他被调来调去,最后,被送进了干校,成了被教育的对象。 陆家羲对数学史上有名的“寇克满问题”,在 1965 年就已成功证明,是世界上最早证明这一问题的数学家,然而当时无处发表论文这一问题深深困扰着陆家羲。最终,“最早证明寇克满问题”这一荣誉桂冠被外国数学家查德哈里(R.Chaudhyri)和威尔逊(R.M.Wilson)摘走,因为他们在1971年最先公布了这一结果。 03文革开始后,陆家羲并未放弃数学研究。为了不让造反派组织找自己的麻烦,陆家羲想出了 一个“两全其美”的办法:自己成立一个战斗队,自任总指挥。尽管这个“海燕战斗队”没进行 过什么“革命行动”,但也没惹出什么大问题。这使得陆家羲这个“光杆司令”有更多的时间, 躲在宿舍里静静做研究。在这期间,陆家羲在同志的撮合下,和临河市狼山中心医院医生张淑琴结了婚。张淑琴是位温柔、贤惠的女人,尽管对丈夫所研究的领域知之甚少,但她成了陆家羲最好的 倾诉对象,不但承包了所有家务,还积极宣传丈夫的研究工作,并争取丈夫同事、朋友和家人的支持。不久之后,陆家羲的女儿也出世了,女儿的到来给陆家羲灰暗的生活增添了一抹鲜丽的色彩。 四人帮”被粉碎后,科学的春天随之到来。1977 年 9 月 4 日,备受鼓舞的陆家羲又将题为 《k=5,λ=1,v=141 的平衡不完全区组》的论文修改稿寄往《数学学报》。1979 年 4 月,陆家羲借到了于 1974 年和 1975 年在美国出版的世界组合数学方面的权威刊物 《组合论杂志》。在杂志上陆家羲意外发现,寇克曼女生问题和推广到四元组系列情况,已于 1971 年和 1972 年在国外被人宣布解决了,这比他第一次投稿的时间整整晚了 10 年!这个令人痛心疾首的发现,使陆家羲的心情跌到了冰点。往者不可谏,来者犹可追,陆家羲并未因此倒下,而是鼓起更大的精神,向另一座组合数学高峰——斯坦纳系列大集发起了冲击。 在这之后,陆家羲开始了一生中最为紧张的工作阶段,甚至在春节的时候也顾不上休息,让妻子带着孩子回娘家过年。在陆家羲于 1979 年 12 月写下的日记里,有27天提到的都是有关数学研究、加班工作的内容。妻子担心陆家羲的身体,劝他晚饭后出去散步,但陆家羲却很少听话。  从 1979 年 2 月 24 日到 7 月 20 日,陆家羲先后向《数学学报》投寄了三篇论文,其中《可分解平衡不完全区组设计的存在性理论》发表在 1984 年出版的第 4 期《数学学报》上,这是他在国内杂志上发表的第一篇论文,也是最后一篇论文。 1981 年 9 月 18 日起,国际组合论界权威性刊物《组合论杂志》陆续收到陆家羲题为“论不相交斯坦纳三元系大集”[18,19]的系列文章,这一系列震惊了西方数学界。加拿大著名数学家、多伦多大学教授门德尔逊说:“这是二十多年来组合设计中的重大成就之一。”加拿大多伦多大学校长斯特兰格威为此致信包头市第九中学校长:“亲爱的先生,门德尔逊教授说,包九中的陆家羲是闻名西方的从事组合理论的数学家,并且说,有必要应同意把他调到大学岗位。他要我告诉你们,这样的调动对发展中国的数学具有重要的作用,而且希望所表达的意愿能获许可。“这是第一次,陆家羲的研究成果得到权威认可。 陆家羲创造性地利用前人的成果, 应用递归法 ,独创了5个各具特色的辅助设计和3个相关大集 ,依据6篇论文的 55 个定理或引理 ,一举整体解决了大集问题,这是现代区组设计理论的一项重大成就 。 04陆家羲学的是物理, 没有进入数学界,20多年无人同他进行学术交流,完全是孤军奋战 ,他是中国的一个无名小卒, 无法得到学界的认识和社会的理解 。现代组合数学大体在1960年代形成, 陆家羲的工作基本与此同步, 但却无法进入学术共同体。陆在非常艰难的条件下从事研究, 他几乎得不到经费, 而查找、购买和复印参考文献又费时、费力、费钱.。他在假期来到北京,住进小店 ,到图书馆读新版组合数学、图论的外文专著和期刊, 钱不够用了 ,晚上就住在车站广场 ,同南来北往的农民们一样,和衣而眠。 在这种艰苦的条件下,陆家羲的成果震惊了世界,但他的身体却垮了。 陆家羲是物理教师, 一周课时多而任务重 ,只有到了夜晚 ,才能静下心来做研究 , 往往熬到夜里一两点钟才睡觉.他学英文、练打字,大集定理近200页打印稿, 一夜才能打印 4 页 .过度的劳累使其心脏受到损害。在中国数学学会第四次全国代表大会上,除了报告自己的工作外,陆家羲还宣布,对于“斯坦纳系列”问题中的6个例外值,他已找到解决途径。不料,在刚向外界透露自己新研究计划之后, 这位积劳成疾的中年科学家,因心脏病突发,猝然与世长辞,临终前没有留下一句遗言,终年48岁。 陆家羲研究的两个问题在组合设计中带有基本性 ,这是一百多年未能解决 、形成且发展的瓶颈, 而一旦攻克 ,陆家羲解决问题的路径 、方法和结果便成为重要借鉴 ,在他和他以后的时代 ,在中外学界的共同努力下,组合设计的大集研究便获得了长足发展 。 陆家羲,这个数学界的”无名小卒“,成就和去世却震动了国内数学界。数学家、中国科学院院士吴文俊在了解到陆家羲的 情况之后曾表示,“对陆家羲的生平遭遇、学术成就与品质为人都深有感触。”  1989 年 3 月,张淑琴代表陆家羲参加了在北京人民大会堂隆重举行的“1987 年国家自然科学奖颁奖大会”,接受了我国自然科学界的最高荣誉——国家自然科学奖一等奖。 可惜,陆家羲再也没有机会享受这荣誉的一刻了!

新的科学理论本来是衡量它有用或无用,现在却用它来衡量提出人身份的高低卑贱!真是一种科学政策的讽刺。

皮埃尔·德·费马是17世纪的法国杰出数学家,他在数论、解析几何、概率论等方面都取得了辉煌的成就,他在数学方面的成就可以说超过了同时期任何一位法国数学家。他的费马大定理让后人忙了300多年,并创生出很多新的数学领域。

更让人钦佩的是,费马的本职工作是律师、议员,数学只是他的业余爱好。费马是业余数学家的王者,他有着“业余数学家”之王的称号。

有人会问,费马是不是属于民间科学家?你完全可以认为他是民科,不过需要认识到这里讲的民科与郭英森那样的民科是有不同的。

早期人类摸索自然规律的时候,并没有科学家这个职业,不论是官方的还是民间的。人们往往是在生产生活中总结、发现出规律。后来由于分工产生了学派,学派的掌门人也往往不是官方的身份。那时候做出科学发现的人,很多就是“高手在民间”那样的存在。

费马很成功,但他采用的研究方法现在看起来也是不可取的。他虽然经常和当时的数学家保持着书信交流,但他不去发表论文,他喜欢做批注,著名的费马大定理就是后人在他给丢番图做的批注中找到的。

今天我们提到的很多民科,他们的民科称号不同于费马的民科称号。称他们为民科其实是对他们的一种客套,更贴切的称呼应该是“江湖科学爱好者”或者“科学妄想家”。他们往往没有接受过正规专业的教育,却妄想着解决了最前沿、最根本的科学问题。

数学家发表的论文

在1965年5月,陈景润发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,陈景润终于攻克了“哥德巴赫猜想”这一世界数学之谜,这一世界数学 “悬案”终于被陈景润所破译,皇后王冠上的明珠终于被陈景润所摘取。1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。

应该就是欧拉吧,他发表的文章的确很多

在1965年5月,发表论文《表达偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”。

主要著作

《算术级数中的最小素数》《表达偶数为一个素数及一个不超过两个素数的乘积之和》《数学趣味谈》《组合数学》《哥德巴赫猜想》《初等数论》 。

陈景润在福州英华中学读书时,一位来自清华大学的数学老师给同学们讲了一道数学难题。大约200多年前,哥德巴赫提出了“任何一个偶数均可表示两个素数之和”的理论。

但是哥德巴赫数学家一生也没有证明出来这个猜想,哥德巴赫为了证实这一猜想,还曾给俄国的数学家欧拉写信,希望欧拉能够帮助他证明这个猜想。不幸的是,欧拉直到离世,也未能证明出这一猜想。

陈景润听完这一课后,对哥德巴赫猜想萌发了浓厚的兴趣。哥德巴赫猜想如同一块磁石般,紧紧吸引着陈景润日后的专研生涯。

陈景润为了证实哥德巴赫猜想,他自学了英语、德语,乃至俄语。无论酷暑还是寒冬,陈景润都要花上十几个小时研究哥德巴赫猜想。陈景润证实哥德巴赫猜想时,光演算的草稿纸都装了几麻袋。

1957年,陈景润被调往中科院工作,经过陈景润数十年的钻研,他将研究哥德巴赫猜想的成果写入了论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》中。

《大偶数表示一个素数及一个不超过2个素数的乘积之和》一经发表后,立马引起了国际数学界人士的重视。英国数学家哈伯斯坦和德国数学家黎希特高度评价了陈景润哥德巴赫猜想,并将陈景润哥德巴赫猜想研究成果写入书中,给其命名为陈氏定理。

扩展资料:

陈景润的婚姻故事

1977年,陈景润因病住进309医院,见到了从武汉军区刚派来医院进修的由昆。过去陈景润连女人名字的边都不沾,连句话都不说的人,此次年近半百的陈景润见到由昆,眼睛一亮,亲切地和由昆打招呼,话也多了。

后来由昆被派到陈景润的病房当值班医生。这样,接触的机会多了,每次由昆一出现,陈景润都特别高兴。一天,陈景润关切地问由昆,家住在哪?有没有男朋友、有没有成家?由昆毫不设防,她便心直口快地说:“没有,没有,还早着呢。”

以后,由昆也十分关心这位中国数学家,斗转星移,彼此产生了爱情。终于有一天,由昆对身边的数学家提出了疑问:“你是大数学家,有好多人崇拜你,你为什么偏偏选中我呢?”面对心爱的姑娘,陈景润急得满脸通红,他不会年轻人的山盟海誓,

许久,陈景润才说出一句话:“我想过了,如果你不同意,我这一辈子就不结婚了。”正是这一句,使由昆不再犹豫,她坦然接受陈景润的感情,并且相依相扶,共同走过了16个春秋。

他们在组织的帮助下结婚了。从此这位被称为“痴人”和“怪人”的数学家陈景润有了一个温暖的家。

参考资料来源:百度百科_陈景润

保罗·埃尔德什(1913-1996),数学家,犹太人,一生发表学术论文1475篇(部分与他人合写)

未来科学家期刊评职称能不能用

期刊上发表的论文可以评职称。文章是所有文字表达形式的总称,散文、诗歌、日记、论文等都可以成为文章。

期刊,也称杂志,是指有固定名称、每期版式基本相同、定期或不定期的连续出版物。期刊是发表学术论文的主要渠道之一,但并非所有期刊都是刊登学术论文的,有些期刊主要发表新闻报道、评论、故事、文艺作品、科普文章等。

注意事项:

2021年10月8日,为防止未成年人沉迷网络游戏,维护未成年人合法权益,文化和旅游部印发通知,部署各地文化市场综合执法机构进一步加强网络游戏市场执法监管。据悉,文化和旅游部要求各地文化市场综合执法机构会同行业管理部门。

重点针对时段时长限制、实名注册和登录等防止未成年人沉迷网络游戏管理措施落实情况,加大辖区内网络游戏企业的执法检查频次和力度;加强网络巡查,严查擅自上网出版的网络游戏;加强互联网上网服务营业场所、游艺娱乐场所等相关文化市场领域执法监管,防止未成年人违规进入营业场所。

赢未来期刊不一定能评职称。赢未来期刊能否评职称,要看它是什么级别,什么组织的刊物。如果果政府办的省级规范化的刊物,评职称完全可以。如果这一刊物是某企业办的,或者几个人私自创刊,专门打着评职称的旗号,为准备评职称的人员出专刊,其目的是收钱,正规刊物是不收费的。这样的刊物评职称,不行。

期刊的含义

期刊,也称杂志,是指有固定名称、每期版式基本相同、定期或不定期的连续出版物。它的内容一般是围绕某一主题、某一学科或某一研究对象,由多位作者的多篇文章编辑而成,用卷、期或年、月顺序编号出版。其实杂志属于期刊,期刊包含杂志,期刊的含义更大。

发表论文数最多的数学家

社会在不断的进步和发展着,其中,科学便是一大助力。科学是一个很有意义的存在,它会以证据为前提,让人类得知一些神奇的认知。“科学家”这个词,令我们敬佩又膜拜!人类知识的进化,时代经济的发展都离不开科学家们的辛劳科研。接下来民族文化就为大家详细介绍为社会做了巨大贡献的世界十大科学家,一起来看看! 莱昂哈德·欧拉,瑞士数学家、自然科学家。18世纪最优秀的数学家,也是历史上最伟大的数学家之一, 欧拉于1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。 欧拉是历史上最多产的数学家。瑞士自然科学基金会组织编写《欧拉全集》,计划出84卷,每卷都是4开本(一张报纸大小)。如果按每本300页计算,欧拉从18岁开始每天得写1张半纸。然而这些只是遗存的作品,欧拉的手稿在1771年彼得堡大火中还丢失了一部分。欧拉曾说他的遗稿大概够彼得堡科学院用20年。但实际上在他去世后的第80年,彼得堡科学院院报还在发表他的论着。 “天才在于勤奋,欧拉就是这条真理的化身。”曾有专家表示,“很多科学家都很勤奋,而欧拉最为典型。他失明后的十多年都是在完全看不见的情况下作研究。欧拉心算能力很强,可以通过口述让别人记录。有一次欧拉的两个学生算无穷级数求和,算到第17项时两人在小数点后第50位数字上发生争执,欧拉这时进行心算,迅速给出了正确答案。” 欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。 2007年,为庆祝欧拉诞辰300周年,瑞士政府、中国科学院及中国有关部于2007年4月23日下午在北京的中国科学院文献情报中心共同举办纪念活动,回顾欧拉的生平、工作以及对现代生活的影响。 欧拉是史上发表论文数第二多的数学家,全集共计75卷;他的纪录一直到了20世纪才被保罗·埃尔德什打破。后者发表的论文达1525篇,著作有32部。 据说,欧拉是因为用肉眼直接观察太阳,导致双眼先后失明。但在人生最后7年(1765年至1771年),欧拉的双目完全失明,他还是以惊人的速度产出了生平一半的著作。 欧拉在他的时代,产量之多,无人能及。欧拉实际上支配了18世纪至今的数学;对于当时新数学分支微积分,他推导出了很多结果。很多数学的分枝,也是由欧拉所创或因而有了极大的进展。

欧拉是科学史上著作最多的一位杰出的数学家,称为数学界的莎士比亚。据统计他那不倦 的一生,共写下了886部书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和 力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%。彼得堡科学院为了整理他 的著作,足足忙碌了47年! 以下是他的简介: 欧拉,L.(Euler,Leonhard)1707年4月15日生于瑞士巴塞尔;1783年9月18日卒于俄国圣彼得堡.数学、力学、天文学、物理学. 欧拉的祖先原来居住在瑞士东北部博登湖(康斯坦斯湖)畔的小城——林道.16世纪末,他的曾祖父汉斯·乔治·欧拉(HansGeorg Euler)带领全家顺莱茵河而下,迁居巴塞尔.这个家族几代人多为手艺劳动者.欧拉的父亲保罗·欧拉(Paul Euler)则毕业于巴塞尔大学神学系,是基督教新教的牧师.1706年,保罗与另一位牧师的女儿玛格丽特·勃鲁克(Margarete Brucker)结婚.翌年春,欧拉降生.1708年,保罗举家迁居巴塞尔附近的村庄——里亨(Riehen).欧拉就在这田园静谧的乡村度过他的童年. 欧拉的父亲很喜爱数学.还在大学读书时,他就常去听雅格布·伯努利(Jakob Bernouli)的数学讲座.他亲自对欧拉进行包括数学在内的启蒙教育,并盼望儿子成为教门的后起之秀.贤惠的母亲为了使欧拉及时受到良好的学校教育,把他送到巴塞尔外祖母家生活了几年,入那里的一所文科中学念书.可是,这所学校不教数学.勤勉好学的欧拉独自随业余数学家J.伯克哈特(Bu-rckhart)学习.欧拉聪敏早慧,酷爱数学.他曾下苦功研读C.鲁道夫(Rudolf)的《代数学》(Algebra,1553)达数年之久.1720年秋,年仅13岁的欧拉进了巴塞尔大学文科.当时,约翰·伯努利(Johann Bernoulli)任该校数学教授.他每天讲授基础数学课程,同时还给那些有兴趣的少数高材生开设更高深的数学、物理学讲座.欧拉是约翰·伯努利的最忠实的听众.他勤奋地学习所有的科目,但仍不满足.欧拉后来在自传中写道:“……不久,我找到了一个把自己介绍给著名的约翰·伯努利教授的机会.……他确实忙极了,因此断然拒绝给我个别授课.但是,他给了我许多更加宝贵的忠告,使我开始独立地学习更困难的数学著作,尽我所能努力地去研究它们.如果我遇到什么障碍或困难,他允许我每星期六下午自由地去找他,他总是和蔼地为我解答一切疑难……无疑,这是在数学学科上获得成功的最好的方法.”约翰的两个儿子尼吉拉·伯努利第二(Nikolaus Bernoulli II)、丹尼尔·伯努利(Daniel Bernoulli),也成了欧拉的挚友.1722年夏,欧拉在巴塞尔大学获学士学位.翌年,他又获哲学硕士学位.但授予这一学位是在1724年6月8日的会议上正式通告的.此前,他为了满足父亲的愿望,于1723年秋又入神学系.他在神学、希腊语、希伯莱语方面的学习并不成功.他仍把大部分时间花在数学上.尽管欧拉后来彻底放弃了当牧师的念头,但他却终生虔诚地信奉基督教.欧拉18岁开始其数学研究生涯.1726年,他在《博学者》(Acta eruditorum)上发表了关于在有阻尼的介质中的等时曲线结构问题的文章.翌年,他研究弹道问题和船桅的最佳布置问题.后者是这年巴黎科学院的有奖征文课题.欧拉的论文虽未获得奖金,却得到了荣誉提名.此后,从1738年至1772年,欧拉共获得巴黎科学院12次奖金.在瑞士,当时青年数学家的工作条件非常艰难,而俄国新组建的圣彼得堡科学院正在网罗人才.1725年秋,尼古拉第二和丹尼尔应聘前往俄国,并向当局力荐欧拉.翌年秋,欧拉在巴塞尔收到圣彼得堡科学院的聘书,请他去那里任生理学院士助理.然而,故土难离.欧拉开始用数学和力学方法研究生理学,同时仍期望在巴塞尔大学找到职位.恰好,这时该校有一位物理学教授病故,出现空席.欧拉向学校教授评议会递交了“论声音的物理学原理”(Dissertatio physica de sono,1727)的论文,争取教授资格.在激烈的竞争中,未满20岁的欧拉落选了.1727年4月5日欧拉告别故乡,5月24日抵达圣彼得堡.从那时起,欧拉的一生和他的科学工作都紧密地同圣彼得堡科学院和俄国联系在一起.他再也没有回过瑞士.但是,出于对祖国的深厚感情,欧拉始终保留了他的瑞士国籍.欧拉到达圣彼得堡后,立即开始研究工作.不久,他获得了在真正擅长的领域从事研究工作的机会.1727年,他被任命为科学院数学部助理院士.他撰写的关于圣彼得堡科学院学术会议情况的调查报告,也开始在《圣彼得堡科学院汇刊(1727)》(Comme-ntarii Academiae scientiarum imperialis Petropolitanae)第二卷(St.Petersburg,1729)上发表.尽管那些年俄国政局动荡,圣彼得堡科学院还处在艰难岁月之中,但周围的学术气氛对发展欧拉的才华特别有利.那里聚集着一群杰出的科学家,如数学家C.哥德巴赫(Goldbach)、丹尼尔·伯努利,力学家J.赫尔曼(Hermann),三角学家F.梅尔(Maier),天文学家和地理学家J.N.德莱索(Delisle)等.他们同欧拉的个人情谊与共同的科学兴趣,使得彼此在科研工作中配合默契、相得益彰.1731年,欧拉成为物理学教授.1733年,丹尼尔·伯努利返回巴塞尔后,欧拉接替了他的数学教授职务,担负起领导科学院数学部的重任.这对亲密的朋友,以后通信40多年,促进了科学的竞争和发展.是年冬,欧拉和科学院预科学校的美术教师、瑞士画家G.葛塞尔(Gsell)的女儿柯黛林娜·葛塞尔(Katharina Gsell)结婚.翌年,其长子约翰·阿尔勃兰克(Johann Albrecht)降生.1740年,卡尔(Karl)出世.恬静、美满的家庭生活伴随着欧拉科学生涯的第一个黄金时期.还在圣彼得堡科学院建成之初,俄国政府就责成它除了进行纯科学研究之外,还要培养、训练俄国科学家.为此,科学院建立了一所大学和预科学校,大学办了近50年,预科学校一直办到1805年.俄国政府还委托科学院制定俄国的地图,解决各种具体技术问题.欧拉积极参与并领导了科学院的这些工作.从1733年起,他和德莱索成功地进行了地图研究.从30年代中期开始,欧拉以极大的精力研究航海和船舶建造问题.这些问题对于俄国成为海上强国,是具有重大意义的.欧拉是各种技术委员会的成员,又担任科学院考试委员会委员.他既要为科学院的期刊撰稿、审稿,还要为附属大学、预科学校准备讲义、开设讲座,工作十分忙碌.然而,他的主要成就是在数学研究上.在圣彼得堡的头14年间,欧拉以无可匹敌的工作效率在分析学、数论和力学等领域作出许多辉煌的发现.截止1741年,他完成了近90种著作,公开发表了55种,其中包括1936年完成的两卷本《力学或运动科学的分析解说》(Mechanica sive motus scie-ntia analytice exposita).他的研究硕果累累,声望与日俱增,赢得了各国科学家的尊敬.欧拉从前的导师约翰·伯努利早在1728年的信中就称他为“最善于学习和最有天赋的科学家”,1737年又称他是“最驰名和最博学的数学家”.欧拉后来谦逊地说:“……我和所有其他有幸在俄罗斯帝国科学院工作过一段时间的人都不能不承认,我们应把所获得的一切和所掌握的一切归功于我们在那儿拥有的有利条件.”由于过度的劳累,1738年,欧拉在一场疾病之后右眼失明了.但他仍旧坚韧不拔地工作.他热爱科学,热爱生活.他非常喜欢孩子(他一生有过13个孩子,除了5个以外都夭亡了).写论文时往往膝上抱着婴儿,大一点的孩子则绕膝戏耍.他酷爱音乐.在撰写艰深的数学论文时,他的“那种轻松自如是令人难以置信的”.1740年秋冬,俄国政局再度骤变,形势极不安定.欧拉此时与圣彼得堡科学院粗鲁、专横的顾问J.D.舒马赫尔(Schuma-cher)也产生了磨擦.为了使自己的科学事业不受损害,欧拉希望寻求新的出路.恰好这年夏天继承了普鲁士王位的腓特烈(Frederick)大帝决定重振柏林科学院,他热情邀请欧拉去柏林工作.欧拉接受了邀请.1741年6月19日,欧拉启程离开圣彼得堡,7月25日抵达柏林.柏林科学院是在G.W.莱布尼茨(Leibniz)的大力推动下于1700年创立的,后来它衰落了.欧拉在柏林25年.那时,他精力旺盛,不知疲倦地工作.他鼎力襄助院长P.莫佩蒂(Maupe-rtuis),在恢复和发展柏林科学院的工作中发挥了重大作用.在柏林,欧拉任科学院数学部主任.他是科学院的院务委员、图书馆顾问和学术著作出版委员会委员.他还担负了其他许多行政事务,如管理天文台和植物园,提出人事安排,监督财务,以及历书和地图的出版工作.当院长莫佩蒂外出期间,欧拉代理院长.1759年莫佩蒂去世后,虽然没有正式任命欧拉为院长,但他实际上一直领导着科学院的工作.欧拉和莫佩蒂的友谊,使欧拉能对柏林科学院的一切活动,尤其是在选拔院士方面,施加巨大影响.欧拉还担任过普鲁士政府关于安全保险、退休金和抚恤金等问题的顾问,并为腓特烈大帝了解火炮方面的最新成果(1745年),设计改造费诺运河(1749年),曾主管普鲁士皇家别墅水力系统管系和泵系的设计工作.他和德国许多大学的教授保持广泛联系,对大学教科书的编写和数学教学起了促进作用.在此期间,欧拉一直保留着圣彼得堡科学院院士资格,领取年俸.受该院委托,欧拉为其编纂院刊的数学部分,介绍西欧的科学思想,购买书籍和科学仪器,同时推荐研究人员和课题.他在培养俄国的科学人才方面起了重大的作用.他还经常把自己的学术论文寄往圣彼得堡.他的论文约有一半是用拉丁文在圣彼得堡发表的,另一半用法文在柏林出版.另外,他还先后当选为伦敦皇家学会会员(1749年)、巴塞尔物理数学会会员(1753年)及巴黎科学院院士(1755年).柏林时期是欧拉科学研究的鼎盛时期,其研究范围迅速扩大.他与J.K.达朗贝尔(D’Alembert)和丹尼尔·伯努利展开的学术竞争奠定了数学物理的基础;他与A.克莱罗(Clairaut)和达朗贝尔一起推进了月球和行星运动理论的研究.与此同时,欧拉详尽地阐述了刚体运动理论,创立了流体动力学的数学模型,深入地研究了光学和电磁学,以及消色差折射望远镜等许多技术问题.他写了大约380篇(部)论著,出版了其中的275种.内有分析学、力学、天文学、火炮和弹道学、船舶建造和航海等方面的几部巨著,其中1748年出版的两卷集著作《无穷分析引论》(Introdu-ctio in analysin infinitorum)在数学史上占有十分重要的地位.欧拉参加了18世纪40年代关于莱布尼茨和C.沃尔夫(Wolff)的单子论的激烈辩论.欧拉在自然哲学方面接近R.笛卡儿(Descartes)的机械唯物主义,他和莫佩蒂都是单子论的“劲敌”.1751年,S.柯尼格(K nig)以耸入听闻的新论据,发表了几篇批评莫佩蒂的“最小作用原理”的文章.欧拉翌年撰文反驳,并同莫佩蒂用更浅显的语言来解释最小作用原理.除了这些哲学和科学的争论以外,对于数学的发展来说,欧拉参加了另外三场更重要的争论:与达朗贝尔关于负数对数的争论;与达朗贝尔、丹尼尔·伯努利关于求解弦振动方程的争论;与J.多伦(Dollond)关于光学问题的争论.1759年莫佩蒂去世后,欧拉在普鲁士国王的直接监督之下负责柏林科学院的工作.欧拉同腓特烈大帝之间的关系并不融洽.1763年,当获悉腓特烈想把院长的职务授予达朗贝尔后,欧拉开始考虑离开柏林.圣彼得堡科学院立即遵照卡捷琳娜(Catherine)女皇旨意寄给欧拉聘书,诚挚希望他重返圣彼得堡.但是达朗贝尔拒绝长期移居柏林,使腓特烈一度推迟就院长入选作最后的决定.“七年战争”之后,腓特烈粗暴地干涉欧拉对柏林科学院的事务管理.1765年至1766年,在财政问题上,欧拉与腓特烈之间引发了一场严重的冲突.他恳请普鲁士国王同意他离开柏林.1766年7月28日,欧拉重返圣彼得堡,他的三个儿子和两个女儿也回到俄国,伴于身旁.欧拉的家安置在涅瓦河畔离圣彼得堡科学院不远的舒适之处.他的长子阿尔勃兰克这年成为科学院院士、物理学部教授,三年后又被任命为科学院的终身秘书.1766年,欧拉父子还同时当选为科学院执行委员.欧拉的工作是顺心的,然而,厄运也接二连三地向他袭来.回到圣彼得堡不久,一场疾病使欧拉的左眼几乎完全失明.这时,他已经不能再看书了.只能勉强看清大字体的提纲,用粉笔在石板上写很大的字母.1771年,欧拉双目完全失明.这一年,圣彼得堡的一场特大火灾又使欧拉的住所和财产付之一炬,仅抢救出欧拉及其手稿. 1773年 11月,欧拉夫人柯黛琳娜去世.三年后,她同父异母的妹妹莎洛姆·葛塞尔(SalomeGsell)成为欧拉的第二个妻子.欧拉晚年遭受双目失明、火灾和丧偶的沉重打击,他仍不屈不挠地奋斗,丝毫没有减少科学活动.在他的周围,有一群主动的合作者,包括:他的儿子阿尔勃兰克和克利斯朵夫(Christoph); W.L.克拉夫特(Krafft)院士和A.J.莱克塞尔(Lexell)院士;两位年轻的助手N.富斯(Fuss)和M.E.哥洛文(Golovin).欧拉和他们一起讨论著作出版的总计划,有时简要地口述研究成果.他们则使欧拉的设想变得更加明确,有时还为欧拉的论著编纂例证.据富斯自己统计,七年内他为欧拉整理论文250篇,哥洛文整理了70篇.欧拉非常尊重别人的劳动.1772年出版的《月球运动理论和计算方法》(Theoria motuum lunae, nova methodoPertractata)是在阿尔勃兰克、克拉夫特和莱克塞尔的帮助下完成的,欧拉把他们的名字都印在这本书的扉页上. 重返圣彼得堡后,欧拉的著作出版得更多.他的论著几乎有一半是1765年以后出版的.其中,包括他的三卷本《积分学原理》(Institutiones calculi integralis, 1768—1770)和《关于物理学和哲学问题给德韶公主的信》(Lettresà une princesse d’AllemagneSur divers sujets de physique et de philosophie, 1768—1772).前者的最重要部分是在柏林完成的.后者产生于欧拉给普鲁士国王的侄女的授课内容.这本文笔优雅、通俗易懂的科学著作出版后,很快就在欧洲翻译成多种文字,畅销各国,经久不衰.欧拉是历史上著作最多的数学家.欧拉的多产也得益于他一生非凡的记忆力和心算能力.他70岁时还能准确地回忆起他年轻时读的荷马史诗《伊利亚特》(Iliad)每页的头行和末行.他能够背诵出当时数学领域的主要公式和前100个素数的前六次幂.M.孔多塞(Condorcet)讲述过一个例子,足以说明欧拉的心算本领:欧拉的两个学生把一个颇为复杂的收敛级数的17项相加起来,算到第50位数字时因相差一个单位而产生了争执.为了确定谁正确,欧拉对整个计算过程进行心算,最后把错误找出来了.1783年9月18日,欧拉跟往常一样,度过了这一天的前半天.他给孙女辅导了一节数学课,用粉笔在两块黑板上作了有关气球运动的计算,然后同莱克塞尔和富斯讨论两年前F.W.赫歇尔(Herschel)发现的天王星的轨道计算.大约下午5时,欧拉突然脑出血,他只说了一句“我要死了”,就失去知觉.晚上11时,欧拉停上了呼吸.欧拉逝世不久,富斯和孔多塞分别在圣彼得堡科学院和巴黎科学院的追悼会上致悼词.孔多塞在悼词的结尾耐人寻味地说:“欧拉停止了生命,也停止了计算.”欧拉的菩作在他生前已经有多种输入了中国,其中包括著名的、1748年初版本的《无穷分析引论》.这些著作有一部分曾藏于北京北堂图书馆.它们是18世纪40年代由圣彼得堡科学院赠给北京耶稣会或北京南堂耶稣学院的.这也是中俄数学早期交流的一个明证.19世纪70年代,清代数学家华蘅芳和英国人傅兰雅(John Fryer)合译的《代数术》(1873)和《微积溯源》(1874),都介绍了欧拉学说.在此前后,李善兰和伟烈亚力(Alexander Wylie)合译的《代数学》(1859)、赵元益译的《光学》(1876)、黄钟骏的《畴人传四编》(1898)等著作也记载了欧拉学说或欧拉的事迹(详见文献[32]).中国人民是很早就熟悉欧拉的.欧拉不仅属于瑞士,也属于整个文明世界.著名数学史家A.П.尤什凯维奇(Юшкевич)说,人们可以借B.丰唐内尔(Fontenelle)评价莱布尼茨的话来评价欧拉,“他是乐于看 到自己提供的种子在别人的植物园里开花的人.”在欧拉的全部科学贡献中,其数学成就占据最突出的地位.他在力学、天文学、物理学等方面也闪现着耀眼的光芒.

华罗庚于1910年生于江苏省金坛县一个小商人家庭。1925年,初中毕业后就因家境贫困无法继续升学。1928年,18岁的华罗庚在他的数学老师王维克的推荐下,到金坛中学担任庶务员。然而不幸,他在这年患了伤寒症,卧床达五个月之久,从此左腿瘫痪。但他并不悲观、气馁,而是顽强地发奋自学。有一次,他发现苏家驹教授关于五次代数方程求解的一篇论文中有误:一个十二阶行列式的值算得不对,于是他把自己的计算结果和看法写成题为《苏家驹之代数的五次方程式解法不能成立的理由》的文章,投寄给上海《科学》杂志社。1930年,此文在《科学》杂志上发表,这时华罗庚年仅20岁。就是这篇论文,完全改变了华罗庚以后的生活道路。当时正在清华大学担任数学系主任的熊庆来看到了这篇论文后,大为赞赏。到处打听华罗庚是哪个大学的教授,大家都说不知道。碰巧数学系有位教员名叫唐培经,知道华罗庚这个人。他告诉熊庆来,说华罗庚并不是什么大学教授,而只是一个自学青年。熊庆来爱才心切,并不在乎学历,当即托唐培经邀请华罗庚来清华大学工作。1931年,唐培经拿着华罗庚寄来的照片到北京前门火车站去接由金坛北上的华罗庚。华罗庚,这位未来的大数学家,当时就是这样拖着残腿、柱着拐仗走进了清华园。起初,他在数学系当助理员,经管收发信函兼打字,并保管图书资料。他一边工作,一边自学。熊庆来还让他经常跟学生一道去教室听课。勤奋好学的华罗庚只用了一年时间,就把大学数学系的全部课程学完了,学问大有长进。熊庆来对这位年轻人十分器重,有时碰到了复杂的计算也会大声喊道:“华罗庚,过来一下,帮我算算这道题!”两年后,华罗庚被破格提升为助教,继而升为讲师。后来,熊庆来又选送他去英国剑桥大学深造。1938年,华罗庚回国,任西南联大教授,年仅28岁。华罗庚后来成为世界著名的数学家,在数论、矩阵几何学、典型群、自守函数论、多个复变数函数论、偏微分方程等很多领域都作出了卓越的贡献。他著有论文二百余篇、专著十本,成为美国科学院国外院士,法国南锡大学与香港中文大学荣誉博士。他的名字已进入美国华盛顿斯密司一宋尼博物馆,并被列为芝加哥科学技术博物馆中当今八十八个数学伟人之一。1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。

发表论文少的数学家

华罗庚于1910年生于江苏省金坛县一个小商人家庭。1925年,初中毕业后就因家境贫困无法继续升学。1928年,18岁的华罗庚在他的数学老师王维克的推荐下,到金坛中学担任庶务员。然而不幸,他在这年患了伤寒症,卧床达五个月之久,从此左腿瘫痪。但他并不悲观、气馁,而是顽强地发奋自学。有一次,他发现苏家驹教授关于五次代数方程求解的一篇论文中有误:一个十二阶行列式的值算得不对,于是他把自己的计算结果和看法写成题为《苏家驹之代数的五次方程式解法不能成立的理由》的文章,投寄给上海《科学》杂志社。1930年,此文在《科学》杂志上发表,这时华罗庚年仅20岁。就是这篇论文,完全改变了华罗庚以后的生活道路。当时正在清华大学担任数学系主任的熊庆来看到了这篇论文后,大为赞赏。到处打听华罗庚是哪个大学的教授,大家都说不知道。碰巧数学系有位教员名叫唐培经,知道华罗庚这个人。他告诉熊庆来,说华罗庚并不是什么大学教授,而只是一个自学青年。熊庆来爱才心切,并不在乎学历,当即托唐培经邀请华罗庚来清华大学工作。1931年,唐培经拿着华罗庚寄来的照片到北京前门火车站去接由金坛北上的华罗庚。华罗庚,这位未来的大数学家,当时就是这样拖着残腿、柱着拐仗走进了清华园。起初,他在数学系当助理员,经管收发信函兼打字,并保管图书资料。他一边工作,一边自学。熊庆来还让他经常跟学生一道去教室听课。勤奋好学的华罗庚只用了一年时间,就把大学数学系的全部课程学完了,学问大有长进。熊庆来对这位年轻人十分器重,有时碰到了复杂的计算也会大声喊道:“华罗庚,过来一下,帮我算算这道题!”两年后,华罗庚被破格提升为助教,继而升为讲师。后来,熊庆来又选送他去英国剑桥大学深造。1938年,华罗庚回国,任西南联大教授,年仅28岁。华罗庚后来成为世界著名的数学家,在数论、矩阵几何学、典型群、自守函数论、多个复变数函数论、偏微分方程等很多领域都作出了卓越的贡献。他著有论文二百余篇、专著十本,成为美国科学院国外院士,法国南锡大学与香港中文大学荣誉博士。他的名字已进入美国华盛顿斯密司一宋尼博物馆,并被列为芝加哥科学技术博物馆中当今八十八个数学伟人之一。1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。

华罗庚华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。

苏步青的词语解释是:(1902-)数学家,教育家。浙江平阳人。日本东北帝国大学博士。历任浙江大学、复旦大学教授、教务长、校长。中科院院士。全国政协副主席。中国数学会发起人之一,现任该会名誉理事长,《数学年刊》主编。主要研究微分几何学,发表论文一百五十余篇和多种专著。长期从事教育工作,为国家培养了大批人才。苏步青的词语解释是:(1902-)数学家,教育家。浙江平阳人。日本东北帝国大学博士。历任浙江大学、复旦大学教授、教务长、校长。中科院院士。全国政协副主席。中国数学会发起人之一,现任该会名誉理事长,《数学年刊》主编。主要研究微分几何学,发表论文一百五十余篇和多种专著。长期从事教育工作,为国家培养了大批人才。结构是:苏(上下结构)步(上下结构)青(上下结构)。注音是:ㄙㄨㄅㄨ_ㄑ一ㄥ。拼音是:sūbùqīng。苏步青的具体解释是什么呢,我们通过以下几个方面为您介绍:一、网络解释【点此查看计划详细内容】苏步青苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国著名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。1927年毕业于日本东北帝国大学数学系,1931年获该校理学博士学位,1948年当选为中央研究院院士,1955年被选聘为中国科学院学部委员,1959年加入中国共产党,1978年后任复旦大学校长、数学研究所所长,复旦大学名誉校长、教授。从1927年起在国内外发表数学论文160余篇,出版了10多部专著,他创立了国际公认的浙江大学微分几何学学派;他对“K展空间”几何学和射影曲线的研究。苏步青主要从事微分几何学和计算几何学等方面的研究,在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就。关于苏步青的诗词《偕苏步青教授登湖天一碧楼即兴》关于苏步青的成语得步进步樵苏失爨步步登高平步青云累块积苏平步青霄樵苏后爨累苏积块青云独步关于苏步青的词语平步青云青云独步平步青霄樵苏失爨累块积苏樵苏后爨累苏积块槁苏_醒点此查看更多关于苏步青的详细信息

苏步青,陈省声,华罗庚

  • 索引序列
  • 未能发表论文的数学家
  • 数学家发表的论文
  • 未来科学家期刊评职称能不能用
  • 发表论文数最多的数学家
  • 发表论文少的数学家
  • 返回顶部