必须要有创新,本来传统机械很难有创新的,不过你可以试试,说不准审稿人看好呢。祝好运!
国内的核心期刊::03539 半导体学报 03540 波谱学杂志 03541 材料科学与技术学报 03542 大学物理 03543 低温物理学报 03544 低温与超导 03545 发光学报 03546 非线性动力学报 03547 高能物理与核物理 03548 高压物理学报 03549 光谱学与光谱分析 03550 光散射学报 03551 光学学报 03552 光子学报 03553 核技术 03554 核聚变与等离子体物理 03555 红外与毫米波学报 03556 计算物理 03557 金属学报 03558 量子电子学报 03559 量子光学 03560 强激光与粒子束 30561 人工晶体学报 03562 声学学报 03563 无机材料学报 93564 物理 03565 物理实验 03566 物理学报 03567 物理学进展 03568 原子核物理评论 03569 原子能科学技术 03570 原子与分子物理学报 03671 真空 03572 中国激光 03573 中国科学院研究生院学 报 03574 中国学术期刊文摘(科技快报)如果档次还高,可以发一些SCI!需要的话我告诉你!
很多本科生都会有撰写发表好论文、甚至发表SCI论文的想法,而且有很多人甚至尝试写过,但在提笔时却发现自己无从下手。原因有两个:第一,大多数本科生并没有从事过专门的科研工作;第二,多数本科生没有进行过专门系统的科学研究方法训练。因此,如果本科生希望写出好论文,我的建议是最好考研究生或博士生,那是有专门培养科研人才的途径,有指导教师、专业的课程、专门的科研条件和经费,以及学位条例的规范指引和你的专门时间付出。在这个过程中,你原来的“高大上”想法,会不断地被导师校正,要你限定自己的问题,着眼“小而深”的问题点,俗称“挖坑”;等你深入挖进去,“挖”出属于自己的新颖的、具有原创性的成果,你自然就知道并可以撰写出高水平的研究论文、SCI论文了。人们常用“Groundbreaking”形容重大的开创性成果,就是俗称挖坑挖的“裂地”了。到那个时候,科学写作和发表的方法,就用上了;即使没有这些方法,你的创新成果,即“内容”(Contents),也完全能够引导你撰写和发表出最好的研究论文。不过还有最重要的一点,就是在任何时间,都要注重培养自己的科学研究与出版伦理观念和素养,并时刻牢记和严格遵循,让你的研究生涯不迷航!
可以说说具体的写作要求么?
在谷歌学术搜索中,存有高达4亿篇论文的数据库。论文被引用的数据可以作为证明文章影响力的依据。即使这个方法有局限性,但在更大程度上,反映了当今社会的进展和科学的进步。
1《亚当:一种随机优化方法 》 Adam: A Method for Stochastic Optimization。文章发布于2015年,引用数为47774。
截止2020年为止,这篇文章达到了,人类可知的引用最高数。一篇涉及人工智能的文章获得最高引用,证实了科学界对人工智能的注重。不仅是科学界对人工智能领域有巨大的兴趣,而且欧美国家也正在把人工智能作为未来的主要发展对象。美国把对人工智能的投资提高了一倍,欧盟也把投资提高了百分之70。《亚当:一种随机优化方法 》能够获得最高引用,正说明在未来人工智能上,将展开激烈竞争。无独有偶,跟着这篇文章后面,引用最多的文章多是涉及人工智能。
2《图像识别的深度残差学习》 Deep Residual Learning for Image Recognition 文章发布于2016年,引用数为25256。
深度残差学习的概念出自何凯明等4名中国学生。何凯明来自清华大学物理系,现是脸书人工智能的科学家。从文章的引用数量来看,足以显示,他提出的这个方法对该行业的影响。
3《让R-CNN更快: 朝着带有区域建议网络 的实时目标检测》 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks发表于2015,引用数为19507。
4《深度学习》 Deep Learning, 文章发布于2015年,引用数为16750。
5 《带着缠绕走得更深》 Going deeper with Convolutions, 文章发布于2015年,引用数为14424。
这篇文章已经成为计算机图像处理必读论文之一。
6《通过深层强化学习的人类层面的控制》 Human-Level control through deep reinforcement learning 文章发布于2015年,引用数为10394。
7 《语义分割的完全常规网络》 Fully Conventinal Networks for Semantic segmentation 文章发布于2015年,引用数为10153。
9 《 脓毒症与脓毒症休克第三版国际共识 》 The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) 文章发布于2016年,引用数为8576。
10《RNA测序和微阵列研究中 Limma 强化差异表达分析》 Limma porwers defferential expression analyses for RNA-sequencing and microarray studies 文章发布于2015年,引用数为8328。
第9和第10篇是前十名论文中,和计算机没有关系的两篇医学论文。这是否意味着,未来对人类社会影响最大的,除了人工智能就是医学了呢?
最后要提到的这篇文章,虽然没有进入第10,但值得一提。 《以深度神经网络和树搜索掌握围棋战略》 Mastering the game of Go with deep neural networks and tree search发布于2016年,引用数为8209。
这篇文章涉及的是伦敦大学学院的教授David Silver, 他领导的AlphaGo团队击败了围棋九段棋手柯洁。人工智能击败了最强大脑,没有什么能比这更能说明人工智能的前途,同时也可能是一个细思极恐的大事件。在机器击败人的时代,人怎么办?
【新智元导读】 2月25日,清华大学工程物理系唐传祥研究组与合作团队在《自然》上发表研究论文《稳态微聚束原理的实验演示》,报告了一种新型粒子加速器光源「稳态微聚束」的首个原理验证实验。与之相关的极紫外光源有望解决自主研发光刻机中最核心的「卡脖子」难题。
最现代的研究用光源是基于粒子加速器的。
这些都是大型设施,电子在其中被加速到几乎是光速,然后发射出具有特殊性质的光脉冲。
在基于存储环的同步辐射源中,电子束在环中旅行数十亿转,然后在偏转磁体中产生快速连续的非常明亮的光脉冲。
相比之下,自由电子激光器(FEL)中的电子束被线性加速,然后发出单次超亮的类似激光的闪光。
近年来,储能环源以及FEL源促进了许多领域的进步,从对生物和医学问题的深入了解到材料研究、技术开发和量子物理学。
现在,一个中德团队证明,在同步辐射源中可以产生一种脉冲模式,结合了两种系统的优点。
2月25日,清华大学工程物理系教授唐传祥研究组与来自亥姆霍兹柏林材料与能源研究中心(HZB)以及德国联邦物理技术研究院(PTB)的合作团队在Nature上发表了题为《稳态微聚束原理的实验演示》( Experimental demonstration of the mechanism of steady-state microbunching )的论文。
报告了一种新型粒子加速器光源「稳态微聚束」(Steady-state microbunching,SSMB)的首个原理验证实验。
该研究与极紫外(EUV)光刻机光源密切相关,有望为EUV光刻机提供新技术路线。
SSMB光源首个原理验证实验,中德团队登上Nature
同步辐射源提供短而强烈的微束电子,产生的辐射脉冲具有类似于激光的特性(与FEL一样),但也可以按顺序紧密跟随对方(与同步辐射光源一样)。
大约十年前,斯坦福大学教授、清华大学杰出访问教授、著名加速器理论家赵午和他的博士生Daniel Ratner以提出了「稳态微束」(SSMB)。
赵午教授
该机制还应该使存储环不仅能以高重复率产生光脉冲,而且能像激光一样产生相干辐射。
来自清华大学的青年物理学家邓秀杰在他的博士论文中提出了这些观点,并对其进行了进一步的理论研究。
2017年,赵午教授联系了HZB的加速器物理学家,他们除了在HZB操作软X射线源BESSY II外,还在PTB操作计量光源(MLS)。
MLS是世界上第一个通过设计优化运行的光源,在所谓的 「低α模式 」下运行。
在这种模式下,电子束可以大大缩短。10多年来,那里的研究人员一直在不断开发这种特殊的运行模式。
HZB的加速器专家Markus Ries解释说:「现在,这项开发工作的成果使我们能够满足具有挑战性的物理要求,在MLS实证确认SSMB原理」。
「SSMB团队中的理论小组在准备阶段就定义了实现机器最佳性能的物理边界条件。这使我们能够用MLS生成新的机器状态,并与邓秀杰一起对它们进行充分的调整,直到能够检测到我们正在寻找的脉冲模式」,HZB的加速器物理学家Jörg Feikes说。
HZB和PTB专家使用了一种光学激光器,其光波与MLS中的电子束在空间和时间上精确同步耦合。
这就调制了电子束中电子的能量。
「这使得几毫米长的电子束在存储环中正好转了一圈后分裂成微束(只有1微米长),然后发射光脉冲,像激光一样相互放大」,Jörg Feikes解释道。
「对相干态的实验性探测绝非易事,但我们PTB的同事开发了一种新的光学检测装置,成功地进行了探测。」
SSMB概念提出后,赵午持续推动SSMB的研究与国际合作。
2017年,唐传祥与赵午发起该项实验,唐传祥研究组主导完成了实验的理论分析和物理设计,并开发测试实验的激光系统,与合作单位进行实验,并完成了实验数据分析与文章撰写。
揭示SSMB作为未来光子源潜力的关键一步,是在真实机器上演示其机制。在新的论文中,研究人员报告了SSMB机制的实验演示。
SSMB原理验证实验示意图
实验表明,存储在准等时环中的电子束可以产生亚微米级的微束和相干辐射,由1,064纳米波长激光器诱导的能量调制后一个完整的旋转。
结果验证了电子的光相可以在亚激光波长的精度上逐次相关。
SSMB原理验证实验结果
在这种相位相关性的基础上,研究人员通过应用相位锁定的激光器与电子轮流相互作用来实现SSMB。
该图示直观地展示了如何通过激光调制电子束来产生发射激光的微束,是实现基于SSMB的高重复性、高功率光子源的一个里程碑。
有望解决EUV卡脖子难题
没有顶尖的光刻机,是我国半导体行业发展的最大瓶颈。
光刻机的曝光分辨率与波长直接相关,半个多世纪以来,光刻机光源的波长不断缩小,芯片工业界公认的新一代主流光刻技术是采用波长为13.5纳米光源的EUV(极紫外光源)光刻。
大功率的EUV光源是EUV光刻机的核心基础。简而言之,光刻机需要的EUV光,要求是波长短,功率大。
EUV光刻机工作相当于用波长只有头发直径一万分之一的极紫外光,在晶圆上「雕刻」电路,最后将让指甲盖大小的芯片包含上百亿个晶体管,这种设备工艺展现了人类 科技 发展的顶级水平。
而昂贵的EUV光刻机也正是实现7nm的关键设备,目前,荷兰ASML是全球唯一一家能够量产EUV光刻机的厂商,而由于禁令,我国中芯国际订购的一台EUV仍未到货。
如果中国大陆无法引入ASML的EUV光刻机,则意味着大陆将止步于7nm工艺。
目前ASML公司采用的是高能脉冲激光轰击液态锡靶,形成等离子体然后产生波长13.5纳米的EUV光源,功率约250瓦。而随着芯片工艺节点的不断缩小,预计对EUV光源功率的要求将不断提升,达到千瓦量级。
SSMB光源的潜在应用之一是作为未来EUV光刻机的光源。它们产生的类似激光的辐射也超出了 "光 "的可见光谱,例如在EUV范围内,最后阶段,SSMB源可以提供一种新的辐射特性。脉冲是强烈的、集中的和窄带的。可以说,它们结合了同步辐射光的优势和FEL脉冲的优势。
可以说,基于SSMB的EUV光源有望实现大的平均功率,并具备向更短波长扩展的潜力,为大功率EUV光源的突破提供全新的解决思路。
EUV光刻机的自主研发还有很长的路要走,基于SSMB的EUV光源有望解决自主研发光刻机中最核心的「卡脖子」难题。
关于作者
本文的通讯作者唐传祥教授是清华大学的博士生导师。
1992年9月-1996年3月,考入 清华大学工程物理系硕博连读。1996年3月获得工学博士学位, 博士学位论文为“用于北京自由电子激光装置的多腔热阴极微波电子枪的研究”。
1996年4月获得博士学位后,留校工作。
1996年7月 1998年6月期间,作为访问学者到德国DESY工作2年。在DESY工作期间,主要进行超导加速结构的优化及测量研究,并与J. Sekutowicz, M.Ferrario等合作提出了Superstructure的超导加速结构。
1998年6月回国后,继续在清华大学从事加速器物理、高亮度注入器、汤姆逊散射X射线源、自由电子激光、新加速原理与新型加速结构、电子直线加速器关键物理及技术、加速器应用等方面的研究。
参考资料:
一、他的理论
任何获得诺贝尔物理学奖的理论,都是世界上最顶尖、最伟大、最正确的理论之一,是人类文明的辉煌成就。
诺奖的成果是公开的,它不仅仅属于某个人、某个国家,而是属于全世界。当然,也属于中国。
而且,他还有比诺奖理论更加牛的理论——杨-米尔斯规范理论。这是个可以让他排在当今世界前五的成就。
也许很多人并不知道宇称不守恒、规范场是什么鬼,不知道我们能从中得到什么好处。
500年前,哥白尼提出“日心说”时,当时的人们也不知道能有什么用,太阳照样每天在老地方升起。但谁能否定他对人类的巨大贡献。
111年,爱因斯坦提出了相对论,后来的科学家居然花了几十年去证实,更别说什么好处了,但没有人能否定他的伟大贡献。
杨振宁理论,就是这样一个理论。
二、他的诺奖
我们可以拿诺贝尔奖可以和奥运会金牌比一比,奥运会金牌四年有306块,诺贝尔奖一年6个,4年才24个。目前为止,中国获239枚奥运会金牌,但获得诺奖的满打满算,牵强附会统计拢来,还是个位数。
因此,如果说获得奥运会金牌给国家带来巨大荣誉的话,诺奖带来的荣誉要大得多。
而且,奥运会金牌的对国家的贡献属于当前,但诺奖的理论带来对世界的改变,是非常长期和影响深远的。
大概,您会说杨振宁是美国人,别说这些没用的。
告诉您:1957年,杨振宁和李政道都是如假包换的中国人。
三、他推进中美建交
杨振宁在中美还没有正常建交前的1971年,以巨大的勇气,以诺奖科学家的身份,率先访华。为美国科学界访华第一人,得到国家领导人的亲切接见,为中美建交铺平了道路。
在后来的岁月中,他一直致力于中美友好,深刻改变了世界格局。
四、他的具体的贡献
据不完全统计,杨振宁为中国协助或者直接建立一流物理实验室60余座,为清华大学和南开大学一共筹集约20亿美金的科研经费。他以清华大学的名义发表SCI论文30多篇,将冷原子、凝聚态物理科研水平一下子提高了几十年,为我国在世界科学界争得了巨大荣誉。
杨振宁利用自己的影响,推荐1200多名青年学者出国访问、深造,绝大多数都归国成为科学界的栋梁之才。
据朱邦芬院士在南开大学讲:杨振宁在清华大学的年薪为人民币100万元,但他分文不取,捐给了他1997年亲自创办的清华大学高等研究中心。他变卖掉了自己在美国纽约的一处豪华住宅,向清华捐了100万美元。在清华大学,他设立了“杨振宁讲座”,“杨振宁奖学金”,“杨振宁基金会”,并亲自担任高等研究中心名誉主任,基金会主席。
杨振宁作为一名著名的美籍科学家,10个国家和地区的科学院的院士,去哪里,都会当神一样供着。但他回到中国的清华大学,这对海外学者的示范效应,他所带来的人才资源和人脉关系,本来都是无法估量的。运用得好,完全可能比导弹和氢弹要更有威力。因为他可能吸引回来第二个、第三个钱学森、邓稼先。
杨振宁为清华大学、南开大学、复旦大学拉巨额科研经费,私人推荐1200余名年轻学者出国培训。“无偿协助建设实验室几十座”(葛墨林院士语),以清华名义发表SCI论文几十篇,“将清华三个物理研究领域提高到世界一流”(清华大学校长王大中语)”,杨振宁还个人捐献600万美金以上给清华大学,用于引进人才。杨振宁还邀请、安排林家翘、聂华桐、姚期智、张首晟等多位世界顶级科学家到中国工作,其中做到中科院外籍院士的就有7人。杨振宁还一手促成中国科技大学少年班的创建和第四代光源——X射线自由电子激光试验装置的大项目在中国落户。据李昕,杨振宁还与恢复高考有关,改变了很多人的命运。杨振宁是清华大学高等研究院创始人,该研究院在理论凝聚态物理、冷原子物理、理论计算机等领域取得了一批重要成果,汇聚众多国际一流学者。他还是南开大学理论物理研究室创办人,该研究室在国际上占有一席之地。据周光召院士:杨振宁为中国至少培养了10个以上的中科院院士和5个大学(副)校长。他是1971年中美关系松动后回国探访的第一位华裔科学家,在积极推动中美文化交流和人民的互相了解、促进中美建交、人才交流和科技合作等方面,做出了重大贡献。1971年上半年,杨振宁参与保钓运动,此外他还以公开信的方式直接参加1971-1991年对台统战。1977年,杨振宁创建全美华人协会,1980年创建“与中国学术交流委员会”,在中国香港和美国筹措资金,策划和资助了CEEC计划(中国学者访问项目),帮助大批中国高端学者到美国著名大学进行深造,归国者有多位当选两院院士,其中就包括后来的北京大学校长的陈佳洱,担任过复旦大学校长的杨福家以及担任过中国科技大学校长的谷超豪、东北师范大学副校长薛康、中国科学院院士孙昌璞、中国科学院研究生院副院长苏刚等人。1983年,杨振宁创建香港中山大学高等学术研究中心基金会,促成了广州中山大学高等学术研究中心的成立,募得巨额资金,以及4000多平方米教学楼一栋,资助国内纯学术基础研究项目,获得国家部省级奖励几十项。杨振宁还在南京大学、兰州大学、中山大学、海南大学、东莞理工学院等高校学府个人捐资建立“杨振宁奖学金”,帮助品学兼优的大学生(含研究生)完成学业。中国科学院院士龙以明说,南开大学理论物理研究室为我国科学事业的发展作出了重要贡献,这与杨振宁先生的指导和帮助是分不开的,他亲自募款支持并指导应注意的研究发展方向,亲自参加该室举办的多次国际会议,并资助该室博士生毕业后到纽约州立大学石溪分校工作一年。今天,杨先生仍十分关心理论物理研究室的发展,是我们学习的榜样。中科院院士葛墨林说,我一直是在陈省身先生的亲切关怀和杨振宁先生的直接指导下做事情,从他们二位身上我们学到的不仅仅是数学和物理,更包括做人。杨先生虽已年近九旬,但有很多重要的事情我们仍向他报告,得到了他的指点和支持。清华大学前校长王大中高度赞誉了杨振宁对清华的贡献:清华物理系有今天的成就,杨教授功不可没。清华大学前校长顾秉林对杨振宁作出了高度评价,“杨先生是我国科学工作者的一面旗帜”。顾秉林透露,他任校长时杨振宁推荐了著名计算机专家姚期智来清华任教,为后来清华引进大量高端人才起到了十分重要的作用。“他还把在清华的工资都捐了出来,用于引进人才和培养学生。”清华物理系主任朱邦芬院士:杨振宁回国后,在短时间内将冷原子、凝聚态、统计物理三个研究领域短时间内提高到世界先进水平,帮助清华物理系从根本上改变了面貌,亲自做了很多重要的研究工作,我常收到他发来的电子邮件,发件时间经常是晚上10点多、11点。在清华培养出了多名杰出的青年物理学家,其中好几位在国际上已经很有名声。一共发表了近30篇SCI论文,单位都署清华大学,此外还出版了几本专著。最后不过还是在想提起另一位科学家邓稼先附杨振宁与邓老的对话邓稼先病重住院期间,杨振宁去医院探望时,两人之间有这样一段对话。杨问:研究原子弹,国家究竟给了你多少奖金,值得你把命都搭上?邓:原子弹十块钱,氢弹十块钱。
21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!
中学物理中的物理模型
摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。
关键词:中学物理;教学;物理模型
一、物理模型的概念及功能
物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。
物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。
人们建立和研究物理模型的功能主要在于:
一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;
二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;
三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。
二、中学物理教材中经常碰到的几种物理模型
物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:
1.物理对象模型 即把物理问题的研究对象模型化。
例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。
另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。
2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。
如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。
教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。
3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。
4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。
5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。
如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。
再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。
6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。
三、物理模型在中学物理教学中的地位和作用
1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一
物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。
如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。
2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托
人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。
爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。
诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。
3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化
例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。
四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法
物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:
1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。
2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。
3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。
4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。
总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。
物理猜想与中学物理教学
【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。
【关键词】中学 物理猜想 物理教学
【中图分类号】 G 【文献标识码】 A
【文章编号】0450-9889(2014)11B-0076-02
随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。
一、物理猜想对中学物理教学有着重要的意义
新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。
1.提高学生学习兴趣和增进学生学习主动性
学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。
2.提高学生的思维能力
在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。
3.有利于学生巩固所学的物理知识
物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。
4.培养学生创新能力
在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。
二、教师在物理课堂教学中引导学生进行物理猜想的方法
教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。
1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想
科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。
2.激励学生讨论,诱发物理猜想
在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。
3.鼓励学生大胆猜想
在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。
4.创造良好的猜想条件
在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。
物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。
【参考文献】
[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)
[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012
[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)
[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)
国内的核心期刊::03539 半导体学报 03540 波谱学杂志 03541 材料科学与技术学报 03542 大学物理 03543 低温物理学报 03544 低温与超导 03545 发光学报 03546 非线性动力学报 03547 高能物理与核物理 03548 高压物理学报 03549 光谱学与光谱分析 03550 光散射学报 03551 光学学报 03552 光子学报 03553 核技术 03554 核聚变与等离子体物理 03555 红外与毫米波学报 03556 计算物理 03557 金属学报 03558 量子电子学报 03559 量子光学 03560 强激光与粒子束 30561 人工晶体学报 03562 声学学报 03563 无机材料学报 93564 物理 03565 物理实验 03566 物理学报 03567 物理学进展 03568 原子核物理评论 03569 原子能科学技术 03570 原子与分子物理学报 03671 真空 03572 中国激光 03573 中国科学院研究生院学 报 03574 中国学术期刊文摘(科技快报)如果档次还高,可以发一些SCI!需要的话我告诉你!
可以说说具体的写作要求么?
1、引言 2 、编写要求 3、编写格式 4、前置部分 5、主体部分 如何写论文 写下自己的想法是完善它的好方法。你可能发现自己的想法在纸上会变成一团糟。 写作是很痛苦的事情,但是当你越来越熟悉它的时候,就会很快了。如果你把它当作一种艺术,你就会在写作的过程中体会到无穷的乐趣
不一定,要看论文质量。所有申请推免的学生,应符合以下基本条件:(一)思想品德。身心健康,德智体美劳全面发展,各学期操行评定或德育考核均为良好及以上。推免时无未解除的纪律处分,学术方面无不良记录。(二)学习要求。勤奋学习,刻苦钻研,学业成绩优良,推免时必修课程和限选课程无不及格现象。(三)学术发展。具有浓厚的学术研究兴趣,较强的创新意识、实践能力和专业发展潜力,有志于在国内继续深造。(四)学分绩点要求。学分绩点应符合下述条件,且经公示无异议:1.基础学科拔尖学生培养试验计划、国家级人才培养基地、尼山学堂,符合推免生申请基本条件的全体学生。2.卓越计划试点班、学校认定的校级基地班,学分绩点排名前70%的学生。3.普通教学班,学分绩点排名前50%的学生。4.对于具有特殊专长或在一定领域表现突出的学生,经学校推免生遴选工作领导小组研究同意,可适当放宽学分绩点要求。(五)非西藏生源定向西藏就业学生根据协议须在本科毕业后进藏工作五年,不享受推免资格。推荐办法(一)排名依据按照教育部《关于进一步规范和加强推荐优秀应届本科毕业生免试攻读研究生工作的通知》(教学厅〔2020〕12号)要求,要将符合全面发展价值导向等因素纳入学校推免生遴选指标体系,综合评价学生的各方面表现。自本次推免工作起,各学院和全体学生将按照综合成绩进行排序,根据推免名额按顺序确定人选。综合成绩计算公式为:综合成绩=平均学分绩点+综合素质分其中,对于2018级学生,平均学分绩点为百分制平均学分绩点,综合素质分的满分为10分,包括科研创新和素质拓展两个模块,各模块最高分为10分;各模块内若有多项加分,只取其中一项最高分。对于2017级长学制学生,平均学分绩点为五分制平均学分绩点,综合素质分满分为0.5分,包括科研创新和素质拓展两个模块;各模块最高分为0.5分,各赋分项参照2018级标准除以20进行折算,保留小数点后两位;各模块内若有多项加分,只取其中一项最高分。学校出具推免学生相关证明时,可根据需要出具百分制与五分制排名(仅限2017级)、综合成绩排名与平均学分绩点排名等写实性证明。访学学生的平均学分绩点按山东大学有关访学学生管理规定执行。转专业学生按照转专业后认定的课程及其成绩计算。(二)平均学分绩点2017级、2018级平均学分绩点计算办法分别执行山大教字〔2014〕15号、山大教字〔2018〕33号文件。四年制专业计算区间为前六学期,五年制或长学制专业为前八学期,计算区间截止到2020-2021学年第二学期。推免排名时平均学分绩点根据四舍五入规则,精确到小数点后第三位(三)综合素质分,1.科研创新主要包括科研成果、竞赛获奖等,由本科生院、创新创业学院负责认定。2.素质拓展主要包括参军入伍服兵役、国际组织实习,以及获得体育、美育、劳育、志愿服务等各类荣誉,由学生工作部、武装部、学生就业创业指导中心、团委负责认定。
不难。具体要求如下:(1)该刊只刊登首发稿。为保证作者的署名权和知识产权,作者和课题负责人应在“论文出版协议”上签名。该刊编辑部对来稿有文字修改权,对所发稿有版权。排版要求参考征稿简则。《大学物理实验》是在1988年正式创办的,它主要是由我国的教育部高等学校物理学与天文学教学指导委员会委托吉林化工学院联合进行主办的一本公开发行的专业学术期刊。
最好是有试验的过程在结合思路,这样才能实际的写下去
先写摘要,摘要里说你得到了什么实验结论,
或者你提出了一个什么新理论,没有新结论也没有新理论,
那你就写的是篇综述或者进展。
这个。。。。帮不上忙!祝你好运吧
论文题目是全文给读者和编辑和第一印象,文题的好坏对论文能否利用具有举足轻重的作用。如何进行物理学 毕业 论文的选题呢?下面我给大家带来优秀物理学毕业论文题目2021,希望能帮助到大家!
物理学毕业论文题目
1、物理学史与物理教学结合的理论与实践研究
2、二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究
3、二十世纪中国原子分子物理学的建立和发展
4、普通高中物理课程内容与大学物理课程内容的适切性研究
5、从现代物理学理论发展探讨孙思邈修道养生观
6、地震岩石物理学及其应用研究
7、碎屑岩地震岩石物理学特征研究
8、信息技术支持下的物理学与教的研究
9、物理学中对称现象的语境分析及其意义
10、本质直观视域下的量子引力学困境
11、复杂金融系统的相互作用结构与大波动动力学研究
12、大小细胞视觉通路在早期开角型青光眼和双眼竞争中作用的功能磁共振成像及视觉心理物理学研究
13、经济物理学中的金融数据分析:统计与建模
14、农村高中物理学困生的差异教学研究
15、基于PD控制的拟态物理学优化算法的研究
16、多目标拟态物理学优化算法解集分布性研究
17、利用物理学史 教育 资源优化中学物理教学的研究
18、中学生与物理学家共同体概念形成过程的对比研究
19、物理学专业师范生PCK研究
20、物理学史融入高中物理教学的实践研究
21、莱布尼茨物理学哲学思想研究
22、运用高中物理教材栏目开展物理学史教育的实践
23、新课程下 高一物理 学困生转化策略
24、运用高中物理“学案教学”提高学生问题意识的实践
25、基于书目记录的《中图法》物理学类目调整 方法
26、物理学专业师范生教学技能训练现状调查与对策研究
27、高中物理学困生成因及转化策略研究
28、从物理学家的研究方法看物理学的进展
29、高中物理学困生学习动机的实证调查与影响因素分析
30、食管癌调强放疗物理学参数对放射性肺炎的评估价值
31、近代物理学史在高中物理教学中的应用
32、提升物理学困生自主学习能力的教学策略研究
33、物理学史在高中物理教学中的应用研究
34、关于培养学生物理学科素养的教学实践研究
35、高一物理学困生学习效率低下成因及转化策略
36、校本课程《生活中的物理学原理 DIY 》的开发与实践
37、高中物理教学中物理学史教育现状调查与研究
38、高中物理学困生学业情绪现状及影响因素的调查研究
39、利用物理学史促进高中生理解科学本质的实践研究
40、物理学史融入中学课堂教学的实践研究
2021中学物理论文题目
1、 中学物理教材的重难点内容表达方式的研究
2、 关于中学物理学习中学生素质培养之设想
3、 中学物理学习中互动作用的深入研究
4、 通过力学教学实现中学物理到大学物理的良好过渡
5、 一类变分问题在中学物理课外教学中的尝试
6、 在中学物理知识结构化中锻造学生核心素养
7、 浅谈中学物理探究教学的策略
8、 物理模型在中学物理教学中的作用研究
9、 浅谈中学物理学习中创造性思维的障碍与对策
10、 中学物理知识在甜樱桃保鲜中的应用
11、 浅谈中学物理教学中的“骆驼教学法”
12、 中学物理良性学习习惯的现状调查及分析
13、 函数图像法在中学物理中的应用
14、 中学物理异课同构教研活动设计研究
15、 中学物理教学中缄默知识的应用研究
16、 中学物理教学对大学物理教学的影响——以安阳师范学院为例
17、 物理实验在中学物理教学中的地位和作用
18、 中学物理活动教学的设计研究
19、 中学物理课堂环境评价量表的实证检测
20、 中学物理教学中概念的教学策略研究
21、 几何画板在中学物理教学中的应用
22、 引导式 反思 :将HPS教育融入中学物理教学的方式
23、 中学物理实验课堂环境的测评研究——以北京地区为例
24、 我国中学物理教育研究的进展与趋势——基于中国知网的文献计量学研究
25、 国际科学教育坐标中的我国中学物理教育研究:基于文献计量学的国际比较研究
26、 中学物理实验技能的评价研究
27、 中学物理教学中激发学生学习动机的策略研究
28、 突破中学物理教学难点的策略
29、 探究中学物理课堂的实际案例中如何引入新的教学模式
30、 中学物理“微实验”创设的价值思考
31、 中学物理实验教学的新思考
32、 提高中学物理教师信息技术应用技能的策略
33、 高师本科物理专业中学物理教学能力培养目标体系的研究
34、 刍议中学物理教科书中的举例说明题
35、 中学物理教学的问题情境创设
36、 3D虚拟增强现实技术在中学物理教学中的应用研究
37、 以藏族 文化 生活为例,开发藏区中学物理课程实验资源
38、 贯通大中学物理综合能力培养的物理学术竞赛教学模式
39、 中学物理在教学内容上的改革思考
40、 我国中学物理“时间观”课程教学的现实与改进
41、 中学物理教学中演示实验的应用策略
42、 中学物理教学中学生动手能力的培养
43、 新课程背景下农村中学物理实验教学的探索
44、 浅谈提高中学物理低成本实验教学的有效性
45、 浅谈中学物理“生活化”教学的策略
物理教学论文题目
1、 高中物理教学中常见电学实验问题分析
2、 以生活化教学模式提高初中物理教学的有效性
3、 工科专业大学物理教学现状与改革方向研究
4、 大学物理教学中创新型人才的培养与实践
5、 教学新范式下大学物理教学的几点思考
6、 基于翻转课堂理念的独立学院大学物理教学模式研究
7、 基于CDIO理念的大学物理教学改革探索
8、 统计物理教学中引入Jarzynski等式的必要性
9、 物理教学融入工匠精神的思考与实践
10、 让“陶花”在物理教学实践中绽放——浅议过程性评价和物理教学实践
11、 高中物理教学中培养学生的思维
12、 “蜂窝视频元”在高中物理教学中的应用实践研究
13、 中学物理教学中缄默知识的应用研究
14、 提高大学物理教学质量的 措施 与对策
15、 高分子物理教学中关于链段概念的讲解
16、 以提高人才培养质量为目标,探索新形势下大学物理教学策略
17、 基于翻转式课堂模式的大学物理教学研究
18、 中学物理教学对大学物理教学的影响——以安阳师范学院为例
19、 高分子物理教学中“结晶”概念的讲解
20、 引导式反思:将HPS教育融入中学物理教学的方式
21、 高中物理教学核心素养:演示实验创新
22、 数形结合思想在高中数学与物理教学中的应用研究
23、 浅析信息技术在初中物理教学中的应用——以欧姆定律学习为例
24、 新工科背景下大学物理教学研究
25、 地方本科院校大学物理教学改革模式探究
26、 高师本科物理专业中学物理教学能力培养目标体系的研究
27、 高中物理教学使用 思维导图 的几个误区
28、 中学物理教学的问题情境创设
29、 3D虚拟增强现实技术在中学物理教学中的应用研究
30、 MATLAB的可视化在物理教学中的应用
31、 案例教学法在“半导体器件物理”教学中的尝试与反思
32、 新工科背景下“类像思维”在半导体物理教学中的应用
33、 核心素养下的高校半导体物理教学改革路径研究
34、 材料专业大学物理教学内容的改革与实践
35、 为提高大学物理教学的学术水平而努力
36、 材料学专业固体物理教学中的抽象与形象思维转化
37、 大学物理教学研究现状与展望——基于10年核心期刊论文分析
38、 高考3+3新模式下中学与大学物理教学的衔接性校本研究:热学部分
39、 浅析STS教育在职业学校物理教学中的有效渗透
40、 智慧教育理念在大学物理教学改革中的应用研究
41、 混合教学模式在固体物理教学中的应用
42、 物理学思维方法在大学物理教学中的应用
43、 多媒体在应用型本科院校大学物理教学中的应用
44、 在物理教学中渗透生涯教育的探索——由新高考选考物理遇冷说开去
45、 浅谈初中物理教学中“弱势学生”激励策略
46、 “物理教学论实验”课程的“课例化”教学模式研究
47、 提高大学物理教学效果的策略
48、 利用虚拟实验改进物理教学
49、 基于建筑学学生思维特点的实践性建筑物理教学初探
50、 核心素养视角下初中物理教学的方法
优秀物理学毕业论文题目相关 文章 :
★ 物理学毕业论文题目
★ 物理学毕业论文选题
★ 物理学院毕业论文题目
★ 物理学毕业论文4000字
★ 物理学本科毕业论文
★ 物理学毕业论文
★ 有关物理学毕业论文
★ 物理学本科生毕业论文
★ 物理学毕业论文范文
★ 物理学理论研究论文
从物理学专业本科毕业论文所涉及的研究领域来看,又可以将其分为物理学理论、电子技术、计算机和应用物理四大类。A、物理学理论方向的毕业论文内容:力学、声学、数学物理、物理学与交叉学科、引力与天体物理、原子与分子和团簇物理、凝聚态物理、量子物理、场论与粒子物理、等离子体物理、光学、核物理、化学物理、统计物理、物理学史、综合等。B、电子技术:物理实验、电路的设计、传感器、C、计算机技术:多媒体技术、数据库等。D、应用物理:①材料科学:纳米材料技术、生物医学材料、薄膜材料以及新型高性能结构材料等;材料的先进合成、制造、加工的理论与新方法,材料组分、结构与性能的设计理论;结构、性能控制、材料的环境效应和寿命的评价理论;分子、纳米及微观尺度下的材料科学理论。②信息科学:高速信息网络体系结构与安全性的基础理论;微(纳)米电子学与分子电子学基础与半导体集成系统;光子、光电子集成与光子学基础;以感觉系统、神经系统、免疫系统以及系统生物学仿生和建模的生物信息系统。从分子层次着手设计的具有半导体、超导、吸氢、吸波、非线性光学等特殊功能的光、电、磁和力学纳米功能材料。③传感器技术。④测量与仪器。