• 回答数

    3

  • 浏览数

    116

小东家1985
首页 > 论文发表 > 发表论文r语言

3个回答 默认排序
  • 默认排序
  • 按时间排序

twinkle100

已采纳

还有其他的要求吗?

91 评论

尼古丁00144

关于论文怎么写。标准步骤如下 1、论文格式论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录) 3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整。...

335 评论

幻影墨斗鱼

在r中看函数源代码:在R中,代码可以分为如下几个级别:首先,是你输入了函数对象名称,你可以直接看到代码的,如要获得函数对象fivenum的代码,就只需要在Console中键入函数对象名称fivenum就可以得到如下结果:function (x, na.rm = TRUE){xna <- is.na(x)if (na.rm)x <- x[!xna]else if (any(xna))return(rep.int(NA, 5))x <- sort(x)n <- length(x)if (n == 0)rep.int(NA, 5)else {n4 <- floor((n + 3)/2)/2d <- c(1, n4, (n + 1)/2, n + 1 - n4, n)0.5 * (x[floor(d)] + x[ceiling(d)])}}从上面的例子可以看出,这类函数对象的代码是最容易看到的,也是我们学习的最好的材料了,而R中最大多数的函数对象是以这种方式出现的。其次,我们在输入mean这类函数名次的时候,会出现如下结果:function (x, ...)UseMethod("mean")这表示函数作者把函数“封”起来了。这个时候我们可以先试一试methods(mean),利用methods函数看看mean这个函数都有哪些类型的,我们得到的结果如下:[1] mean.data.frame mean.Date mean.default mean.difftime mean.POSIXct mean.POSIXlt其实对此可以有一个简单的理解,虽然不够精确。因为在R中,mean函数可以求得属于不同类型对象的平均值,而不同类型对象平均值的求法还是有一些小小差 异的,比如说求一个向量的平均值和求一个数据框的平均值就有所差异,就要编写多个mean函数,然后“封”起来,以一个统一的mean出现,方便我们使 用。这正好也反映了R有一种类似泛型编程语言的性质。既然我们已经知道mean中还有这么多种类,我们可以输入mean.default试一试就可以得到:function (x, trim = 0, na.rm = FALSE, ...){if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {warning("argument is not numeric or logical: returning NA")return(as.numeric(NA))}if (na.rm)x <- x[!is.na(x)]trim <- trim[1]n <- length(x)if (trim > 0 && n > 0) {if (is.complex(x))stop("trimmed means are not defined for complex data")if (trim >= 0.5)return(stats::median(x, na.rm = FALSE))lo <- floor(n * trim) + 1hi <- n + 1 - lox <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]n <- hi - lo + 1}.Internal(mean(x))}同样就可以得到mean.data.frame、mean.Date、mean.difftime、mean.POSIXct、mean.POSIXlt 的具体内容了。值得注意的是,在R中,出现有多个同样近似功能的函数封装为一个函数的时候(这时候在函数中多半会出现类似UseMethod函数使用的情 况),我们不妨先输入mean.default试一试。这种形式的函数在R中一般作为默认的函数表示。第三,这是一种特殊的情况,有人认为应该和第二种是一类,但是我还是要提出来单独归类。在这种情况也和第二种的原因有些类似,但并不是完全一致。也许我们大家都很熟悉plot函数了吧,输入函数名plot的时候,我们会得到如下结果:function (x, y, ...){if (is.null(attr(x, "class")) && is.function(x)) {nms <- names(list(...))if (missing(y))y <- {if (!"from" %in% nms)0else if (!"to" %in% nms)1else if (!"xlim" %in% nms)NULL}if ("ylab" %in% nms)plot.function(x, y, ...)else plot.function(x, y, ylab = paste(deparse(substitute(x)),"(x)"), ...)}else UseMethod("plot")}请注意plot函数中也出现了UseMethod这个函数,但是和mean不同的是,前面有相当多的语句用于处理其他一些事情。这个时候,我们也使用methods(plot)来看看,得到如下结果:plot.acf* plot.data.frame* plot.Date* plot.decomposed.ts* plot.default plot.dendrogram* plot.density plot.ecdf plot.factor* plot.formula* plot.hclust* plot.histogram* plot.HoltWinters* plot.isoreg* plot.lm plot.medpolish* plot.mlm plot.POSIXct* plot.POSIXlt* plot.ppr* plot.prcomp* plot.princomp* plot.profile.nls* plot.spec plot.spec.coherencyplot.spec.phase plot.stepfun plot.stl* plot.table* plot.ts plot.tskernel* plot.TukeyHSD不看不知道,一看吓一跳,还以为我们输入plot的输出就是函数本身,结果也许不是如此。可能有人已经理解了,其实最后的UseMethod函数实在默认的调用plot.default函数,赶快再看看plot.default函数吧,发现它再调用plot.xy函数,再看看plot.xy函数,再plot.xy函数中调用了一个.Internal(plot.xy(xy, type, pch, lty, col, bg, cex, lwd, ...))函数,也许这就是真正起作用的函数了吧。思路基本上就是如此了,是否这个时候您可以获得一些阅读查找R函数内容的乐趣。除了直接输入FUN.default形式外,还可以使用getS3method(FUN,"default")来获得代码。这样就解决了绝大多数函数代码查看的工作了。在第二种情况种,我们说了一般可以通过FUN.default获得想要的结果。但是只有称为generic的函数才有这种“特权”。而lm等则没有,不过我们也可以尝试使用methods(lm)来看看结果如何,发现:[1] lm.fit lm.fit.null lm.influence lm.wfit lm.wfit.nullWarning message:function 'lm' appears not to be generic in: methods(lm)出现了警告信息,表示说lm不是泛型函数,但是还是给出了结果lm.fit等,大致上可以看成是和lm相关的系列函数吧。这样子就出现了有趣的局面,比如说既有plot.ts,也有ts.plot。依照第三种情况,我们发现竟然有的函数用星号标识了的,比如plot.stl*等,当我们输入plot.stl,甚至是plot.stl*的时候都会给出 要么找不到这个对象,要么干脆是代码错误的信息。原来凡是用了*标识的函数,都是隐藏起来的函数,估计是怕被人看见(其实这是玩笑话)!我们要看这些函数 的代码,我们该怎么办呢?其实也很容易,使用功能强大的getAnywhere(FUN),看看这个函数的名称,就可以猜想到它的功能估计是很强大的, Anywhere的内容都可以找到!getAnywhere(plot.stl)的结果如下:A single object matching 'plot.stl' was foundIt was found in the following placesregistered S3 method for plot from namespace statsnamespace:statswith valuefunction (x, labels = colnames(X), set.pars = list(mar = c(0,6, 0, 6), oma = c(6, 0, 4, 0), tck = -0.01, mfrow = c(nplot,1)), main = NULL, range.bars = TRUE, ..., col.range = "light gray"){sers <- x$time.seriesncomp <- ncol(sers)data <- drop(sers %*% rep(1, ncomp))X <- cbind(data, sers)colnames(X) <- c("data", colnames(sers))nplot <- ncomp + 1if (range.bars)mx <- min(apply(rx <- apply(X, 2, range), 2, diff))if (length(set.pars)) {oldpar <- do.call("par", as.list(names(set.pars)))on.exit(par(oldpar))do.call("par", set.pars)}for (i in 1:nplot) {plot(X[, i], type = if (i < nplot)"l"else "h", xlab = "", ylab = "", axes = FALSE, ...)if (range.bars) {dx <- 1/64 * diff(ux <- par("usr")[1:2])y <- mean(rx[, i])rect(ux[2] - dx, y + mx/2, ux[2] - 0.4 * dx, y -mx/2, col = col.range, xpd = TRUE)}if (i == 1 && !is.null(main))title(main, line = 2, outer = par("oma")[3] > 0)if (i == nplot)abline(h = 0)box()right <- i%%2 == 0axis(2, labels = !right)axis(4, labels = right)axis(1, labels = i == nplot)mtext(labels[i], side = 2, 3)}mtext("time", side = 1, line = 3)invisible()}注意到前面有一段解释型的语言,描述了我们要找的这个函数放在了什么地方等等。其实对任意我们可以在R中使用的函数,都可以先试一试getAnywhere,看看都有些什么内容。算是一个比较“霸道”的函数。在上面plot.xy函数中,我们还可以看到.Internal这个函数,类似的也许还可以看到.Primitive、.External、.Call等函数这就和R系统内部工作方式和与外部接口的定义有关了,如果对这些函数有兴趣的话,就要学习组成R系统的源代码了。最后,如果真的想阅读组成R系统本身的源代码,在各个CRAN中均有下载。你可以得到组成R系统所需要的材料。其中很多C语言(还有就是F)的源代码,均 是精心挑选过的算法,哪怕就是想学从头到尾编写具体的算法,也是学习的好材料。同时,你可以看到R系统内部是如何构成的,理解了这些对于高效使用R有至关 重要的作用。这个范畴的材料就要着重看一看R-Lang和R-inits了。

211 评论

相关问答

  • 语言论文发表

    靠 这个要求这么低四川大学要求SCI呢,变态死了~~~D类很好发吧,不知道你是哪个专业,博士发文章国内的基本投去就能发,只要你别太大问题。

    馋佬胚祖宗 3人参与回答 2023-12-12
  • r语言发论文

    基于R语言实现Lasso回归分析主要步骤:将数据存成csv格式,逗号分隔在R中,读取数据,然后将数据转成矩阵形式加载lars包,先安装调用lars函数确定Cp值

    js紫外线 2人参与回答 2023-12-09
  • 论文发表语言

    期刊论文引言怎么写 论文的前言也叫引言,是正文前面一段短文。前言是论文的开场白,目的是向读者说明本研究的来龙去脉,吸引读者对本篇论文产生兴趣,对正文起到提纲

    三生皆缘 3人参与回答 2023-12-12
  • 发表语言论文

    论文是一种能力表现,也是一种生活的负担,只要是你走上了职业生涯,就离不开论文了,百忙之余也许会很少有时间来顾及这些,但又是不得不面对的事。有的发到了一些毫无学术

    樱花卫厨ks 3人参与回答 2023-12-06
  • r语言绘图可以发表论文

    R语言有着很强大的画图功能。我们可以从下面的语句中得到 1、绘画函数 高级画图功能(创建一个新的图形) 低级绘图函数(在现有的图形上添加元素) 2、绘图参数介绍

    壹个芝麻糕 2人参与回答 2023-12-10