• 回答数

    5

  • 浏览数

    342

苏州小迷糊
首页 > 论文发表 > 运筹学论文发表心情app

5个回答 默认排序
  • 默认排序
  • 按时间排序

lulu酱求好运

已采纳

在物流配送领域,如何快速、准确的获得用户信息并及时开展业务,高效、合理的完成配送服务,成为决定物流企业市场竞争力的重要因素。下面是我为大家整理的物流配送管理系统论文,供大家参考。

物流配送系统干扰管理模型研究

物流配送管理系统论文摘要

摘要:物流配送在我国信息化时代是非常需要的,因此有着非常重要的地位。物流配送系统就是一个经济行为的系统,它为人们在物流上面提供了方便。关于物流配送系统干扰管理模型,国内外都有一定的研究。本文从物流配送系统的概念、一般方式、具体模型来作了探讨工作。

物流配送管理系统论文内容

[abstract] the logistics distribution in our country's information age is very need, so has a very important position. The logistics distribution system is an economic behavior of the system, it for the people in the logistics provided above to a convenient. About logistics distribution system interference management model, and have certain research at home and abroad. This paper, from the concept of logistics distribution system, general way, the specific model to work were discussed

关键词:物流配送;系统;干扰管理;研究;

中图分类号:F253

一、物流配送系统

(一)概念

物流配送系统是一个经济行为的系统,它是通过其收集广泛的信息来实现以信息为基础的物流系统化,其作用是不可忽视。物流配送系统的主要机能分为两种,一种是作业子系统,另一种是信息子系统。作业子系统的范围比较广,包括的内容也比较多,例如输送、保管、加工等机能,其主要目的是保证物流配送达到快速的运作,使工作效率提高。信息子系统相比作业子系统来说范围是比较小的,其内容包括订货、发货、出库管理等,它的主要目的除了提高其工作效率以外,还能使工作更加效果化。信息子系统还有一点对于顾客来说是非常有用的,那就是可以以比较低的成本以及优良的顾客服务来完成商品实体,然后从供应地再到消费地,是一种非常有利于顾客的活动。

(二)一般方式

物流配送在我国占有非常重要的地位,它一般有两种配送模式,一种是及时配送,另一种是准时配送,这两种配送模式的应用是非常广泛的,因为两种模式都要有一个共同点,那就是都满足了用户的特殊要求,以此来进行供货以及送货的工作。即时配送和准时配送的供货时间非常的灵活和稳定,基于这种情况,对于用户的生产者和经营者来说,库存的压力就发生了变化,也就是出现库存缩减的情况,有时还会取消自己的库存。

二、物流配送系统干扰管理模型

(一)国内外的研究

关于干扰的研究在20世纪70年代就已经开始了,但是其干扰管理模型是在同个世纪90年代才提出来的,在提出来的概念中,把干扰管理给局限化了,把系统扰动控制在最小数值,还指出了干扰管理的另一种含义,它是属于运筹学的某个应用领域,其发展的潜能在一定程度上来说是非常大的。

我国的学者也对干扰管理作了一些研究,研究表明干扰管理的实质就是使事件回到最初的状态,其突然出现的事件就是一种偏离,而这种偏离是微小的,并没有对其产生一些重要的影响,所以通过及时的管理 方法 是可以修正的。学者还将干扰管理与应急管理的不同点分列出来,使人一目了然。

在现阶段,国内外关于干扰管理的模型的研究具有片面性,侧重于模型以及算法,虽然涉及的领域非常的多,但是也具有一定的局限性,片面性在一定程度上也是有的,比如说在车辆调度领域,特别是物流配送这一方面,相对来说起步是比较晚的,但是后续的研究并没有停止。

(二)原因

1.总所周知,客户如果对一个企业充分信任的话,就能使企业的长期的拥有这些客户,也就是固定客户会增多,随着旧客户的口碑相传,新客户也会随之而来,企业就会得到更多的赢利。下文所讲到的数学模型建立的目标是最小化的,因此就可以就可以用这一条件来反映对客户满意度的扰动。

2.物流配送的运营商最关心的必然是运作成本,因为其运作成本是整个物流配送的核心,所以根据这种情况来看,要想节约其运作成本的话,就可以调整其干扰方案。

3.干扰管理在生成新的配送方案后,其车的路线也将发生变化,因为频繁的更改其路线,其交通费必然会增加,超过了原本的预算,其效率也会受到影响。另一方面,因为路线频繁的更改,司机原本已经熟悉的路线又变得陌生起来,必将会影响司机的工作心情。依据干扰管理的思想来看,新方案和原方案相比的话,两者间的偏差值应该是最小的,所以路径的变动量也会最小。在本文中,提出的模型(下文将提到)是以三个维度来度量其扰动的,其模型是属于多目标的。

(三)数学模型的建立

数学模型的建立,是例子是非常多的。本文只是以需求量变动为干扰事件这一个例子来进行数学建模,其原因有以下几点内容。

1.需求量变动在一些企业中是必然会发生的干扰事件,特别是在成品油销售的企业。因为油品的存放存在一定的危险,容易造成火灾事故,如果除去加油站,其他成油品销售一般为服务行业,比如说餐饮、酒店等,因为这些行业所存储的油不能太多,所以只能小批量的、多数次的来购买,根据这样一种情况,需求量必然会发生变化。据有关资料调查,需求量变动量最大的干扰事件就是该类企业。

2.需求量变动的问题在国内外学术界的关注度是非常高的,国内外许多著名学者都对需求量变动问题作了探讨。根据一些新闻、期刊以及文献我们就可以看出,物流配送需求量变动的研究已经在很久以前就有相关资料了。此类干扰事件在1987年时就作了有关研究,比如说不确定性需求的动态车辆指派问题模型。

3.关于物流配送的车辆其路径问题的种类也是非常多的,本文主要通过对有时间窗的车辆路径问题作了相关研究。此类问题有一个特别明显的特点,就是客户对货物所送达的时间非常的严格,因此其要求也更加高了。下面我们举一个例子来详细的讲解一下这个问题,让其更加的清晰明了。假如其问题范围和条件分别为:只有一个配送中心,并且其配送中心有足够的同质物质材料,车辆也足够,但是有一个问题就是其车辆必须以配送中心为始源地和终点,而且每一辆车必须从只能访问一个客户,如图1(a)所示.如果出现需求量的突发事件,车辆就必须在出发之前就要把物品载满。假如说在开始设定的计划中,并没有对需求量不足做出一些应急 措施 ,如果客户的需求量突然增加,如图1中的客户点7,而且增加的需求量还超过了剩余车辆的载货量,也就是说其车辆也出现供应不足的情况,此时它就需要其他车辆来进行援助工作,如图l(b)所示。

三、结束语

随着我国经济的迅速发展,人们开始追求方便化,所以物流配送工作对于人们来说变得越来越重要。但是在物流配送的过程中,必定会出现突发状况,也就是出现干扰的情况。比如说客户需求量变动、车辆出现故障等,这些干扰事件经常会使原本计划出现失败的情况,然后顾客就对其不满,矛盾也会随着时间而加深。在现阶段,物流配送系统干扰管理模型的研究有些片面化,在前面我们也提到过,主要因为全都集中在单一要素变动引发的干扰事件上,在真正的物流配送过程中,存在变动的情况更多,因此,物流配送系统干扰管理模型的问题还有待进一步的研究,以此来完善此系统,让其更加贴近生活,实用性也变得更强。

物流配送管理系统论文文献

[1]王旭坪,杨德礼,许传磊.有顾客需求变动的车辆调度干扰管理研究[J].运筹与管理.2009(04)

[2] 孙丽君,胡祥培,于楠,方艳.需求变动下的物流配送干扰管理模型的知识表示与求解[J].管理科学.2008(06)

[3] 杨文超,王征,胡祥培,王雅楠.行驶时间延迟的物流配送干扰管理模型及算法[J].计算机集成制造系统.2010(02)

[4] 朱晓锋,蔡延光.物流配送的优化模型及算法在连锁企业中应用[J].顺德职业技术学院学报.2011(01)

[5] 胡祥培,于楠,丁秋雷.物流配送车辆的干扰管理序贯决策方法研究[J].管理工程学报.2011(02)

矩阵算法在物流配送管理系统中的应用

物流配送管理系统论文摘要

摘要: 本文针对物流配送中心运营过程中如何合理制定配送线路的问题,以邻接矩阵为基础,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。

物流配送管理系统论文内容

Abstract: In this paper, for the problem how to develop reasonable distribution lines in the process of logistics and distribution center operations, based on adjacency matrix, by the computation of adjacency matrix to get graph reachability matrix and judge whether can find forward path from the source node to goal node, and finally complete the search of the shortest path.

关键词: 车辆路径问题;配送;物流;最短路径

Key words: vehicle routing problem;distribution;logistics;shortest path

中图分类号:TP39 文献标识码:A 文章 编号:1006-4311(2013)10-0163-02

0 引言

目前我国的快递行业蓬勃发展,使得物流配送中心的业务量不断增加,业务的复杂程度也已不断提高,这都对物流配送中心的科学管理水平提出了新的要求,高效、合理、安全、快速的配送是物流系统顺利运行的保证,而配送线路安排是否合理也是配送速度、成本、效益的保证。正确、合理地安排配送线路,可以达到省时、省力,增加资源利用率,降低成本,提高经济效益的目的,从而使企业达到科学化的物流管理。

本文以邻接矩阵模型为基础,提出了一种新的最短路径算法,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。

1 有向图的可达矩阵

假设有一个n个节点(d1,d2……dn)建立的有向图,每条有向边上都有各自的权值,若节点di和dj之间有条有向边,则其权值表示为Wij。如果我们要求节点d1到节点dn的最短路径。那么首先应该建立基于该有向图的邻接矩阵M:Mij=0表示节点di和dj之间没有直接有向通路,若Mij=1表示节点di和dj之间存在直接有向通路。

那么矩阵M2中所有为1的元素的坐标所代表的就是通过一次“中转”可以达到贯通的节点对。以此类推M3中所有为1的元素的坐标就是通过两次 “中转”可以达到贯通的节点对;Mn所有为1的元素的坐标就是通过n-1次“中转”可以达到贯通的节点对。

所以我们可以得出:M1+M2+M3+……+Mn得到的矩阵T即为原有向图可达矩阵,Tij=0表示节点di和dj之间没有有向通路,若Tij=1表示节点di和dj之间存在至少存在一条有向通路。

对于大规模稀疏矩阵,由于存在大量的值为0的元素,若按常规意义来存储,既会占用大量的存储空间,又会给查找带来不便。所以只要存储值为非0的元素即可。这在计算机中很好实现,只要建立含有两个整数域的结构体变量即可。

2 路径搜索算法

2.1 初步设想 由矩阵乘法的性质可知,Mx=Mx-1*M。若M■■≠0,则说明节点d1通过x-1次“中转”可以到达节点dj。那其中这x-1个节点都是哪些?它们又是什么顺序呢?把这两个问题搞清楚我们就找到了一条从节点d1经x-1次“中转”到达节点dj的通路。

接下来我们观察矩阵Mx-1的第一行,若M■■≠0,且Mij≠0,则说明:节点d1存在经x-2次“中转”到达节点di的通路,且节点di和dj之间存在直接有向通路。这样我们就找到了节点d1到节点dj通路的最后一次“中转”di,即d1,……,di,dj是一条有向通路。我们可以根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。

这在计算机中实现也很容易,只要把找节点di和dj之间的最后一次“中转”的方法编写好,采用计算机中的递归调用就能很好地解决这个问题,计算机会自己自动完成整个操作。

2.2 节点的选取 有一个问题我们需要注意:在我们观察矩阵Mx-1的第一行时可能有多个节点di,使得M■■≠0,且Mij≠0。基于我们是想找到有向图中的最短路径,所以每一次选取节点应该选择一个到节点dj最短的节点作为最后一次“中转”。这一过程是通过查看另一权值矩阵W,找到值最小的Wij来确定di的。

2.3 待查节点集 上面说到,我们找到了节点d1到节点dj的x-1次“中转”的最后一次“中转”di,即d1,……,di,dj是一条有向通路。根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。

每一次查找之前,与待查节点有直接通路的节点都应加到考察的范围,同时上一次确定的最终通路上的节点也应从待查范围中删除,而加入最终通路的节点集中。

2.4 需要考虑的两种情况 按照上面方法是会找到一条从d1到节点dj的一条有向通路,但是一定是最短路径吗?我们先考虑两个情况:①如果在已经找到一条从d1到节点dj的有向通路的前提下,再重复以上过程再找一条从d1到节点dj的有向通路,那么有可能新找到的通路上的所有权值之和要比之前找到的通路上的权值之和小,在这种情况下,应放弃原来通路。记下新找到的通路把它作为“当前”的最短路径。②如果在查找的过程中,已经确定节点dy是在已找通路上的节点,即存在节点d1到节点dy的通路,也存在节点dy到节点dj的通路,并且dy是上一节点的最近邻接点。但在查找下一步节点d1到节点dy的通路的最后一次“中转”dz的过程中发现:所定通路上节点dy的上一节点通过其他方式到节点dz的长度要比经过节点dy中转到节点dz的长度要短,即通过dy相当于“绕路”。因为根据2.1中所阐述的方法找到的节点dz一定是待查节点中到节点dy路径长度最短的节点。若存在“绕路”现象,那么通过节点dy到其他的未差节点都会“绕路”。因而在这种情况下应该从已经确定的有向通路中把节点dy删除,恢复上一节点为当前节点,重新查找其除dy之外的最后一次“中转”。 2.5 搜索算法 首先根据实际情况建立有向图,并根据有向图建立有向图的邻接矩阵M,以及根据各有向边的权值建立矩阵W。然后根据矩阵乘法求出M2,M3,……Mn。这可以通过循环完成。之后的步骤就是设定待查节点,由于算法是从终点向起点查找的,所以应该先把与终点dj构成直接通路的节点作为待查节点。建立完待查节点集后,首先按照深度优先进行搜索,按照上面所说的递归算法查找第一条有向通路。然后以此条通路为基准,进行广度优先搜索,寻找新的通路,查找过程仍然是采用上述的递归算法,但是要考虑到2.4中的两种情况。需要指出的是:广度优先搜索过程可能是一个反复执行的过程,直至最终找到节点d1到节点dj的最短路径。

3 实例

某物流公司业务员要从v0到地点v2投递货物,路线如图1所示,业务员想在此过程走的路线最短,时间最快。他应该走哪条路线?

由上面有向图建立的邻接矩阵M以及有向边权值矩阵W如图2所示,由于M是一个稀疏矩阵,按照上面方法所述形成的节点数对(0,1),(0,3),(1,2),(3,2),(3,4),(4,1),(4,2)。按照矩阵乘法计算出M2、M3、M4、M5。由它们产生的节点对如下所示:M2(0,2),(0,4),(3,1),(3,2),(4,2);M3(0,1),(0,2),(3,2);M4(0,2)。我们据此可得到该有向图的可达矩阵T的节点对:(0,1),(0,2),(0,3),(0,4),(1,2),(3,1),(3,2),(3,4)(4,1),(4,2)。

现在我们求节点v0到v2的最短路径。查看矩阵T可知存在(0,2)的节点对,所以从V0可以到达V2。再按照上述规则以及结合矩阵W,找到M2存在(2,0)节点对,M中存在(1,2)和(0,1)节点对,即M■■= M12* M01, M■■、M12、 M01都不为0。所以找到一条通路即:v0、v1、v2,其路径长为19。

按照上述方法,我们还可以找到通路:v0、v3、v2和v0、v3、v4、v2,但是由于它们的路径长分别为19和20,不产生对通路v0、v1、v2的替换,所以在此不再详述。继续按着上述方法查找通路时会发现:M■■≠0,且存在M■■≠0,M12≠0,继续查找又会发现存在M■■≠0,M41≠0,进一步查找又会发现存在M03≠0,M34≠0,所以最终找到通路:v0、v3、v4、v1、v2,由于其路径长为18,所以按照上述原则对原通路v0、v1、v2进行替换,又由于已查找该有向图中所有通路,所以确定最短路径为v0、v3、v4、v1、v2,由于其路径长为18。

4 结论

本文针对物流配送系统中的投递等事务中路线优化的问题,提出了一种新的对最短路径算法的尝试,采用逆向标号,对待查节点进行优化选取,有效的利用了第一次计算的有用信息,避免重复计算,使得该算法搜索设计上要比以往算法节省时间,对于最短路径问题可以快速求解。虽然增加了邻接矩阵的乘法计算,但由于是稀疏矩阵,不会增加太多的计算量。本算法是具有实际意义的,可以在成本降低方面给出积极、高效的意见和解决方法,从而降低物流中的流通费用。

物流配送管理系统论文文献

[1]肖位枢.图论及其算法.北京:航空工业出版社,1993.

[2]任亚飞,孙明贵,王俊.民营快递业的发展及其战略选择.北京:中国储运,2006.

[3]周石林,尹建平,冯豫华.基于邻接矩阵的最短路径算法.北京:软件导报,2010.

[4]蔡临宁.物流系统规划—建模实例分析.北京:机械工业出版社,2003.

有关物流配送管理系统论文推荐:

1. 配送管理论文

2. 物流配送毕业论文范文

3. 浅谈仓储与配送管理论文

4. 物流管理专科毕业论文范文

5. 浅谈服装物流管理论文

6. 快递末端物流配送的风险分析与防范措施研究论文

214 评论

Miss乔大小姐

影响因子为0.961。影响因子是指某一领域内期刊的影响力指标,反映了该领域内期刊的学术水平和影响力。而某一期刊的影响因子是指该期刊前两年发表的论文被其他期刊引用的次数与该期刊前两年发表的论文总数的比值。影响因子越高,表示该期刊的影响力和学术水平越高。据了解,运筹与模糊学(JournalofUncertainSystems)是一本国际性学术期刊,由中国运筹学会和中国模糊学会联合主办,涵盖了运筹学、模糊数学、信息科学等多个学科领域。该期刊的影响因子为0.961,这意味着该期刊在其领域内具有较高的学术影响力和知名度,其发表的论文被其他期刊广泛引用。

163 评论

崎岛莫奈子

在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。 运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。 但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。 运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。 运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。 虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。 随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。 各分支简介 数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。 数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。 这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。 线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。 非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。 排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。 排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。 因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。 排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。 对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。 最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。 搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的。 运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。数学家华罗庚关于统筹学举过一个很经典的例子, 具体细节不记得, 大概内容还有印象, 就是说你家来了客人,要泡茶,但是家中米有热水和茶叶,茶壶、茶杯也要洗,在最短的时间内做好一系列的事情。 买茶叶5分钟,煮水10分钟,。洗壶2分钟,洗杯子1分钟, 客人要喝茶需要等12分钟, 步骤即:1洗壶(2) 2烧水(10) 3在烧水的同时去洗杯子和买茶叶。(6分钟可以干完,还可以休息4分钟:)) 不知道对你有么的用,偶觉得统筹和运筹有相通之处。。

338 评论

24678happy

Operation Research原意是操作研究、作业研究、运用研究、作战研究,译作运筹学,是借用了《史记》“运筹策于帷幄之中,决胜于千里之外”一语中“运筹”二字,既显示其军事的起源,也表明它在我国已早有萌芽。运筹学作为一门现代科学,是在第二次世界大战期间首先在英美两国发展起来的,有的学者把运筹学描述为就组织系统的各种经营作出决策的科学手段。P.M.Morse与G.E.Kimball在他们的奠基作中给运筹学下的定义是:“运筹学是在实行管理的领域,运用数学方法,对需要进行管理的问题统筹规划,作出决策的一门应用科学。”运筹学的另一位创始人定义运筹学是:“管理系统的人为了获得关于系统运行的最优解而必须使用的一种科学方法。”它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物的组织管理、筹划调度等问题,以期发挥最大效益。现代运筹学的起源可以追溯到几十年前,在某些组织的管理中最先试用科学手段的时候。可是,现在普遍认为,运筹学的活动是从二次世界大战初期的军事任务开始的。当时迫切需要把各项稀少的资源以有效的方式分配给各种不同的军事经营及在每一经营内的各项活动,所以美国及随后美国的军事管理当局都号召大批科学家运用科学手段来处理战略与战术问题,实际上这便是要求他们对种种(军事)经营进行研究,这些科学家小组正是最早的运筹小组。第二次世界大战期间,“OR”成功地解决了许多重要作战问题,显示了科学的巨大物质威力,为“OR”后来的发展铺平了道路。当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1957年成立了国际运筹学协会。运筹学的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。运筹学的研究方法有:1.从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解;2.探索求解的结构并导出系统的求解过程;3.从可行方案中寻求系统的最优解法。运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、图论、决策论、对策论、排队论、存储论、可靠性理论等。数学规划即上面所说的规划论,是运筹学的一个重要分支,早在1939年苏联的康托洛维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人就在生产组织管理和制定交通运输方案方面首先研究和应用一线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划问题,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门都可以发挥作用。从范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,具有适应性强,应用面广,计算技术比较简便的特点。非线性规划的基础性工作则是在1951年由库恩(H.W.Kuhn)和达克(A.W.Tucker)等人完成的,到了70年代,数学规划无论是在理论上和方法上,还是在应用的深度和广度上都得到了进一步的发展。图论是一个古老的但又十分活跃的分支,它是网络技术的基础。图论的创始人是数学家欧拉。1736年他发表了图论方面的第一篇论文,解决了著名的哥尼斯堡七桥难题,相隔一百年后,在1847年基尔霍夫第一次应用图论的原理分析电网,从而把图论引进到工程技术领域。20世纪50年代以来,图论的理论得到了进一步发展,将复杂庞大的工程系统和管理问题用图描述,可以解决很多工程设计和管理决策的最优化问题,例如,完成工程任务的时间最少,距离最短,费用最省等等。图论受到数学、工程技术及经营管理等各方面越来越广泛的重视。排队论又叫随机服务系统理论。1909年丹麦的电话工程师爱尔朗(A.K.Erlang)排队问题,1930年以后,开始了更为一般情况的研究,取得了一些重要成果。1949年前后,开始了对机器管理、陆空交通等方面的研究,1951年以后,理论工作有了新的进展,逐渐奠定了现代随机服务系统的理论基础。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。它是研究系统随机聚散现象的理论。可靠性理论是研究系统故障、以提高系统可靠性问题的理论。可靠性理论研究的系统一般分为两类:(1)不可修系统:如导弹等,这种系统的参数是寿命、可靠度等,(2)可修复系统:如一般的机电设备等,这种系统的重要参数是有效度,其值为系统的正常工作时间与正常工作时间加上事故修理时间之比。决策论研究决策问题。所谓决策就是根据客观可能性,借助一定的理论、方法和工具,科学地选择最优方案的过程。决策问题是由决策者和决策域构成的,而决策域又由决策空间、状态空间和结果函数构成。研究决策理论与方法的科学就是决策科学。决策所要解决的问题是多种多样的,从不同角度有不同的分类方法,按决策者所面临的自然状态的确定与否可分为:确定型决策、风险型决策和不确定型决策;按决策所依据的目标个数可分为:单目标决策与多目标决策;按决策问题的性质可分为:战略决策与策略决策,以及按不同准则划分成的种种决策问题类型。不同类型的决策问题应采用不同的决策方法。决策的基本步骤为:(1)确定问题,提出决策的目标;(2)发现、探索和拟定各种可行方案;(3)从多种可行方案中,选出最满意的方案;(4)决策的执行与反馈,以寻求决策的动态最优。如果决策者的对方也是人(一个人或一群人)双方都希望取胜,这类具有竞争性的决策称为对策或博弈型决策。构成对策问题的三个根本要素是:局中人、策略与一局对策的得失。目前对策问题一般可分为有限零和两人对策、阵地对策、连续对策、多人对策与微分对策等。运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质,是系统工程学和现代管理科学中的一种基础理论和不可缺少的方法、手段和工具。运筹学已被应用到各种管理工程中,在现代化建设中发挥着重要作用。

270 评论

lifang88322

分类: 社会民生 >> 其他社会话题 问题描述: 请大家帮帮忙 解析: 何谓“运筹学”?它的英文名称是Operations Research,直译为“作业研究”,就是研究在经营管理活动中如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”问题。汉语是世界上最丰富的语言,中国学者把这门学科意译为“运筹学”,就是取自古语“运筹于帷幄之中,决胜于千里之外”,其意为运算筹划,出谋献策,以最佳策略取胜。这就极为恰当地概括了这门学科的精髓。 在人类历史的长河中,运筹谋划的思想俯拾皆是,精典的运筹谋划案例也不鲜见。像“孙子兵法”就是我国古代战争谋略之集大成者;像诸葛亮更是家喻户晓的一代军事运筹大师。然而,把“运筹学”真正当成一门科学来研究,则还只是近几十年来的事。第二次世界大战中,英美等国抽调各方面的专家参与各种战略战术的优化研究工作,获得了显著的成功,大大推进了胜利的进程。战后,从事这些活动的许多专家转到了民用部门,使运筹学很快推广到了工业企业和 *** 工作的各个方面,从而促进了运筹学有关理论和方法的研究和实践,使得运筹学迅速发展并逐步成熟起来。 运筹学发展到现在,虽然只有五十多年的历史,但其内容已相当丰富,所涉及的领域也十分广泛。以《运筹学国际文摘》收集的各国运筹学论文的内容为例,按技术分类就有50多种。现在这门新兴学科的应用已深入到国民经济的各个领域,成为促进国民经济多快好省,健康协调发展的有效方法。 我国运筹学的应用是在1957年始于建筑业和纺织业。1958年开始在交通运输、工业、农业、水利建设、邮电等方面都有应用,尤其是运输方面,提出了“图上作业法”并从理论上证明了其科学性。在解决邮递员合理投递路线问题时,管梅谷教授提出了国外称之为“中国邮路问题”解法。从60年代起,运筹学在我国的钢铁和石油部门得到了全面和深入的应用。1965年起统筹法的应用在建筑业、大型设备维修计划等方面取得了可喜进展。从70年代起,在全国大部分省市推广优选法。70年代中期最优化方法在工程设计界得到广泛的重视。在光学设计、船舶设计、飞机设计、变压器设计、电子线路设计、建筑结构设计和化工过程设计等方面都有成果。70年代中期的排队论开始应用于研究港口、矿山、电讯和计算机设计等方面。图论曾被用于线路布置和计算机设计、化学物品的存放等。存贮论在我国应用较晚,70年代末在汽车工业和物资部门取得成功,近年来运筹学的应用已趋于研究规模大和复杂的问题,如部门计划、区域经济规划等,并已与系统工程难于分解。 关于运筹学将往哪个方向发展,从70年代起就在西方运筹学界引起过争论,至今还没有一个统一的结论,这里提出某些运筹学界的观点,供大家进一步学习和研究时参考。 美国前运筹学会主席邦德(S.Bonder)认为,运筹学应在三个领域发展:运筹学应用、运筹科学、运筹数学,并强调在协调发展的同时重点发展前两者。这是由于运筹数学在70年代已形成一个强有力的分支,对问题的数学描述已相当完善,却忘掉了运筹学的原有特色,忽视了对多学科的横向交叉联系和解决实际问题的研究。现在,运筹学工作者面临的大量新问题是:经济、技术、社会、生态和政治因素交叉在一体的复杂系统,所以从70年代末80年代初,不少运筹学家提出“要注意研究大系统”,“要从运筹学到系统分析”。由于研究大系统的时间范围有可能很长,还必须与未来学紧密结合起来;面临的问题大多是涉及技术、经济、社会、心理等综合因素,在运筹学中除了常用的数学方法,还引入了一些非数学的方法和理论。如美国运筹学家沙旦(T.L.Saaty)于70年代末期提出的层次分析法(AHP),可以看作是解决非结构问题的一个尝试。针对这种状况,切克兰特(P.B.Checkland)从方法论上对此进行了划分。他把传统的运筹学方法称为硬系统思考,认为它适合解决那种结构明确的系统的战术及技术问题,而对于结构不明确的、有人参与活动的系统就要采用软系统思考的方法。借助电子计算机,研究软系统的概念和运用方法应是今后运筹学发展的一个方向。

269 评论

相关问答

  • 运筹学论文发表期刊app

    发表论文的平台如下: 1.知网 这里所说的是知网,是清华大学和清华同方共同办的这个数据库。在前些年他也叫中国期刊网,由于后来有人自己建了个网站也叫中国期刊网,自

    无敌幸运星1 4人参与回答 2023-12-07
  • 运筹学论文发表小说app

    上海师范大学是上海市重点建设高校,现有哲学、经济学、法学、教育学、文学、历史学、理学、工学、管理学、农学、艺术学等11个学科门类,那么上师大理数学院的“运筹学与

    A-水灵儿^O^ 3人参与回答 2023-12-07
  • 运筹学论文发表心情文案

    考研 选专业时,运筹学与控制论 专业怎么样 是广大考研朋友们十分关心的问题,以下运筹学与控制论 专业介绍 ,包含:运筹学与控制论专业研究方向、培养目标、 就业方

    拉菲兔兔 3人参与回答 2023-12-12
  • 运筹学论文发表心情图片

    关键词是学术论文进人流通和引用的窗口,规范关键词选择有利于图书情报机构快捷、有效地检索和引用。中国科学技术协会为了规范学术论文,深化学术文献的研究和统计,多层面

    静婷雅香 5人参与回答 2023-12-11
  • 运筹学论文发表

    控制理论研究方向主要从事自适应控制、鲁棒控制、干扰抑制与抵消理论及其应用、网络流量控制等领域的研究工作。“十五”以来,主持国家自然科学基金课题2项、山东省自然科

    露西亞嘉利 2人参与回答 2023-12-08